Properties

Label 1110.2.ba.b.529.7
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.7
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.b.619.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.465711 - 2.18703i) q^{5} -1.00000i q^{6} +(-3.89483 - 2.24868i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.465711 - 2.18703i) q^{5} -1.00000i q^{6} +(-3.89483 - 2.24868i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(1.66117 - 1.49683i) q^{10} +0.412574 q^{11} +(0.866025 - 0.500000i) q^{12} +(-1.10249 + 1.90957i) q^{13} -4.49736i q^{14} +(-0.690199 + 2.12688i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.63267 + 2.82787i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(2.06416 + 1.19174i) q^{19} +(2.12688 + 0.690199i) q^{20} +(2.24868 + 3.89483i) q^{21} +(0.206287 + 0.357299i) q^{22} +1.63566 q^{23} +(0.866025 + 0.500000i) q^{24} +(-4.56623 + 2.03705i) q^{25} -2.20498 q^{26} -1.00000i q^{27} +(3.89483 - 2.24868i) q^{28} +9.16257i q^{29} +(-2.18703 + 0.465711i) q^{30} +6.51360i q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.357299 - 0.206287i) q^{33} +(-1.63267 + 2.82787i) q^{34} +(-3.10407 + 9.56535i) q^{35} -1.00000 q^{36} +(-5.42955 - 2.74226i) q^{37} +2.38348i q^{38} +(1.90957 - 1.10249i) q^{39} +(0.465711 + 2.18703i) q^{40} +(-1.68174 + 2.91286i) q^{41} +(-2.24868 + 3.89483i) q^{42} +9.32116 q^{43} +(-0.206287 + 0.357299i) q^{44} +(1.66117 - 1.49683i) q^{45} +(0.817829 + 1.41652i) q^{46} -6.71516i q^{47} +1.00000i q^{48} +(6.61313 + 11.4543i) q^{49} +(-4.04725 - 2.93594i) q^{50} -3.26535i q^{51} +(-1.10249 - 1.90957i) q^{52} +(-10.0924 + 5.82686i) q^{53} +(0.866025 - 0.500000i) q^{54} +(-0.192140 - 0.902313i) q^{55} +(3.89483 + 2.24868i) q^{56} +(-1.19174 - 2.06416i) q^{57} +(-7.93502 + 4.58129i) q^{58} +(4.76276 - 2.74978i) q^{59} +(-1.49683 - 1.66117i) q^{60} +(6.46982 + 3.73535i) q^{61} +(-5.64095 + 3.25680i) q^{62} -4.49736i q^{63} +1.00000 q^{64} +(4.68974 + 1.52188i) q^{65} -0.412574i q^{66} +(-2.71578 - 1.56796i) q^{67} -3.26535 q^{68} +(-1.41652 - 0.817829i) q^{69} +(-9.83588 + 2.09447i) q^{70} +(-1.01489 + 1.75784i) q^{71} +(-0.500000 - 0.866025i) q^{72} +6.57476i q^{73} +(-0.339909 - 6.07326i) q^{74} +(4.97299 + 0.518977i) q^{75} +(-2.06416 + 1.19174i) q^{76} +(-1.60690 - 0.927747i) q^{77} +(1.90957 + 1.10249i) q^{78} +(-7.72926 - 4.46249i) q^{79} +(-1.66117 + 1.49683i) q^{80} +(-0.500000 + 0.866025i) q^{81} -3.36348 q^{82} +(-3.38588 + 1.95484i) q^{83} -4.49736 q^{84} +(5.42430 - 4.88768i) q^{85} +(4.66058 + 8.07236i) q^{86} +(4.58129 - 7.93502i) q^{87} -0.412574 q^{88} +(-2.49674 + 1.44149i) q^{89} +(2.12688 + 0.690199i) q^{90} +(8.58804 - 4.95830i) q^{91} +(-0.817829 + 1.41652i) q^{92} +(3.25680 - 5.64095i) q^{93} +(5.81550 - 3.35758i) q^{94} +(1.64508 - 5.06938i) q^{95} +(-0.866025 + 0.500000i) q^{96} -10.9274 q^{97} +(-6.61313 + 11.4543i) q^{98} +(0.206287 + 0.357299i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} + 14q^{13} + 2q^{15} - 18q^{16} - 18q^{18} + 6q^{19} - 2q^{20} + 2q^{22} + 20q^{23} - 2q^{25} + 28q^{26} - 2q^{30} + 18q^{32} + 6q^{33} - 20q^{35} - 36q^{36} - 20q^{37} + 6q^{39} - 4q^{40} + 10q^{41} - 2q^{44} + 2q^{45} + 10q^{46} + 10q^{49} - 4q^{50} + 14q^{52} + 12q^{53} + 40q^{55} - 8q^{57} - 30q^{58} + 18q^{59} - 4q^{60} - 6q^{61} + 12q^{62} + 36q^{64} - 32q^{65} - 36q^{67} + 12q^{69} - 40q^{70} - 24q^{71} - 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} + 24q^{77} + 6q^{78} - 2q^{80} - 18q^{81} + 20q^{82} - 36q^{83} + 26q^{85} + 10q^{87} - 4q^{88} - 2q^{90} - 36q^{91} - 10q^{92} - 12q^{93} + 12q^{94} + 18q^{95} - 52q^{97} - 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.465711 2.18703i −0.208272 0.978071i
\(6\) 1.00000i 0.408248i
\(7\) −3.89483 2.24868i −1.47211 0.849921i −0.472599 0.881278i \(-0.656684\pi\)
−0.999508 + 0.0313565i \(0.990017\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.66117 1.49683i 0.525308 0.473340i
\(11\) 0.412574 0.124396 0.0621979 0.998064i \(-0.480189\pi\)
0.0621979 + 0.998064i \(0.480189\pi\)
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) −1.10249 + 1.90957i −0.305776 + 0.529620i −0.977434 0.211242i \(-0.932249\pi\)
0.671658 + 0.740862i \(0.265583\pi\)
\(14\) 4.49736i 1.20197i
\(15\) −0.690199 + 2.12688i −0.178209 + 0.549158i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.63267 + 2.82787i 0.395981 + 0.685860i 0.993226 0.116199i \(-0.0370711\pi\)
−0.597245 + 0.802059i \(0.703738\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 2.06416 + 1.19174i 0.473550 + 0.273404i 0.717725 0.696327i \(-0.245184\pi\)
−0.244175 + 0.969731i \(0.578517\pi\)
\(20\) 2.12688 + 0.690199i 0.475585 + 0.154333i
\(21\) 2.24868 + 3.89483i 0.490702 + 0.849921i
\(22\) 0.206287 + 0.357299i 0.0439805 + 0.0761765i
\(23\) 1.63566 0.341058 0.170529 0.985353i \(-0.445452\pi\)
0.170529 + 0.985353i \(0.445452\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) −4.56623 + 2.03705i −0.913245 + 0.407410i
\(26\) −2.20498 −0.432433
\(27\) 1.00000i 0.192450i
\(28\) 3.89483 2.24868i 0.736053 0.424961i
\(29\) 9.16257i 1.70145i 0.525614 + 0.850723i \(0.323836\pi\)
−0.525614 + 0.850723i \(0.676164\pi\)
\(30\) −2.18703 + 0.465711i −0.399296 + 0.0850268i
\(31\) 6.51360i 1.16988i 0.811077 + 0.584939i \(0.198882\pi\)
−0.811077 + 0.584939i \(0.801118\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −0.357299 0.206287i −0.0621979 0.0359099i
\(34\) −1.63267 + 2.82787i −0.280001 + 0.484976i
\(35\) −3.10407 + 9.56535i −0.524684 + 1.61684i
\(36\) −1.00000 −0.166667
\(37\) −5.42955 2.74226i −0.892613 0.450825i
\(38\) 2.38348i 0.386652i
\(39\) 1.90957 1.10249i 0.305776 0.176540i
\(40\) 0.465711 + 2.18703i 0.0736353 + 0.345800i
\(41\) −1.68174 + 2.91286i −0.262644 + 0.454913i −0.966944 0.254990i \(-0.917928\pi\)
0.704300 + 0.709903i \(0.251261\pi\)
\(42\) −2.24868 + 3.89483i −0.346979 + 0.600985i
\(43\) 9.32116 1.42146 0.710732 0.703463i \(-0.248364\pi\)
0.710732 + 0.703463i \(0.248364\pi\)
\(44\) −0.206287 + 0.357299i −0.0310989 + 0.0538649i
\(45\) 1.66117 1.49683i 0.247633 0.223135i
\(46\) 0.817829 + 1.41652i 0.120582 + 0.208855i
\(47\) 6.71516i 0.979507i −0.871861 0.489753i \(-0.837087\pi\)
0.871861 0.489753i \(-0.162913\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 6.61313 + 11.4543i 0.944732 + 1.63632i
\(50\) −4.04725 2.93594i −0.572368 0.415205i
\(51\) 3.26535i 0.457240i
\(52\) −1.10249 1.90957i −0.152888 0.264810i
\(53\) −10.0924 + 5.82686i −1.38630 + 0.800380i −0.992896 0.118986i \(-0.962036\pi\)
−0.393403 + 0.919366i \(0.628702\pi\)
\(54\) 0.866025 0.500000i 0.117851 0.0680414i
\(55\) −0.192140 0.902313i −0.0259082 0.121668i
\(56\) 3.89483 + 2.24868i 0.520468 + 0.300493i
\(57\) −1.19174 2.06416i −0.157850 0.273404i
\(58\) −7.93502 + 4.58129i −1.04192 + 0.601552i
\(59\) 4.76276 2.74978i 0.620058 0.357991i −0.156834 0.987625i \(-0.550129\pi\)
0.776892 + 0.629634i \(0.216795\pi\)
\(60\) −1.49683 1.66117i −0.193240 0.214456i
\(61\) 6.46982 + 3.73535i 0.828376 + 0.478263i 0.853296 0.521426i \(-0.174600\pi\)
−0.0249202 + 0.999689i \(0.507933\pi\)
\(62\) −5.64095 + 3.25680i −0.716401 + 0.413614i
\(63\) 4.49736i 0.566614i
\(64\) 1.00000 0.125000
\(65\) 4.68974 + 1.52188i 0.581691 + 0.188766i
\(66\) 0.412574i 0.0507843i
\(67\) −2.71578 1.56796i −0.331785 0.191556i 0.324848 0.945766i \(-0.394687\pi\)
−0.656633 + 0.754210i \(0.728020\pi\)
\(68\) −3.26535 −0.395981
\(69\) −1.41652 0.817829i −0.170529 0.0984550i
\(70\) −9.83588 + 2.09447i −1.17561 + 0.250337i
\(71\) −1.01489 + 1.75784i −0.120445 + 0.208617i −0.919943 0.392051i \(-0.871766\pi\)
0.799498 + 0.600669i \(0.205099\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 6.57476i 0.769517i 0.923017 + 0.384759i \(0.125715\pi\)
−0.923017 + 0.384759i \(0.874285\pi\)
\(74\) −0.339909 6.07326i −0.0395136 0.706002i
\(75\) 4.97299 + 0.518977i 0.574232 + 0.0599263i
\(76\) −2.06416 + 1.19174i −0.236775 + 0.136702i
\(77\) −1.60690 0.927747i −0.183124 0.105727i
\(78\) 1.90957 + 1.10249i 0.216216 + 0.124833i
\(79\) −7.72926 4.46249i −0.869610 0.502069i −0.00239128 0.999997i \(-0.500761\pi\)
−0.867219 + 0.497928i \(0.834095\pi\)
\(80\) −1.66117 + 1.49683i −0.185725 + 0.167351i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −3.36348 −0.371435
\(83\) −3.38588 + 1.95484i −0.371649 + 0.214571i −0.674178 0.738568i \(-0.735502\pi\)
0.302530 + 0.953140i \(0.402169\pi\)
\(84\) −4.49736 −0.490702
\(85\) 5.42430 4.88768i 0.588348 0.530143i
\(86\) 4.66058 + 8.07236i 0.502563 + 0.870465i
\(87\) 4.58129 7.93502i 0.491165 0.850723i
\(88\) −0.412574 −0.0439805
\(89\) −2.49674 + 1.44149i −0.264654 + 0.152798i −0.626456 0.779457i \(-0.715495\pi\)
0.361802 + 0.932255i \(0.382162\pi\)
\(90\) 2.12688 + 0.690199i 0.224193 + 0.0727534i
\(91\) 8.58804 4.95830i 0.900271 0.519772i
\(92\) −0.817829 + 1.41652i −0.0852646 + 0.147683i
\(93\) 3.25680 5.64095i 0.337715 0.584939i
\(94\) 5.81550 3.35758i 0.599823 0.346308i
\(95\) 1.64508 5.06938i 0.168781 0.520108i
\(96\) −0.866025 + 0.500000i −0.0883883 + 0.0510310i
\(97\) −10.9274 −1.10951 −0.554753 0.832015i \(-0.687187\pi\)
−0.554753 + 0.832015i \(0.687187\pi\)
\(98\) −6.61313 + 11.4543i −0.668027 + 1.15706i
\(99\) 0.206287 + 0.357299i 0.0207326 + 0.0359099i
\(100\) 0.518977 4.97299i 0.0518977 0.497299i
\(101\) −17.2184 −1.71329 −0.856647 0.515903i \(-0.827457\pi\)
−0.856647 + 0.515903i \(0.827457\pi\)
\(102\) 2.82787 1.63267i 0.280001 0.161659i
\(103\) 16.9033 1.66554 0.832768 0.553622i \(-0.186755\pi\)
0.832768 + 0.553622i \(0.186755\pi\)
\(104\) 1.10249 1.90957i 0.108108 0.187249i
\(105\) 7.47088 6.73180i 0.729084 0.656957i
\(106\) −10.0924 5.82686i −0.980262 0.565954i
\(107\) −7.58132 4.37708i −0.732914 0.423148i 0.0865732 0.996245i \(-0.472408\pi\)
−0.819487 + 0.573097i \(0.805742\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) 9.65596 5.57487i 0.924873 0.533976i 0.0396866 0.999212i \(-0.487364\pi\)
0.885186 + 0.465236i \(0.154031\pi\)
\(110\) 0.685356 0.617555i 0.0653461 0.0588815i
\(111\) 3.33100 + 5.08964i 0.316164 + 0.483087i
\(112\) 4.49736i 0.424961i
\(113\) −0.817025 1.41513i −0.0768593 0.133124i 0.825034 0.565083i \(-0.191156\pi\)
−0.901893 + 0.431959i \(0.857823\pi\)
\(114\) 1.19174 2.06416i 0.111617 0.193326i
\(115\) −0.761743 3.57724i −0.0710329 0.333579i
\(116\) −7.93502 4.58129i −0.736748 0.425362i
\(117\) −2.20498 −0.203851
\(118\) 4.76276 + 2.74978i 0.438447 + 0.253138i
\(119\) 14.6854i 1.34621i
\(120\) 0.690199 2.12688i 0.0630063 0.194157i
\(121\) −10.8298 −0.984526
\(122\) 7.47071i 0.676366i
\(123\) 2.91286 1.68174i 0.262644 0.151638i
\(124\) −5.64095 3.25680i −0.506572 0.292469i
\(125\) 6.58164 + 9.03781i 0.588679 + 0.808367i
\(126\) 3.89483 2.24868i 0.346979 0.200328i
\(127\) −7.90697 + 4.56509i −0.701630 + 0.405086i −0.807954 0.589245i \(-0.799425\pi\)
0.106324 + 0.994332i \(0.466092\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −8.07236 4.66058i −0.710732 0.410341i
\(130\) 1.02688 + 4.82237i 0.0900637 + 0.422950i
\(131\) −9.85183 + 5.68796i −0.860758 + 0.496959i −0.864266 0.503035i \(-0.832217\pi\)
0.00350776 + 0.999994i \(0.498883\pi\)
\(132\) 0.357299 0.206287i 0.0310989 0.0179550i
\(133\) −5.35969 9.28325i −0.464744 0.804960i
\(134\) 3.13591i 0.270902i
\(135\) −2.18703 + 0.465711i −0.188230 + 0.0400820i
\(136\) −1.63267 2.82787i −0.140001 0.242488i
\(137\) 2.47409i 0.211376i −0.994399 0.105688i \(-0.966296\pi\)
0.994399 0.105688i \(-0.0337044\pi\)
\(138\) 1.63566i 0.139236i
\(139\) 9.45191 + 16.3712i 0.801701 + 1.38859i 0.918496 + 0.395431i \(0.129405\pi\)
−0.116795 + 0.993156i \(0.537262\pi\)
\(140\) −6.73180 7.47088i −0.568941 0.631405i
\(141\) −3.35758 + 5.81550i −0.282759 + 0.489753i
\(142\) −2.02978 −0.170335
\(143\) −0.454859 + 0.787840i −0.0380373 + 0.0658825i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) 20.0388 4.26711i 1.66414 0.354364i
\(146\) −5.69391 + 3.28738i −0.471231 + 0.272065i
\(147\) 13.2263i 1.09088i
\(148\) 5.08964 3.33100i 0.418366 0.273806i
\(149\) 7.98719 0.654336 0.327168 0.944966i \(-0.393906\pi\)
0.327168 + 0.944966i \(0.393906\pi\)
\(150\) 2.03705 + 4.56623i 0.166324 + 0.372831i
\(151\) −2.15436 + 3.73146i −0.175319 + 0.303662i −0.940272 0.340425i \(-0.889429\pi\)
0.764952 + 0.644087i \(0.222762\pi\)
\(152\) −2.06416 1.19174i −0.167425 0.0966630i
\(153\) −1.63267 + 2.82787i −0.131994 + 0.228620i
\(154\) 1.85549i 0.149520i
\(155\) 14.2455 3.03345i 1.14422 0.243653i
\(156\) 2.20498i 0.176540i
\(157\) 3.79620 2.19174i 0.302970 0.174920i −0.340806 0.940133i \(-0.610700\pi\)
0.643776 + 0.765214i \(0.277367\pi\)
\(158\) 8.92498i 0.710033i
\(159\) 11.6537 0.924199
\(160\) −2.12688 0.690199i −0.168145 0.0545650i
\(161\) −6.37061 3.67807i −0.502074 0.289873i
\(162\) −1.00000 −0.0785674
\(163\) 8.00959 + 13.8730i 0.627360 + 1.08662i 0.988079 + 0.153945i \(0.0491978\pi\)
−0.360720 + 0.932674i \(0.617469\pi\)
\(164\) −1.68174 2.91286i −0.131322 0.227456i
\(165\) −0.284758 + 0.877496i −0.0221684 + 0.0683130i
\(166\) −3.38588 1.95484i −0.262795 0.151725i
\(167\) −6.66540 + 11.5448i −0.515784 + 0.893365i 0.484048 + 0.875042i \(0.339166\pi\)
−0.999832 + 0.0183231i \(0.994167\pi\)
\(168\) −2.24868 3.89483i −0.173489 0.300493i
\(169\) 4.06902 + 7.04775i 0.313002 + 0.542135i
\(170\) 6.94500 + 2.25374i 0.532658 + 0.172854i
\(171\) 2.38348i 0.182269i
\(172\) −4.66058 + 8.07236i −0.355366 + 0.615512i
\(173\) −22.0473 + 12.7290i −1.67622 + 0.967768i −0.712190 + 0.701987i \(0.752297\pi\)
−0.964033 + 0.265781i \(0.914370\pi\)
\(174\) 9.16257 0.694613
\(175\) 22.3653 + 2.33403i 1.69066 + 0.176436i
\(176\) −0.206287 0.357299i −0.0155495 0.0269325i
\(177\) −5.49956 −0.413372
\(178\) −2.49674 1.44149i −0.187138 0.108044i
\(179\) 3.35687i 0.250904i −0.992100 0.125452i \(-0.959962\pi\)
0.992100 0.125452i \(-0.0400382\pi\)
\(180\) 0.465711 + 2.18703i 0.0347120 + 0.163012i
\(181\) 4.85498 8.40907i 0.360868 0.625041i −0.627236 0.778829i \(-0.715814\pi\)
0.988104 + 0.153788i \(0.0491472\pi\)
\(182\) 8.58804 + 4.95830i 0.636588 + 0.367534i
\(183\) −3.73535 6.46982i −0.276125 0.478263i
\(184\) −1.63566 −0.120582
\(185\) −3.46881 + 13.1517i −0.255032 + 0.966933i
\(186\) 6.51360 0.477601
\(187\) 0.673598 + 1.16671i 0.0492584 + 0.0853180i
\(188\) 5.81550 + 3.35758i 0.424139 + 0.244877i
\(189\) −2.24868 + 3.89483i −0.163567 + 0.283307i
\(190\) 5.21275 1.11001i 0.378173 0.0805288i
\(191\) 18.7526i 1.35689i −0.734651 0.678446i \(-0.762654\pi\)
0.734651 0.678446i \(-0.237346\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 25.6781 1.84835 0.924174 0.381971i \(-0.124755\pi\)
0.924174 + 0.381971i \(0.124755\pi\)
\(194\) −5.46368 9.46337i −0.392269 0.679431i
\(195\) −3.30049 3.66286i −0.236353 0.262303i
\(196\) −13.2263 −0.944732
\(197\) −15.5562 + 8.98138i −1.10833 + 0.639897i −0.938397 0.345558i \(-0.887689\pi\)
−0.169936 + 0.985455i \(0.554356\pi\)
\(198\) −0.206287 + 0.357299i −0.0146602 + 0.0253922i
\(199\) 8.12120i 0.575697i 0.957676 + 0.287848i \(0.0929399\pi\)
−0.957676 + 0.287848i \(0.907060\pi\)
\(200\) 4.56623 2.03705i 0.322881 0.144041i
\(201\) 1.56796 + 2.71578i 0.110595 + 0.191556i
\(202\) −8.60920 14.9116i −0.605741 1.04917i
\(203\) 20.6037 35.6866i 1.44610 2.50471i
\(204\) 2.82787 + 1.63267i 0.197991 + 0.114310i
\(205\) 7.15373 + 2.32147i 0.499638 + 0.162139i
\(206\) 8.45167 + 14.6387i 0.588856 + 1.01993i
\(207\) 0.817829 + 1.41652i 0.0568430 + 0.0984550i
\(208\) 2.20498 0.152888
\(209\) 0.851617 + 0.491681i 0.0589076 + 0.0340103i
\(210\) 9.56535 + 3.10407i 0.660072 + 0.214202i
\(211\) −8.47435 −0.583399 −0.291699 0.956510i \(-0.594221\pi\)
−0.291699 + 0.956510i \(0.594221\pi\)
\(212\) 11.6537i 0.800380i
\(213\) 1.75784 1.01489i 0.120445 0.0695391i
\(214\) 8.75416i 0.598422i
\(215\) −4.34097 20.3857i −0.296051 1.39029i
\(216\) 1.00000i 0.0680414i
\(217\) 14.6470 25.3694i 0.994304 1.72219i
\(218\) 9.65596 + 5.57487i 0.653984 + 0.377578i
\(219\) 3.28738 5.69391i 0.222140 0.384759i
\(220\) 0.877496 + 0.284758i 0.0591608 + 0.0191984i
\(221\) −7.20004 −0.484327
\(222\) −2.74226 + 5.42955i −0.184048 + 0.364408i
\(223\) 18.7191i 1.25352i −0.779212 0.626761i \(-0.784380\pi\)
0.779212 0.626761i \(-0.215620\pi\)
\(224\) −3.89483 + 2.24868i −0.260234 + 0.150246i
\(225\) −4.04725 2.93594i −0.269817 0.195730i
\(226\) 0.817025 1.41513i 0.0543477 0.0941330i
\(227\) −2.24825 + 3.89408i −0.149222 + 0.258459i −0.930940 0.365172i \(-0.881010\pi\)
0.781718 + 0.623632i \(0.214343\pi\)
\(228\) 2.38348 0.157850
\(229\) 10.1818 17.6353i 0.672829 1.16537i −0.304269 0.952586i \(-0.598412\pi\)
0.977098 0.212788i \(-0.0682545\pi\)
\(230\) 2.71711 2.44831i 0.179161 0.161437i
\(231\) 0.927747 + 1.60690i 0.0610413 + 0.105727i
\(232\) 9.16257i 0.601552i
\(233\) 2.94072i 0.192653i −0.995350 0.0963266i \(-0.969291\pi\)
0.995350 0.0963266i \(-0.0307093\pi\)
\(234\) −1.10249 1.90957i −0.0720722 0.124833i
\(235\) −14.6863 + 3.12732i −0.958027 + 0.204004i
\(236\) 5.49956i 0.357991i
\(237\) 4.46249 + 7.72926i 0.289870 + 0.502069i
\(238\) 12.7180 7.34272i 0.824383 0.475958i
\(239\) −8.01145 + 4.62541i −0.518218 + 0.299193i −0.736205 0.676758i \(-0.763384\pi\)
0.217987 + 0.975952i \(0.430051\pi\)
\(240\) 2.18703 0.465711i 0.141172 0.0300615i
\(241\) 0.691167 + 0.399045i 0.0445220 + 0.0257048i 0.522096 0.852887i \(-0.325150\pi\)
−0.477574 + 0.878592i \(0.658484\pi\)
\(242\) −5.41489 9.37887i −0.348082 0.602896i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) −6.46982 + 3.73535i −0.414188 + 0.239132i
\(245\) 21.9711 19.7975i 1.40368 1.26482i
\(246\) 2.91286 + 1.68174i 0.185717 + 0.107224i
\(247\) −4.55143 + 2.62777i −0.289601 + 0.167201i
\(248\) 6.51360i 0.413614i
\(249\) 3.90968 0.247766
\(250\) −4.53616 + 10.2188i −0.286892 + 0.646292i
\(251\) 13.7566i 0.868306i −0.900839 0.434153i \(-0.857048\pi\)
0.900839 0.434153i \(-0.142952\pi\)
\(252\) 3.89483 + 2.24868i 0.245351 + 0.141654i
\(253\) 0.674830 0.0424262
\(254\) −7.90697 4.56509i −0.496127 0.286439i
\(255\) −7.14142 + 1.52071i −0.447213 + 0.0952303i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 9.61645 + 16.6562i 0.599858 + 1.03898i 0.992842 + 0.119439i \(0.0381095\pi\)
−0.392984 + 0.919545i \(0.628557\pi\)
\(258\) 9.32116i 0.580310i
\(259\) 14.9807 + 22.8900i 0.930856 + 1.42231i
\(260\) −3.66286 + 3.30049i −0.227161 + 0.204688i
\(261\) −7.93502 + 4.58129i −0.491165 + 0.283574i
\(262\) −9.85183 5.68796i −0.608648 0.351403i
\(263\) −5.05664 2.91945i −0.311806 0.180021i 0.335929 0.941887i \(-0.390950\pi\)
−0.647734 + 0.761866i \(0.724283\pi\)
\(264\) 0.357299 + 0.206287i 0.0219903 + 0.0126961i
\(265\) 17.4437 + 19.3588i 1.07156 + 1.18920i
\(266\) 5.35969 9.28325i 0.328624 0.569193i
\(267\) 2.88298 0.176436
\(268\) 2.71578 1.56796i 0.165893 0.0957782i
\(269\) −21.9627 −1.33909 −0.669545 0.742771i \(-0.733511\pi\)
−0.669545 + 0.742771i \(0.733511\pi\)
\(270\) −1.49683 1.66117i −0.0910944 0.101096i
\(271\) −1.50615 2.60873i −0.0914920 0.158469i 0.816647 0.577137i \(-0.195830\pi\)
−0.908139 + 0.418668i \(0.862497\pi\)
\(272\) 1.63267 2.82787i 0.0989953 0.171465i
\(273\) −9.91661 −0.600180
\(274\) 2.14262 1.23704i 0.129441 0.0747325i
\(275\) −1.88391 + 0.840433i −0.113604 + 0.0506800i
\(276\) 1.41652 0.817829i 0.0852646 0.0492275i
\(277\) −7.28820 + 12.6235i −0.437905 + 0.758475i −0.997528 0.0702733i \(-0.977613\pi\)
0.559622 + 0.828748i \(0.310946\pi\)
\(278\) −9.45191 + 16.3712i −0.566888 + 0.981879i
\(279\) −5.64095 + 3.25680i −0.337715 + 0.194980i
\(280\) 3.10407 9.56535i 0.185504 0.571639i
\(281\) 12.4391 7.18169i 0.742052 0.428424i −0.0807631 0.996733i \(-0.525736\pi\)
0.822815 + 0.568310i \(0.192402\pi\)
\(282\) −6.71516 −0.399882
\(283\) −13.5334 + 23.4405i −0.804478 + 1.39340i 0.112166 + 0.993690i \(0.464221\pi\)
−0.916643 + 0.399706i \(0.869112\pi\)
\(284\) −1.01489 1.75784i −0.0602227 0.104309i
\(285\) −3.95937 + 3.56768i −0.234533 + 0.211331i
\(286\) −0.909719 −0.0537928
\(287\) 13.1002 7.56340i 0.773280 0.446453i
\(288\) 1.00000 0.0589256
\(289\) 3.16876 5.48845i 0.186397 0.322850i
\(290\) 13.7148 + 15.2206i 0.805364 + 0.893784i
\(291\) 9.46337 + 5.46368i 0.554753 + 0.320287i
\(292\) −5.69391 3.28738i −0.333211 0.192379i
\(293\) 15.0447 + 8.68606i 0.878920 + 0.507445i 0.870302 0.492518i \(-0.163923\pi\)
0.00861800 + 0.999963i \(0.497257\pi\)
\(294\) 11.4543 6.61313i 0.668027 0.385685i
\(295\) −8.23192 9.13570i −0.479281 0.531901i
\(296\) 5.42955 + 2.74226i 0.315586 + 0.159391i
\(297\) 0.412574i 0.0239400i
\(298\) 3.99360 + 6.91711i 0.231343 + 0.400697i
\(299\) −1.80330 + 3.12341i −0.104288 + 0.180631i
\(300\) −2.93594 + 4.04725i −0.169507 + 0.233668i
\(301\) −36.3043 20.9603i −2.09255 1.20813i
\(302\) −4.30872 −0.247939
\(303\) 14.9116 + 8.60920i 0.856647 + 0.494585i
\(304\) 2.38348i 0.136702i
\(305\) 5.15628 15.8893i 0.295248 0.909819i
\(306\) −3.26535 −0.186667
\(307\) 19.0895i 1.08949i −0.838600 0.544747i \(-0.816626\pi\)
0.838600 0.544747i \(-0.183374\pi\)
\(308\) 1.60690 0.927747i 0.0915619 0.0528633i
\(309\) −14.6387 8.45167i −0.832768 0.480799i
\(310\) 9.74978 + 10.8202i 0.553750 + 0.614547i
\(311\) 1.51782 0.876316i 0.0860679 0.0496913i −0.456348 0.889801i \(-0.650843\pi\)
0.542416 + 0.840110i \(0.317510\pi\)
\(312\) −1.90957 + 1.10249i −0.108108 + 0.0624163i
\(313\) 3.08712 + 5.34705i 0.174495 + 0.302233i 0.939986 0.341212i \(-0.110838\pi\)
−0.765492 + 0.643446i \(0.777504\pi\)
\(314\) 3.79620 + 2.19174i 0.214232 + 0.123687i
\(315\) −9.83588 + 2.09447i −0.554189 + 0.118010i
\(316\) 7.72926 4.46249i 0.434805 0.251035i
\(317\) −14.2460 + 8.22494i −0.800136 + 0.461959i −0.843519 0.537100i \(-0.819520\pi\)
0.0433825 + 0.999059i \(0.486187\pi\)
\(318\) 5.82686 + 10.0924i 0.326754 + 0.565954i
\(319\) 3.78024i 0.211653i
\(320\) −0.465711 2.18703i −0.0260340 0.122259i
\(321\) 4.37708 + 7.58132i 0.244305 + 0.423148i
\(322\) 7.35614i 0.409942i
\(323\) 7.78289i 0.433052i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 1.14434 10.9654i 0.0634764 0.608249i
\(326\) −8.00959 + 13.8730i −0.443610 + 0.768356i
\(327\) −11.1497 −0.616582
\(328\) 1.68174 2.91286i 0.0928587 0.160836i
\(329\) −15.1002 + 26.1544i −0.832504 + 1.44194i
\(330\) −0.902313 + 0.192140i −0.0496707 + 0.0105770i
\(331\) 9.69676 5.59843i 0.532982 0.307717i −0.209248 0.977863i \(-0.567102\pi\)
0.742230 + 0.670145i \(0.233768\pi\)
\(332\) 3.90968i 0.214571i
\(333\) −0.339909 6.07326i −0.0186269 0.332812i
\(334\) −13.3308 −0.729429
\(335\) −2.16440 + 6.66971i −0.118254 + 0.364405i
\(336\) 2.24868 3.89483i 0.122676 0.212480i
\(337\) 26.6165 + 15.3670i 1.44989 + 0.837095i 0.998474 0.0552182i \(-0.0175854\pi\)
0.451417 + 0.892313i \(0.350919\pi\)
\(338\) −4.06902 + 7.04775i −0.221326 + 0.383347i
\(339\) 1.63405i 0.0887495i
\(340\) 1.52071 + 7.14142i 0.0824719 + 0.387298i
\(341\) 2.68734i 0.145528i
\(342\) −2.06416 + 1.19174i −0.111617 + 0.0644420i
\(343\) 28.0017i 1.51195i
\(344\) −9.32116 −0.502563
\(345\) −1.12893 + 3.47885i −0.0607795 + 0.187295i
\(346\) −22.0473 12.7290i −1.18527 0.684315i
\(347\) 6.51035 0.349494 0.174747 0.984613i \(-0.444089\pi\)
0.174747 + 0.984613i \(0.444089\pi\)
\(348\) 4.58129 + 7.93502i 0.245583 + 0.425362i
\(349\) −5.75901 9.97489i −0.308273 0.533944i 0.669712 0.742621i \(-0.266418\pi\)
−0.977985 + 0.208677i \(0.933084\pi\)
\(350\) 9.16135 + 20.5360i 0.489695 + 1.09769i
\(351\) 1.90957 + 1.10249i 0.101925 + 0.0588467i
\(352\) 0.206287 0.357299i 0.0109951 0.0190441i
\(353\) 13.7639 + 23.8398i 0.732580 + 1.26887i 0.955777 + 0.294093i \(0.0950174\pi\)
−0.223197 + 0.974773i \(0.571649\pi\)
\(354\) −2.74978 4.76276i −0.146149 0.253138i
\(355\) 4.31710 + 1.40095i 0.229128 + 0.0743549i
\(356\) 2.88298i 0.152798i
\(357\) −7.34272 + 12.7180i −0.388618 + 0.673106i
\(358\) 2.90714 1.67844i 0.153647 0.0887081i
\(359\) −10.4314 −0.550546 −0.275273 0.961366i \(-0.588768\pi\)
−0.275273 + 0.961366i \(0.588768\pi\)
\(360\) −1.66117 + 1.49683i −0.0875514 + 0.0788901i
\(361\) −6.65951 11.5346i −0.350500 0.607084i
\(362\) 9.70996 0.510344
\(363\) 9.37887 + 5.41489i 0.492263 + 0.284208i
\(364\) 9.91661i 0.519772i
\(365\) 14.3792 3.06193i 0.752642 0.160269i
\(366\) 3.73535 6.46982i 0.195250 0.338183i
\(367\) 6.94787 + 4.01136i 0.362676 + 0.209391i 0.670254 0.742132i \(-0.266185\pi\)
−0.307578 + 0.951523i \(0.599519\pi\)
\(368\) −0.817829 1.41652i −0.0426323 0.0738413i
\(369\) −3.36348 −0.175096
\(370\) −13.1241 + 3.57177i −0.682290 + 0.185688i
\(371\) 52.4109 2.72104
\(372\) 3.25680 + 5.64095i 0.168857 + 0.292469i
\(373\) −20.3157 11.7293i −1.05191 0.607318i −0.128724 0.991680i \(-0.541088\pi\)
−0.923182 + 0.384362i \(0.874421\pi\)
\(374\) −0.673598 + 1.16671i −0.0348309 + 0.0603290i
\(375\) −1.18096 11.1178i −0.0609843 0.574120i
\(376\) 6.71516i 0.346308i
\(377\) −17.4966 10.1017i −0.901120 0.520262i
\(378\) −4.49736 −0.231319
\(379\) −8.83500 15.3027i −0.453823 0.786045i 0.544796 0.838568i \(-0.316607\pi\)
−0.998620 + 0.0525234i \(0.983274\pi\)
\(380\) 3.56768 + 3.95937i 0.183018 + 0.203111i
\(381\) 9.13018 0.467753
\(382\) 16.2402 9.37630i 0.830923 0.479733i
\(383\) −11.8360 + 20.5006i −0.604793 + 1.04753i 0.387291 + 0.921957i \(0.373411\pi\)
−0.992084 + 0.125575i \(0.959923\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −1.28066 + 3.94642i −0.0652685 + 0.201128i
\(386\) 12.8390 + 22.2379i 0.653490 + 1.13188i
\(387\) 4.66058 + 8.07236i 0.236911 + 0.410341i
\(388\) 5.46368 9.46337i 0.277376 0.480430i
\(389\) −12.3967 7.15722i −0.628536 0.362886i 0.151649 0.988434i \(-0.451542\pi\)
−0.780185 + 0.625549i \(0.784875\pi\)
\(390\) 1.52188 4.68974i 0.0770633 0.237474i
\(391\) 2.67049 + 4.62543i 0.135053 + 0.233918i
\(392\) −6.61313 11.4543i −0.334013 0.578528i
\(393\) 11.3759 0.573839
\(394\) −15.5562 8.98138i −0.783710 0.452475i
\(395\) −6.16002 + 18.9824i −0.309944 + 0.955107i
\(396\) −0.412574 −0.0207326
\(397\) 30.2416i 1.51778i 0.651218 + 0.758891i \(0.274258\pi\)
−0.651218 + 0.758891i \(0.725742\pi\)
\(398\) −7.03317 + 4.06060i −0.352541 + 0.203540i
\(399\) 10.7194i 0.536640i
\(400\) 4.04725 + 2.93594i 0.202363 + 0.146797i
\(401\) 3.30061i 0.164824i 0.996598 + 0.0824122i \(0.0262624\pi\)
−0.996598 + 0.0824122i \(0.973738\pi\)
\(402\) −1.56796 + 2.71578i −0.0782025 + 0.135451i
\(403\) −12.4382 7.18120i −0.619591 0.357721i
\(404\) 8.60920 14.9116i 0.428324 0.741878i
\(405\) 2.12688 + 0.690199i 0.105686 + 0.0342963i
\(406\) 41.2074 2.04509
\(407\) −2.24009 1.13138i −0.111037 0.0560807i
\(408\) 3.26535i 0.161659i
\(409\) −24.6098 + 14.2085i −1.21688 + 0.702565i −0.964249 0.264998i \(-0.914629\pi\)
−0.252630 + 0.967563i \(0.581295\pi\)
\(410\) 1.56641 + 7.35605i 0.0773595 + 0.363289i
\(411\) −1.23704 + 2.14262i −0.0610189 + 0.105688i
\(412\) −8.45167 + 14.6387i −0.416384 + 0.721198i
\(413\) −24.7335 −1.21706
\(414\) −0.817829 + 1.41652i −0.0401941 + 0.0696182i
\(415\) 5.85214 + 6.49464i 0.287270 + 0.318809i
\(416\) 1.10249 + 1.90957i 0.0540541 + 0.0936245i
\(417\) 18.9038i 0.925724i
\(418\) 0.983363i 0.0480978i
\(419\) 2.15871 + 3.73900i 0.105460 + 0.182662i 0.913926 0.405881i \(-0.133035\pi\)
−0.808466 + 0.588543i \(0.799702\pi\)
\(420\) 2.09447 + 9.83588i 0.102200 + 0.479942i
\(421\) 31.2190i 1.52152i −0.649034 0.760759i \(-0.724827\pi\)
0.649034 0.760759i \(-0.275173\pi\)
\(422\) −4.23718 7.33901i −0.206263 0.357257i
\(423\) 5.81550 3.35758i 0.282759 0.163251i
\(424\) 10.0924 5.82686i 0.490131 0.282977i
\(425\) −13.2157 9.58687i −0.641054 0.465032i
\(426\) 1.75784 + 1.01489i 0.0851677 + 0.0491716i
\(427\) −16.7992 29.0971i −0.812972 1.40811i
\(428\) 7.58132 4.37708i 0.366457 0.211574i
\(429\) 0.787840 0.454859i 0.0380373 0.0219608i
\(430\) 15.4840 13.9522i 0.746707 0.672836i
\(431\) 19.5309 + 11.2762i 0.940770 + 0.543154i 0.890202 0.455567i \(-0.150563\pi\)
0.0505684 + 0.998721i \(0.483897\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 3.06164i 0.147133i −0.997290 0.0735664i \(-0.976562\pi\)
0.997290 0.0735664i \(-0.0234381\pi\)
\(434\) 29.2940 1.40616
\(435\) −19.4877 6.32400i −0.934364 0.303213i
\(436\) 11.1497i 0.533976i
\(437\) 3.37625 + 1.94928i 0.161508 + 0.0932467i
\(438\) 6.57476 0.314154
\(439\) 3.33982 + 1.92824i 0.159401 + 0.0920301i 0.577579 0.816335i \(-0.303998\pi\)
−0.418178 + 0.908365i \(0.637331\pi\)
\(440\) 0.192140 + 0.902313i 0.00915992 + 0.0430161i
\(441\) −6.61313 + 11.4543i −0.314911 + 0.545442i
\(442\) −3.60002 6.23541i −0.171235 0.296588i
\(443\) 25.4109i 1.20731i −0.797247 0.603654i \(-0.793711\pi\)
0.797247 0.603654i \(-0.206289\pi\)
\(444\) −6.07326 + 0.339909i −0.288224 + 0.0161313i
\(445\) 4.31535 + 4.78913i 0.204567 + 0.227026i
\(446\) 16.2112 9.35953i 0.767622 0.443187i
\(447\) −6.91711 3.99360i −0.327168 0.188891i
\(448\) −3.89483 2.24868i −0.184013 0.106240i
\(449\) 29.8241 + 17.2189i 1.40749 + 0.812612i 0.995145 0.0984178i \(-0.0313782\pi\)
0.412340 + 0.911030i \(0.364712\pi\)
\(450\) 0.518977 4.97299i 0.0244648 0.234429i
\(451\) −0.693843 + 1.20177i −0.0326718 + 0.0565892i
\(452\) 1.63405 0.0768593
\(453\) 3.73146 2.15436i 0.175319 0.101221i
\(454\) −4.49650 −0.211031
\(455\) −14.8435 16.4732i −0.695875 0.772275i
\(456\) 1.19174 + 2.06416i 0.0558084 + 0.0966630i
\(457\) 0.681427 1.18027i 0.0318758 0.0552105i −0.849647 0.527351i \(-0.823185\pi\)
0.881523 + 0.472141i \(0.156519\pi\)
\(458\) 20.3635 0.951524
\(459\) 2.82787 1.63267i 0.131994 0.0762067i
\(460\) 3.47885 + 1.12893i 0.162202 + 0.0526366i
\(461\) −10.7687 + 6.21733i −0.501550 + 0.289570i −0.729353 0.684137i \(-0.760179\pi\)
0.227803 + 0.973707i \(0.426846\pi\)
\(462\) −0.927747 + 1.60690i −0.0431627 + 0.0747600i
\(463\) 2.33045 4.03646i 0.108305 0.187590i −0.806778 0.590854i \(-0.798791\pi\)
0.915084 + 0.403264i \(0.132124\pi\)
\(464\) 7.93502 4.58129i 0.368374 0.212681i
\(465\) −13.8537 4.49568i −0.642448 0.208482i
\(466\) 2.54674 1.47036i 0.117975 0.0681132i
\(467\) −24.9564 −1.15484 −0.577422 0.816446i \(-0.695941\pi\)
−0.577422 + 0.816446i \(0.695941\pi\)
\(468\) 1.10249 1.90957i 0.0509627 0.0882700i
\(469\) 7.05166 + 12.2138i 0.325616 + 0.563983i
\(470\) −10.0515 11.1550i −0.463640 0.514543i
\(471\) −4.38347 −0.201980
\(472\) −4.76276 + 2.74978i −0.219224 + 0.126569i
\(473\) 3.84567 0.176824
\(474\) −4.46249 + 7.72926i −0.204969 + 0.355017i
\(475\) −11.8530 1.23697i −0.543855 0.0567562i
\(476\) 12.7180 + 7.34272i 0.582927 + 0.336553i
\(477\) −10.0924 5.82686i −0.462100 0.266793i
\(478\) −8.01145 4.62541i −0.366435 0.211562i
\(479\) −10.0078 + 5.77801i −0.457268 + 0.264004i −0.710895 0.703298i \(-0.751710\pi\)
0.253627 + 0.967302i \(0.418377\pi\)
\(480\) 1.49683 + 1.66117i 0.0683208 + 0.0758217i
\(481\) 11.2226 7.34480i 0.511706 0.334894i
\(482\) 0.798091i 0.0363520i
\(483\) 3.67807 + 6.37061i 0.167358 + 0.289873i
\(484\) 5.41489 9.37887i 0.246131 0.426312i
\(485\) 5.08899 + 23.8985i 0.231079 + 1.08518i
\(486\) 0.866025 + 0.500000i 0.0392837 + 0.0226805i
\(487\) −34.7877 −1.57638 −0.788190 0.615432i \(-0.788981\pi\)
−0.788190 + 0.615432i \(0.788981\pi\)
\(488\) −6.46982 3.73535i −0.292875 0.169092i
\(489\) 16.0192i 0.724413i
\(490\) 28.1307 + 9.12875i 1.27081 + 0.412395i
\(491\) 4.56055 0.205815 0.102907 0.994691i \(-0.467186\pi\)
0.102907 + 0.994691i \(0.467186\pi\)
\(492\) 3.36348i 0.151638i
\(493\) −25.9106 + 14.9595i −1.16695 + 0.673741i
\(494\) −4.55143 2.62777i −0.204779 0.118229i
\(495\) 0.685356 0.617555i 0.0308044 0.0277570i
\(496\) 5.64095 3.25680i 0.253286 0.146235i
\(497\) 7.90565 4.56433i 0.354617 0.204738i
\(498\) 1.95484 + 3.38588i 0.0875984 + 0.151725i
\(499\) 3.45818 + 1.99658i 0.154809 + 0.0893792i 0.575404 0.817870i \(-0.304845\pi\)
−0.420594 + 0.907249i \(0.638178\pi\)
\(500\) −11.1178 + 1.18096i −0.497203 + 0.0528140i
\(501\) 11.5448 6.66540i 0.515784 0.297788i
\(502\) 11.9135 6.87828i 0.531727 0.306993i
\(503\) −11.2212 19.4356i −0.500327 0.866593i −1.00000 0.000378200i \(-0.999880\pi\)
0.499672 0.866214i \(-0.333454\pi\)
\(504\) 4.49736i 0.200328i
\(505\) 8.01879 + 37.6572i 0.356831 + 1.67572i
\(506\) 0.337415 + 0.584420i 0.0149999 + 0.0259806i
\(507\) 8.13804i 0.361423i
\(508\) 9.13018i 0.405086i
\(509\) 16.6264 + 28.7978i 0.736952 + 1.27644i 0.953862 + 0.300246i \(0.0970689\pi\)
−0.216910 + 0.976192i \(0.569598\pi\)
\(510\) −4.88768 5.42430i −0.216430 0.240192i
\(511\) 14.7845 25.6076i 0.654029 1.13281i
\(512\) −1.00000 −0.0441942
\(513\) 1.19174 2.06416i 0.0526167 0.0911347i
\(514\) −9.61645 + 16.6562i −0.424164 + 0.734673i
\(515\) −7.87207 36.9682i −0.346885 1.62901i
\(516\) 8.07236 4.66058i 0.355366 0.205171i
\(517\) 2.77050i 0.121846i
\(518\) −12.3329 + 24.4186i −0.541878 + 1.07289i
\(519\) 25.4580 1.11748
\(520\) −4.68974 1.52188i −0.205659 0.0667388i
\(521\) −7.83325 + 13.5676i −0.343181 + 0.594407i −0.985022 0.172431i \(-0.944838\pi\)
0.641841 + 0.766838i \(0.278171\pi\)
\(522\) −7.93502 4.58129i −0.347306 0.200517i
\(523\) −9.39805 + 16.2779i −0.410948 + 0.711783i −0.994994 0.0999381i \(-0.968136\pi\)
0.584046 + 0.811721i \(0.301469\pi\)
\(524\) 11.3759i 0.496959i
\(525\) −18.2019 13.2040i −0.794398 0.576270i
\(526\) 5.83890i 0.254588i
\(527\) −18.4196 + 10.6346i −0.802372 + 0.463250i
\(528\) 0.412574i 0.0179550i
\(529\) −20.3246 −0.883679
\(530\) −8.04338 + 24.7861i −0.349382 + 1.07664i
\(531\) 4.76276 + 2.74978i 0.206686 + 0.119330i
\(532\) 10.7194 0.464744
\(533\) −3.70821 6.42282i −0.160621 0.278203i
\(534\) 1.44149 + 2.49674i 0.0623795 + 0.108044i
\(535\) −6.04211 + 18.6191i −0.261223 + 0.804972i
\(536\) 2.71578 + 1.56796i 0.117304 + 0.0677254i
\(537\) −1.67844 + 2.90714i −0.0724299 + 0.125452i
\(538\) −10.9814 19.0203i −0.473440 0.820022i
\(539\) 2.72840 + 4.72573i 0.117521 + 0.203552i
\(540\) 0.690199 2.12688i 0.0297014 0.0915264i
\(541\) 21.1376i 0.908776i −0.890804 0.454388i \(-0.849858\pi\)
0.890804 0.454388i \(-0.150142\pi\)
\(542\) 1.50615 2.60873i 0.0646946 0.112054i
\(543\) −8.40907 + 4.85498i −0.360868 + 0.208347i
\(544\) 3.26535 0.140001
\(545\) −16.6893 18.5216i −0.714891 0.793379i
\(546\) −4.95830 8.58804i −0.212196 0.367534i
\(547\) −12.0432 −0.514932 −0.257466 0.966287i \(-0.582888\pi\)
−0.257466 + 0.966287i \(0.582888\pi\)
\(548\) 2.14262 + 1.23704i 0.0915283 + 0.0528439i
\(549\) 7.47071i 0.318842i
\(550\) −1.66979 1.21129i −0.0712001 0.0516497i
\(551\) −10.9194 + 18.9130i −0.465183 + 0.805720i
\(552\) 1.41652 + 0.817829i 0.0602911 + 0.0348091i
\(553\) 20.0694 + 34.7613i 0.853439 + 1.47820i
\(554\) −14.5764 −0.619292
\(555\) 9.57993 9.65530i 0.406645 0.409845i
\(556\) −18.9038 −0.801701
\(557\) −9.83047 17.0269i −0.416530 0.721452i 0.579057 0.815287i \(-0.303421\pi\)
−0.995588 + 0.0938350i \(0.970087\pi\)
\(558\) −5.64095 3.25680i −0.238800 0.137871i
\(559\) −10.2765 + 17.7994i −0.434650 + 0.752836i
\(560\) 9.83588 2.09447i 0.415642 0.0885075i
\(561\) 1.34720i 0.0568787i
\(562\) 12.4391 + 7.18169i 0.524710 + 0.302941i
\(563\) −40.6424 −1.71287 −0.856436 0.516252i \(-0.827327\pi\)
−0.856436 + 0.516252i \(0.827327\pi\)
\(564\) −3.35758 5.81550i −0.141380 0.244877i
\(565\) −2.71444 + 2.44590i −0.114197 + 0.102900i
\(566\) −27.0668 −1.13770
\(567\) 3.89483 2.24868i 0.163567 0.0944357i
\(568\) 1.01489 1.75784i 0.0425838 0.0737574i
\(569\) 12.5423i 0.525799i 0.964823 + 0.262900i \(0.0846788\pi\)
−0.964823 + 0.262900i \(0.915321\pi\)
\(570\) −5.06938 1.64508i −0.212333 0.0689047i
\(571\) −19.7682 34.2396i −0.827275 1.43288i −0.900168 0.435542i \(-0.856557\pi\)
0.0728934 0.997340i \(-0.476777\pi\)
\(572\) −0.454859 0.787840i −0.0190186 0.0329412i
\(573\) −9.37630 + 16.2402i −0.391701 + 0.678446i
\(574\) 13.1002 + 7.56340i 0.546791 + 0.315690i
\(575\) −7.46878 + 3.33192i −0.311470 + 0.138950i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 16.0103 + 27.7306i 0.666516 + 1.15444i 0.978872 + 0.204474i \(0.0655484\pi\)
−0.312356 + 0.949965i \(0.601118\pi\)
\(578\) 6.33751 0.263606
\(579\) −22.2379 12.8390i −0.924174 0.533572i
\(580\) −6.32400 + 19.4877i −0.262590 + 0.809183i
\(581\) 17.5832 0.729475
\(582\) 10.9274i 0.452954i
\(583\) −4.16386 + 2.40401i −0.172450 + 0.0995639i
\(584\) 6.57476i 0.272065i
\(585\) 1.02688 + 4.82237i 0.0424565 + 0.199381i
\(586\) 17.3721i 0.717635i
\(587\) 23.6410 40.9474i 0.975769 1.69008i 0.298396 0.954442i \(-0.403549\pi\)
0.677373 0.735639i \(-0.263118\pi\)
\(588\) 11.4543 + 6.61313i 0.472366 + 0.272721i
\(589\) −7.76253 + 13.4451i −0.319849 + 0.553995i
\(590\) 3.79579 11.6969i 0.156270 0.481554i
\(591\) 17.9628 0.738889
\(592\) 0.339909 + 6.07326i 0.0139702 + 0.249609i
\(593\) 33.0223i 1.35606i −0.735033 0.678032i \(-0.762833\pi\)
0.735033 0.678032i \(-0.237167\pi\)
\(594\) 0.357299 0.206287i 0.0146602 0.00846406i
\(595\) −32.1175 + 6.83917i −1.31669 + 0.280378i
\(596\) −3.99360 + 6.91711i −0.163584 + 0.283336i
\(597\) 4.06060 7.03317i 0.166189 0.287848i
\(598\) −3.60660 −0.147485
\(599\) 7.17181 12.4219i 0.293032 0.507547i −0.681493 0.731825i \(-0.738669\pi\)
0.974525 + 0.224278i \(0.0720024\pi\)
\(600\) −4.97299 0.518977i −0.203022 0.0211871i
\(601\) 15.3756 + 26.6314i 0.627185 + 1.08632i 0.988114 + 0.153723i \(0.0491263\pi\)
−0.360929 + 0.932593i \(0.617540\pi\)
\(602\) 41.9206i 1.70856i
\(603\) 3.13591i 0.127704i
\(604\) −2.15436 3.73146i −0.0876597 0.151831i
\(605\) 5.04355 + 23.6851i 0.205049 + 0.962936i
\(606\) 17.2184i 0.699449i
\(607\) 9.17110 + 15.8848i 0.372243 + 0.644745i 0.989910 0.141695i \(-0.0452553\pi\)
−0.617667 + 0.786440i \(0.711922\pi\)
\(608\) 2.06416 1.19174i 0.0837126 0.0483315i
\(609\) −35.6866 + 20.6037i −1.44610 + 0.834904i
\(610\) 16.3387 3.47919i 0.661534 0.140868i
\(611\) 12.8231 + 7.40341i 0.518766 + 0.299510i
\(612\) −1.63267 2.82787i −0.0659969 0.114310i
\(613\) −16.8714 + 9.74069i −0.681429 + 0.393423i −0.800393 0.599476i \(-0.795376\pi\)
0.118965 + 0.992899i \(0.462043\pi\)
\(614\) 16.5320 9.54474i 0.667176 0.385194i
\(615\) −5.03458 5.58732i −0.203014 0.225303i
\(616\) 1.60690 + 0.927747i 0.0647440 + 0.0373800i
\(617\) −26.0408 + 15.0346i −1.04836 + 0.605272i −0.922190 0.386737i \(-0.873602\pi\)
−0.126171 + 0.992008i \(0.540269\pi\)
\(618\) 16.9033i 0.679952i
\(619\) −25.2132 −1.01340 −0.506702 0.862121i \(-0.669135\pi\)
−0.506702 + 0.862121i \(0.669135\pi\)
\(620\) −4.49568 + 13.8537i −0.180551 + 0.556377i
\(621\) 1.63566i 0.0656367i
\(622\) 1.51782 + 0.876316i 0.0608592 + 0.0351371i
\(623\) 12.9658 0.519465
\(624\) −1.90957 1.10249i −0.0764441 0.0441350i
\(625\) 16.7009 18.6033i 0.668034 0.744130i
\(626\) −3.08712 + 5.34705i −0.123386 + 0.213711i
\(627\) −0.491681 0.851617i −0.0196359 0.0340103i
\(628\) 4.38347i 0.174920i
\(629\) −1.10992 19.8313i −0.0442554 0.790725i
\(630\) −6.73180 7.47088i −0.268201 0.297647i
\(631\) −3.21095 + 1.85384i −0.127826 + 0.0738003i −0.562549 0.826764i \(-0.690179\pi\)
0.434724 + 0.900564i \(0.356846\pi\)
\(632\) 7.72926 + 4.46249i 0.307454 + 0.177508i
\(633\) 7.33901 + 4.23718i 0.291699 + 0.168413i
\(634\) −14.2460 8.22494i −0.565782 0.326654i
\(635\) 13.6664 + 15.1668i 0.542333 + 0.601876i
\(636\) −5.82686 + 10.0924i −0.231050 + 0.400190i
\(637\) −29.1637 −1.15551
\(638\) −3.27378 + 1.89012i −0.129610 + 0.0748305i
\(639\) −2.02978 −0.0802969
\(640\) 1.66117 1.49683i 0.0656635 0.0591676i
\(641\) −21.6941 37.5752i −0.856864 1.48413i −0.874905 0.484295i \(-0.839076\pi\)
0.0180408 0.999837i \(-0.494257\pi\)
\(642\) −4.37708 + 7.58132i −0.172750 + 0.299211i
\(643\) 20.0324 0.790003 0.395001 0.918681i \(-0.370744\pi\)
0.395001 + 0.918681i \(0.370744\pi\)
\(644\) 6.37061 3.67807i 0.251037 0.144936i
\(645\) −6.43346 + 19.8250i −0.253317 + 0.780609i
\(646\) −6.74018 + 3.89145i −0.265189 + 0.153107i
\(647\) 3.87468 6.71115i 0.152329 0.263842i −0.779754 0.626086i \(-0.784656\pi\)
0.932083 + 0.362244i \(0.117989\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) 1.96499 1.13449i 0.0771326 0.0445325i
\(650\) 10.0685 4.49166i 0.394917 0.176177i
\(651\) −25.3694 + 14.6470i −0.994304 + 0.574062i
\(652\) −16.0192 −0.627360
\(653\) 16.5210 28.6152i 0.646516 1.11980i −0.337433 0.941350i \(-0.609559\pi\)
0.983949 0.178449i \(-0.0571081\pi\)
\(654\) −5.57487 9.65596i −0.217995 0.377578i
\(655\) 17.0279 + 18.8973i 0.665333 + 0.738380i
\(656\) 3.36348 0.131322
\(657\) −5.69391 + 3.28738i −0.222140 + 0.128253i
\(658\) −30.2005 −1.17734
\(659\) 7.97035 13.8051i 0.310481 0.537768i −0.667986 0.744174i \(-0.732843\pi\)
0.978467 + 0.206406i \(0.0661766\pi\)
\(660\) −0.617555 0.685356i −0.0240383 0.0266774i
\(661\) 22.0245 + 12.7158i 0.856653 + 0.494589i 0.862890 0.505392i \(-0.168652\pi\)
−0.00623711 + 0.999981i \(0.501985\pi\)
\(662\) 9.69676 + 5.59843i 0.376875 + 0.217589i
\(663\) 6.23541 + 3.60002i 0.242163 + 0.139813i
\(664\) 3.38588 1.95484i 0.131398 0.0758625i
\(665\) −17.8067 + 16.0451i −0.690515 + 0.622203i
\(666\) 5.08964 3.33100i 0.197220 0.129074i
\(667\) 14.9868i 0.580292i
\(668\) −6.66540 11.5448i −0.257892 0.446682i
\(669\) −9.35953 + 16.2112i −0.361860 + 0.626761i
\(670\) −6.85834 + 1.46043i −0.264961 + 0.0564213i
\(671\) 2.66928 + 1.54111i 0.103046 + 0.0594939i
\(672\) 4.49736 0.173489
\(673\) 29.2455 + 16.8849i 1.12733 + 0.650866i 0.943263 0.332047i \(-0.107739\pi\)
0.184070 + 0.982913i \(0.441073\pi\)
\(674\) 30.7340i 1.18383i
\(675\) 2.03705 + 4.56623i 0.0784061 + 0.175754i
\(676\) −8.13804 −0.313002
\(677\) 15.8792i 0.610288i 0.952306 + 0.305144i \(0.0987045\pi\)
−0.952306 + 0.305144i \(0.901295\pi\)
\(678\) −1.41513 + 0.817025i −0.0543477 + 0.0313777i
\(679\) 42.5602 + 24.5721i 1.63331 + 0.942992i
\(680\) −5.42430 + 4.88768i −0.208012 + 0.187434i
\(681\) 3.89408 2.24825i 0.149222 0.0861531i
\(682\) −2.32731 + 1.34367i −0.0891172 + 0.0514518i
\(683\) 16.4618 + 28.5127i 0.629894 + 1.09101i 0.987572 + 0.157164i \(0.0502352\pi\)
−0.357678 + 0.933845i \(0.616431\pi\)
\(684\) −2.06416 1.19174i −0.0789250 0.0455674i
\(685\) −5.41091 + 1.15221i −0.206740 + 0.0440236i
\(686\) 24.2502 14.0009i 0.925877 0.534555i
\(687\) −17.6353 + 10.1818i −0.672829 + 0.388458i
\(688\) −4.66058 8.07236i −0.177683 0.307756i
\(689\) 25.6962i 0.978949i
\(690\) −3.57724 + 0.761743i −0.136183 + 0.0289991i
\(691\) −18.6030 32.2214i −0.707693 1.22576i −0.965711 0.259619i \(-0.916403\pi\)
0.258018 0.966140i \(-0.416930\pi\)
\(692\) 25.4580i 0.967768i
\(693\) 1.85549i 0.0704844i
\(694\) 3.25518 + 5.63813i 0.123565 + 0.214020i
\(695\) 31.4025 28.2959i 1.19116 1.07332i
\(696\) −4.58129 + 7.93502i −0.173653 + 0.300776i
\(697\) −10.9829 −0.416008
\(698\) 5.75901 9.97489i 0.217982 0.377555i
\(699\) −1.47036 + 2.54674i −0.0556142 + 0.0963266i
\(700\) −13.2040 + 18.2019i −0.499064 + 0.687969i
\(701\) 7.57252 4.37200i 0.286010 0.165128i −0.350131 0.936701i \(-0.613863\pi\)
0.636141 + 0.771573i \(0.280530\pi\)
\(702\) 2.20498i 0.0832218i
\(703\) −7.93938 12.1311i −0.299439 0.457532i
\(704\) 0.412574 0.0155495
\(705\) 14.2823 + 4.63480i 0.537904 + 0.174557i
\(706\) −13.7639 + 23.8398i −0.518012 + 0.897224i
\(707\) 67.0627 + 38.7187i 2.52215 + 1.45617i
\(708\) 2.74978 4.76276i 0.103343 0.178995i
\(709\) 8.59568i 0.322817i 0.986888 + 0.161409i \(0.0516037\pi\)
−0.986888 + 0.161409i \(0.948396\pi\)
\(710\) 0.945290 + 4.43920i 0.0354761 + 0.166600i
\(711\) 8.92498i 0.334713i
\(712\) 2.49674 1.44149i 0.0935692 0.0540222i
\(713\) 10.6540i 0.398996i
\(714\) −14.6854 −0.549589
\(715\) 1.93486 + 0.627887i 0.0723598 + 0.0234817i
\(716\) 2.90714 + 1.67844i 0.108645 + 0.0627261i
\(717\) 9.25083 0.345478
\(718\) −5.21568 9.03383i −0.194648 0.337139i
\(719\) −18.9145 32.7608i −0.705391 1.22177i −0.966550 0.256477i \(-0.917438\pi\)
0.261160 0.965296i \(-0.415895\pi\)
\(720\) −2.12688 0.690199i −0.0792642 0.0257222i
\(721\) −65.8356 38.0102i −2.45185 1.41557i
\(722\) 6.65951 11.5346i 0.247841 0.429273i
\(723\) −0.399045 0.691167i −0.0148407 0.0257048i
\(724\) 4.85498 + 8.40907i 0.180434 + 0.312521i
\(725\) −18.6646 41.8384i −0.693186 1.55384i
\(726\) 10.8298i 0.401931i
\(727\) −11.9500 + 20.6980i −0.443200 + 0.767646i −0.997925 0.0643884i \(-0.979490\pi\)
0.554724 + 0.832034i \(0.312824\pi\)
\(728\) −8.58804 + 4.95830i −0.318294 + 0.183767i
\(729\) −1.00000 −0.0370370
\(730\) 9.84132 + 10.9218i 0.364244 + 0.404234i
\(731\) 15.2184 + 26.3591i 0.562873 + 0.974925i
\(732\) 7.47071 0.276125
\(733\) 18.4978 + 10.6797i 0.683233 + 0.394465i 0.801072 0.598568i \(-0.204263\pi\)
−0.117839 + 0.993033i \(0.537597\pi\)
\(734\) 8.02271i 0.296124i
\(735\) −28.9263 + 6.15961i −1.06696 + 0.227201i
\(736\) 0.817829 1.41652i 0.0301456 0.0522137i
\(737\) −1.12046 0.646898i −0.0412727 0.0238288i
\(738\) −1.68174 2.91286i −0.0619058 0.107224i
\(739\) 40.7382 1.49858 0.749289 0.662243i \(-0.230396\pi\)
0.749289 + 0.662243i \(0.230396\pi\)
\(740\) −9.65530 9.57993i −0.354936 0.352165i
\(741\) 5.25554 0.193067
\(742\) 26.2055 + 45.3892i 0.962033 + 1.66629i
\(743\) 17.7672 + 10.2579i 0.651816 + 0.376326i 0.789152 0.614199i \(-0.210521\pi\)
−0.137336 + 0.990525i \(0.543854\pi\)
\(744\) −3.25680 + 5.64095i −0.119400 + 0.206807i
\(745\) −3.71972 17.4682i −0.136280 0.639987i
\(746\) 23.4585i 0.858878i
\(747\) −3.38588 1.95484i −0.123883 0.0715238i
\(748\) −1.34720 −0.0492584
\(749\) 19.6853 + 34.0959i 0.719285 + 1.24584i
\(750\) 9.03781 6.58164i 0.330014 0.240327i
\(751\) 37.7421 1.37723 0.688614 0.725128i \(-0.258219\pi\)
0.688614 + 0.725128i \(0.258219\pi\)
\(752\) −5.81550 + 3.35758i −0.212069 + 0.122438i
\(753\) −6.87828 + 11.9135i −0.250658 + 0.434153i
\(754\) 20.2033i 0.735762i
\(755\) 9.16414 + 2.97388i 0.333517 + 0.108230i
\(756\) −2.24868 3.89483i −0.0817837 0.141654i
\(757\) −16.4384 28.4721i −0.597462 1.03484i −0.993194 0.116469i \(-0.962842\pi\)
0.395732 0.918366i \(-0.370491\pi\)
\(758\) 8.83500 15.3027i 0.320901 0.555818i
\(759\) −0.584420 0.337415i −0.0212131 0.0122474i
\(760\) −1.64508 + 5.06938i −0.0596732 + 0.183886i
\(761\) 9.42311 + 16.3213i 0.341587 + 0.591647i 0.984728 0.174102i \(-0.0557021\pi\)
−0.643140 + 0.765748i \(0.722369\pi\)
\(762\) 4.56509 + 7.90697i 0.165376 + 0.286439i
\(763\) −50.1444 −1.81535
\(764\) 16.2402 + 9.37630i 0.587551 + 0.339223i
\(765\) 6.94500 + 2.25374i 0.251097 + 0.0814841i
\(766\) −23.6721 −0.855306
\(767\) 12.1264i 0.437860i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 11.5220i 0.415493i 0.978183 + 0.207746i \(0.0666129\pi\)
−0.978183 + 0.207746i \(0.933387\pi\)
\(770\) −4.05803 + 0.864123i −0.146241 + 0.0311408i
\(771\) 19.2329i 0.692656i
\(772\) −12.8390 + 22.2379i −0.462087 + 0.800358i
\(773\) 22.3027 + 12.8765i 0.802173 + 0.463135i 0.844230 0.535980i \(-0.180058\pi\)
−0.0420574 + 0.999115i \(0.513391\pi\)
\(774\) −4.66058 + 8.07236i −0.167521 + 0.290155i
\(775\) −13.2685 29.7426i −0.476620 1.06839i
\(776\) 10.9274 0.392269