Properties

Label 1110.2.ba.b.529.6
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.6
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.b.619.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.18223 - 0.487744i) q^{5} -1.00000i q^{6} +(-2.13280 - 1.23137i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.18223 - 0.487744i) q^{5} -1.00000i q^{6} +(-2.13280 - 1.23137i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(1.51351 + 1.64599i) q^{10} -0.452075 q^{11} +(0.866025 - 0.500000i) q^{12} +(1.54402 - 2.67433i) q^{13} -2.46274i q^{14} +(-2.13373 - 0.668714i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.05737 - 1.83142i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(2.58246 + 1.49098i) q^{19} +(-0.668714 + 2.13373i) q^{20} +(1.23137 + 2.13280i) q^{21} +(-0.226038 - 0.391509i) q^{22} +1.77585 q^{23} +(0.866025 + 0.500000i) q^{24} +(4.52421 - 2.12873i) q^{25} +3.08804 q^{26} -1.00000i q^{27} +(2.13280 - 1.23137i) q^{28} -8.36900i q^{29} +(-0.487744 - 2.18223i) q^{30} -2.55531i q^{31} +(0.500000 - 0.866025i) q^{32} +(0.391509 + 0.226038i) q^{33} +(1.05737 - 1.83142i) q^{34} +(-5.25484 - 1.64687i) q^{35} -1.00000 q^{36} +(-0.0294493 - 6.08269i) q^{37} +2.98197i q^{38} +(-2.67433 + 1.54402i) q^{39} +(-2.18223 + 0.487744i) q^{40} +(-1.18271 + 2.04852i) q^{41} +(-1.23137 + 2.13280i) q^{42} +3.94663 q^{43} +(0.226038 - 0.391509i) q^{44} +(1.51351 + 1.64599i) q^{45} +(0.887924 + 1.53793i) q^{46} +2.64363i q^{47} +1.00000i q^{48} +(-0.467447 - 0.809642i) q^{49} +(4.10564 + 2.85372i) q^{50} +2.11474i q^{51} +(1.54402 + 2.67433i) q^{52} +(8.26490 - 4.77175i) q^{53} +(0.866025 - 0.500000i) q^{54} +(-0.986530 + 0.220497i) q^{55} +(2.13280 + 1.23137i) q^{56} +(-1.49098 - 2.58246i) q^{57} +(7.24777 - 4.18450i) q^{58} +(-2.78387 + 1.60727i) q^{59} +(1.64599 - 1.51351i) q^{60} +(7.10381 + 4.10139i) q^{61} +(2.21296 - 1.27765i) q^{62} -2.46274i q^{63} +1.00000 q^{64} +(2.06502 - 6.58907i) q^{65} +0.452075i q^{66} +(-8.26563 - 4.77217i) q^{67} +2.11474 q^{68} +(-1.53793 - 0.887924i) q^{69} +(-1.20119 - 5.37426i) q^{70} +(0.00323694 - 0.00560655i) q^{71} +(-0.500000 - 0.866025i) q^{72} -9.13122i q^{73} +(5.25304 - 3.06685i) q^{74} +(-4.98245 - 0.418570i) q^{75} +(-2.58246 + 1.49098i) q^{76} +(0.964186 + 0.556673i) q^{77} +(-2.67433 - 1.54402i) q^{78} +(10.9751 + 6.33650i) q^{79} +(-1.51351 - 1.64599i) q^{80} +(-0.500000 + 0.866025i) q^{81} -2.36543 q^{82} +(-6.55955 + 3.78716i) q^{83} -2.46274 q^{84} +(-3.20068 - 3.48085i) q^{85} +(1.97332 + 3.41789i) q^{86} +(-4.18450 + 7.24777i) q^{87} +0.452075 q^{88} +(9.02573 - 5.21101i) q^{89} +(-0.668714 + 2.13373i) q^{90} +(-6.58618 + 3.80253i) q^{91} +(-0.887924 + 1.53793i) q^{92} +(-1.27765 + 2.21296i) q^{93} +(-2.28945 + 1.32182i) q^{94} +(6.36273 + 1.99408i) q^{95} +(-0.866025 + 0.500000i) q^{96} -5.64069 q^{97} +(0.467447 - 0.809642i) q^{98} +(-0.226038 - 0.391509i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} + 14q^{13} + 2q^{15} - 18q^{16} - 18q^{18} + 6q^{19} - 2q^{20} + 2q^{22} + 20q^{23} - 2q^{25} + 28q^{26} - 2q^{30} + 18q^{32} + 6q^{33} - 20q^{35} - 36q^{36} - 20q^{37} + 6q^{39} - 4q^{40} + 10q^{41} - 2q^{44} + 2q^{45} + 10q^{46} + 10q^{49} - 4q^{50} + 14q^{52} + 12q^{53} + 40q^{55} - 8q^{57} - 30q^{58} + 18q^{59} - 4q^{60} - 6q^{61} + 12q^{62} + 36q^{64} - 32q^{65} - 36q^{67} + 12q^{69} - 40q^{70} - 24q^{71} - 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} + 24q^{77} + 6q^{78} - 2q^{80} - 18q^{81} + 20q^{82} - 36q^{83} + 26q^{85} + 10q^{87} - 4q^{88} - 2q^{90} - 36q^{91} - 10q^{92} - 12q^{93} + 12q^{94} + 18q^{95} - 52q^{97} - 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.18223 0.487744i 0.975921 0.218126i
\(6\) 1.00000i 0.408248i
\(7\) −2.13280 1.23137i −0.806122 0.465415i 0.0394853 0.999220i \(-0.487428\pi\)
−0.845607 + 0.533805i \(0.820761\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.51351 + 1.64599i 0.478614 + 0.520508i
\(11\) −0.452075 −0.136306 −0.0681529 0.997675i \(-0.521711\pi\)
−0.0681529 + 0.997675i \(0.521711\pi\)
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) 1.54402 2.67433i 0.428235 0.741724i −0.568482 0.822696i \(-0.692469\pi\)
0.996716 + 0.0809716i \(0.0258023\pi\)
\(14\) 2.46274i 0.658196i
\(15\) −2.13373 0.668714i −0.550928 0.172661i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.05737 1.83142i −0.256450 0.444185i 0.708838 0.705371i \(-0.249220\pi\)
−0.965288 + 0.261186i \(0.915886\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 2.58246 + 1.49098i 0.592457 + 0.342055i 0.766068 0.642759i \(-0.222210\pi\)
−0.173611 + 0.984814i \(0.555544\pi\)
\(20\) −0.668714 + 2.13373i −0.149529 + 0.477117i
\(21\) 1.23137 + 2.13280i 0.268707 + 0.465415i
\(22\) −0.226038 0.391509i −0.0481914 0.0834699i
\(23\) 1.77585 0.370290 0.185145 0.982711i \(-0.440725\pi\)
0.185145 + 0.982711i \(0.440725\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) 4.52421 2.12873i 0.904843 0.425746i
\(26\) 3.08804 0.605615
\(27\) 1.00000i 0.192450i
\(28\) 2.13280 1.23137i 0.403061 0.232707i
\(29\) 8.36900i 1.55408i −0.629448 0.777042i \(-0.716719\pi\)
0.629448 0.777042i \(-0.283281\pi\)
\(30\) −0.487744 2.18223i −0.0890494 0.398418i
\(31\) 2.55531i 0.458947i −0.973315 0.229473i \(-0.926300\pi\)
0.973315 0.229473i \(-0.0737004\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0.391509 + 0.226038i 0.0681529 + 0.0393481i
\(34\) 1.05737 1.83142i 0.181338 0.314086i
\(35\) −5.25484 1.64687i −0.888230 0.278372i
\(36\) −1.00000 −0.166667
\(37\) −0.0294493 6.08269i −0.00484144 0.999988i
\(38\) 2.98197i 0.483739i
\(39\) −2.67433 + 1.54402i −0.428235 + 0.247241i
\(40\) −2.18223 + 0.487744i −0.345040 + 0.0771190i
\(41\) −1.18271 + 2.04852i −0.184709 + 0.319925i −0.943478 0.331434i \(-0.892468\pi\)
0.758769 + 0.651359i \(0.225801\pi\)
\(42\) −1.23137 + 2.13280i −0.190005 + 0.329098i
\(43\) 3.94663 0.601856 0.300928 0.953647i \(-0.402704\pi\)
0.300928 + 0.953647i \(0.402704\pi\)
\(44\) 0.226038 0.391509i 0.0340765 0.0590222i
\(45\) 1.51351 + 1.64599i 0.225621 + 0.245370i
\(46\) 0.887924 + 1.53793i 0.130917 + 0.226755i
\(47\) 2.64363i 0.385613i 0.981237 + 0.192807i \(0.0617590\pi\)
−0.981237 + 0.192807i \(0.938241\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −0.467447 0.809642i −0.0667782 0.115663i
\(50\) 4.10564 + 2.85372i 0.580626 + 0.403577i
\(51\) 2.11474i 0.296123i
\(52\) 1.54402 + 2.67433i 0.214117 + 0.370862i
\(53\) 8.26490 4.77175i 1.13527 0.655450i 0.190017 0.981781i \(-0.439146\pi\)
0.945255 + 0.326331i \(0.105813\pi\)
\(54\) 0.866025 0.500000i 0.117851 0.0680414i
\(55\) −0.986530 + 0.220497i −0.133024 + 0.0297318i
\(56\) 2.13280 + 1.23137i 0.285007 + 0.164549i
\(57\) −1.49098 2.58246i −0.197486 0.342055i
\(58\) 7.24777 4.18450i 0.951679 0.549452i
\(59\) −2.78387 + 1.60727i −0.362429 + 0.209248i −0.670146 0.742230i \(-0.733768\pi\)
0.307717 + 0.951478i \(0.400435\pi\)
\(60\) 1.64599 1.51351i 0.212496 0.195393i
\(61\) 7.10381 + 4.10139i 0.909550 + 0.525129i 0.880286 0.474443i \(-0.157350\pi\)
0.0292637 + 0.999572i \(0.490684\pi\)
\(62\) 2.21296 1.27765i 0.281046 0.162262i
\(63\) 2.46274i 0.310277i
\(64\) 1.00000 0.125000
\(65\) 2.06502 6.58907i 0.256134 0.817273i
\(66\) 0.452075i 0.0556466i
\(67\) −8.26563 4.77217i −1.00981 0.583013i −0.0986725 0.995120i \(-0.531460\pi\)
−0.911135 + 0.412107i \(0.864793\pi\)
\(68\) 2.11474 0.256450
\(69\) −1.53793 0.887924i −0.185145 0.106893i
\(70\) −1.20119 5.37426i −0.143569 0.642347i
\(71\) 0.00323694 0.00560655i 0.000384154 0.000665375i −0.865833 0.500333i \(-0.833211\pi\)
0.866217 + 0.499667i \(0.166544\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 9.13122i 1.06873i −0.845254 0.534364i \(-0.820551\pi\)
0.845254 0.534364i \(-0.179449\pi\)
\(74\) 5.25304 3.06685i 0.610654 0.356514i
\(75\) −4.98245 0.418570i −0.575324 0.0483323i
\(76\) −2.58246 + 1.49098i −0.296228 + 0.171028i
\(77\) 0.964186 + 0.556673i 0.109879 + 0.0634388i
\(78\) −2.67433 1.54402i −0.302808 0.174826i
\(79\) 10.9751 + 6.33650i 1.23480 + 0.712912i 0.968027 0.250848i \(-0.0807093\pi\)
0.266773 + 0.963759i \(0.414043\pi\)
\(80\) −1.51351 1.64599i −0.169216 0.184027i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −2.36543 −0.261218
\(83\) −6.55955 + 3.78716i −0.720005 + 0.415695i −0.814754 0.579806i \(-0.803128\pi\)
0.0947497 + 0.995501i \(0.469795\pi\)
\(84\) −2.46274 −0.268707
\(85\) −3.20068 3.48085i −0.347163 0.377551i
\(86\) 1.97332 + 3.41789i 0.212788 + 0.368560i
\(87\) −4.18450 + 7.24777i −0.448626 + 0.777042i
\(88\) 0.452075 0.0481914
\(89\) 9.02573 5.21101i 0.956726 0.552366i 0.0615619 0.998103i \(-0.480392\pi\)
0.895164 + 0.445737i \(0.147059\pi\)
\(90\) −0.668714 + 2.13373i −0.0704887 + 0.224915i
\(91\) −6.58618 + 3.80253i −0.690419 + 0.398614i
\(92\) −0.887924 + 1.53793i −0.0925725 + 0.160340i
\(93\) −1.27765 + 2.21296i −0.132487 + 0.229473i
\(94\) −2.28945 + 1.32182i −0.236139 + 0.136335i
\(95\) 6.36273 + 1.99408i 0.652802 + 0.204589i
\(96\) −0.866025 + 0.500000i −0.0883883 + 0.0510310i
\(97\) −5.64069 −0.572725 −0.286363 0.958121i \(-0.592446\pi\)
−0.286363 + 0.958121i \(0.592446\pi\)
\(98\) 0.467447 0.809642i 0.0472193 0.0817862i
\(99\) −0.226038 0.391509i −0.0227176 0.0393481i
\(100\) −0.418570 + 4.98245i −0.0418570 + 0.498245i
\(101\) 6.59186 0.655914 0.327957 0.944693i \(-0.393640\pi\)
0.327957 + 0.944693i \(0.393640\pi\)
\(102\) −1.83142 + 1.05737i −0.181338 + 0.104695i
\(103\) 0.706172 0.0695812 0.0347906 0.999395i \(-0.488924\pi\)
0.0347906 + 0.999395i \(0.488924\pi\)
\(104\) −1.54402 + 2.67433i −0.151404 + 0.262239i
\(105\) 3.72739 + 4.05365i 0.363756 + 0.395596i
\(106\) 8.26490 + 4.77175i 0.802759 + 0.463473i
\(107\) 4.58807 + 2.64892i 0.443545 + 0.256081i 0.705100 0.709108i \(-0.250902\pi\)
−0.261555 + 0.965189i \(0.584235\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) 5.76779 3.33004i 0.552454 0.318960i −0.197657 0.980271i \(-0.563333\pi\)
0.750111 + 0.661312i \(0.230000\pi\)
\(110\) −0.684221 0.744112i −0.0652379 0.0709483i
\(111\) −3.01584 + 5.28249i −0.286251 + 0.501392i
\(112\) 2.46274i 0.232707i
\(113\) 6.58655 + 11.4082i 0.619611 + 1.07320i 0.989557 + 0.144144i \(0.0460429\pi\)
−0.369946 + 0.929053i \(0.620624\pi\)
\(114\) 1.49098 2.58246i 0.139643 0.241870i
\(115\) 3.87530 0.866158i 0.361374 0.0807697i
\(116\) 7.24777 + 4.18450i 0.672938 + 0.388521i
\(117\) 3.08804 0.285490
\(118\) −2.78387 1.60727i −0.256276 0.147961i
\(119\) 5.20807i 0.477423i
\(120\) 2.13373 + 0.668714i 0.194782 + 0.0610450i
\(121\) −10.7956 −0.981421
\(122\) 8.20278i 0.742644i
\(123\) 2.04852 1.18271i 0.184709 0.106642i
\(124\) 2.21296 + 1.27765i 0.198730 + 0.114737i
\(125\) 8.83457 6.85203i 0.790188 0.612864i
\(126\) 2.13280 1.23137i 0.190005 0.109699i
\(127\) −15.7823 + 9.11192i −1.40045 + 0.808552i −0.994439 0.105315i \(-0.966415\pi\)
−0.406014 + 0.913867i \(0.633082\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −3.41789 1.97332i −0.300928 0.173741i
\(130\) 6.73881 1.50617i 0.591033 0.132100i
\(131\) 9.09771 5.25257i 0.794871 0.458919i −0.0468037 0.998904i \(-0.514904\pi\)
0.841674 + 0.539985i \(0.181570\pi\)
\(132\) −0.391509 + 0.226038i −0.0340765 + 0.0196741i
\(133\) −3.67191 6.35994i −0.318395 0.551476i
\(134\) 9.54433i 0.824505i
\(135\) −0.487744 2.18223i −0.0419783 0.187816i
\(136\) 1.05737 + 1.83142i 0.0906688 + 0.157043i
\(137\) 15.4821i 1.32272i 0.750068 + 0.661361i \(0.230021\pi\)
−0.750068 + 0.661361i \(0.769979\pi\)
\(138\) 1.77585i 0.151170i
\(139\) −6.46352 11.1951i −0.548228 0.949560i −0.998396 0.0566155i \(-0.981969\pi\)
0.450168 0.892944i \(-0.351364\pi\)
\(140\) 4.05365 3.72739i 0.342596 0.315022i
\(141\) 1.32182 2.28945i 0.111317 0.192807i
\(142\) 0.00647388 0.000543276
\(143\) −0.698014 + 1.20900i −0.0583709 + 0.101101i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −4.08193 18.2630i −0.338986 1.51666i
\(146\) 7.90787 4.56561i 0.654460 0.377853i
\(147\) 0.934894i 0.0771088i
\(148\) 5.28249 + 3.01584i 0.434218 + 0.247901i
\(149\) 0.922279 0.0755560 0.0377780 0.999286i \(-0.487972\pi\)
0.0377780 + 0.999286i \(0.487972\pi\)
\(150\) −2.12873 4.52421i −0.173810 0.369400i
\(151\) −9.43397 + 16.3401i −0.767726 + 1.32974i 0.171067 + 0.985259i \(0.445278\pi\)
−0.938793 + 0.344481i \(0.888055\pi\)
\(152\) −2.58246 1.49098i −0.209465 0.120935i
\(153\) 1.05737 1.83142i 0.0854834 0.148062i
\(154\) 1.11335i 0.0897159i
\(155\) −1.24634 5.57626i −0.100108 0.447896i
\(156\) 3.08804i 0.247241i
\(157\) −13.0389 + 7.52798i −1.04061 + 0.600799i −0.920007 0.391902i \(-0.871817\pi\)
−0.120607 + 0.992700i \(0.538484\pi\)
\(158\) 12.6730i 1.00821i
\(159\) −9.54349 −0.756848
\(160\) 0.668714 2.13373i 0.0528665 0.168686i
\(161\) −3.78753 2.18673i −0.298499 0.172338i
\(162\) −1.00000 −0.0785674
\(163\) −8.68670 15.0458i −0.680395 1.17848i −0.974860 0.222817i \(-0.928475\pi\)
0.294465 0.955662i \(-0.404859\pi\)
\(164\) −1.18271 2.04852i −0.0923545 0.159963i
\(165\) 0.964609 + 0.302309i 0.0750947 + 0.0235347i
\(166\) −6.55955 3.78716i −0.509120 0.293941i
\(167\) 1.65702 2.87004i 0.128224 0.222090i −0.794765 0.606918i \(-0.792406\pi\)
0.922988 + 0.384828i \(0.125739\pi\)
\(168\) −1.23137 2.13280i −0.0950024 0.164549i
\(169\) 1.73199 + 2.99990i 0.133230 + 0.230761i
\(170\) 1.41416 4.51230i 0.108461 0.346077i
\(171\) 2.98197i 0.228037i
\(172\) −1.97332 + 3.41789i −0.150464 + 0.260611i
\(173\) 0.977227 0.564202i 0.0742972 0.0428955i −0.462391 0.886676i \(-0.653008\pi\)
0.536688 + 0.843781i \(0.319675\pi\)
\(174\) −8.36900 −0.634452
\(175\) −12.2705 1.03083i −0.927562 0.0779235i
\(176\) 0.226038 + 0.391509i 0.0170382 + 0.0295111i
\(177\) 3.21453 0.241619
\(178\) 9.02573 + 5.21101i 0.676507 + 0.390582i
\(179\) 9.79245i 0.731922i 0.930630 + 0.365961i \(0.119260\pi\)
−0.930630 + 0.365961i \(0.880740\pi\)
\(180\) −2.18223 + 0.487744i −0.162653 + 0.0363543i
\(181\) −6.70130 + 11.6070i −0.498103 + 0.862740i −0.999998 0.00218861i \(-0.999303\pi\)
0.501894 + 0.864929i \(0.332637\pi\)
\(182\) −6.58618 3.80253i −0.488200 0.281862i
\(183\) −4.10139 7.10381i −0.303183 0.525129i
\(184\) −1.77585 −0.130917
\(185\) −3.03106 13.2594i −0.222848 0.974853i
\(186\) −2.55531 −0.187364
\(187\) 0.478011 + 0.827940i 0.0349556 + 0.0605450i
\(188\) −2.28945 1.32182i −0.166975 0.0964033i
\(189\) −1.23137 + 2.13280i −0.0895691 + 0.155138i
\(190\) 1.45444 + 6.50733i 0.105516 + 0.472091i
\(191\) 9.38260i 0.678901i 0.940624 + 0.339451i \(0.110241\pi\)
−0.940624 + 0.339451i \(0.889759\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) −12.5017 −0.899890 −0.449945 0.893056i \(-0.648556\pi\)
−0.449945 + 0.893056i \(0.648556\pi\)
\(194\) −2.82034 4.88498i −0.202489 0.350721i
\(195\) −5.08289 + 4.67379i −0.363993 + 0.334697i
\(196\) 0.934894 0.0667782
\(197\) 1.70221 0.982774i 0.121278 0.0700197i −0.438134 0.898910i \(-0.644360\pi\)
0.559412 + 0.828890i \(0.311027\pi\)
\(198\) 0.226038 0.391509i 0.0160638 0.0278233i
\(199\) 12.7088i 0.900900i −0.892802 0.450450i \(-0.851263\pi\)
0.892802 0.450450i \(-0.148737\pi\)
\(200\) −4.52421 + 2.12873i −0.319910 + 0.150524i
\(201\) 4.77217 + 8.26563i 0.336603 + 0.583013i
\(202\) 3.29593 + 5.70872i 0.231901 + 0.401664i
\(203\) −10.3054 + 17.8494i −0.723294 + 1.25278i
\(204\) −1.83142 1.05737i −0.128225 0.0740308i
\(205\) −1.58180 + 5.04720i −0.110477 + 0.352512i
\(206\) 0.353086 + 0.611563i 0.0246007 + 0.0426096i
\(207\) 0.887924 + 1.53793i 0.0617150 + 0.106893i
\(208\) −3.08804 −0.214117
\(209\) −1.16747 0.674037i −0.0807554 0.0466241i
\(210\) −1.64687 + 5.25484i −0.113645 + 0.362618i
\(211\) −11.2817 −0.776662 −0.388331 0.921520i \(-0.626948\pi\)
−0.388331 + 0.921520i \(0.626948\pi\)
\(212\) 9.54349i 0.655450i
\(213\) −0.00560655 + 0.00323694i −0.000384154 + 0.000221792i
\(214\) 5.29785i 0.362153i
\(215\) 8.61245 1.92495i 0.587364 0.131280i
\(216\) 1.00000i 0.0680414i
\(217\) −3.14653 + 5.44996i −0.213601 + 0.369967i
\(218\) 5.76779 + 3.33004i 0.390644 + 0.225539i
\(219\) −4.56561 + 7.90787i −0.308515 + 0.534364i
\(220\) 0.302309 0.964609i 0.0203817 0.0650339i
\(221\) −6.53042 −0.439283
\(222\) −6.08269 + 0.0294493i −0.408244 + 0.00197651i
\(223\) 13.9818i 0.936293i −0.883651 0.468146i \(-0.844922\pi\)
0.883651 0.468146i \(-0.155078\pi\)
\(224\) −2.13280 + 1.23137i −0.142504 + 0.0822745i
\(225\) 4.10564 + 2.85372i 0.273709 + 0.190248i
\(226\) −6.58655 + 11.4082i −0.438131 + 0.758865i
\(227\) −10.0487 + 17.4048i −0.666953 + 1.15520i 0.311799 + 0.950148i \(0.399068\pi\)
−0.978752 + 0.205048i \(0.934265\pi\)
\(228\) 2.98197 0.197486
\(229\) 2.81341 4.87296i 0.185915 0.322014i −0.757969 0.652290i \(-0.773808\pi\)
0.943885 + 0.330276i \(0.107142\pi\)
\(230\) 2.68777 + 2.92303i 0.177226 + 0.192739i
\(231\) −0.556673 0.964186i −0.0366264 0.0634388i
\(232\) 8.36900i 0.549452i
\(233\) 16.2683i 1.06577i 0.846187 + 0.532887i \(0.178893\pi\)
−0.846187 + 0.532887i \(0.821107\pi\)
\(234\) 1.54402 + 2.67433i 0.100936 + 0.174826i
\(235\) 1.28941 + 5.76900i 0.0841121 + 0.376328i
\(236\) 3.21453i 0.209248i
\(237\) −6.33650 10.9751i −0.411600 0.712912i
\(238\) −4.51032 + 2.60403i −0.292360 + 0.168794i
\(239\) 4.52658 2.61342i 0.292800 0.169048i −0.346404 0.938085i \(-0.612597\pi\)
0.639204 + 0.769037i \(0.279264\pi\)
\(240\) 0.487744 + 2.18223i 0.0314837 + 0.140862i
\(241\) −21.8978 12.6427i −1.41056 0.814387i −0.415119 0.909767i \(-0.636260\pi\)
−0.995441 + 0.0953804i \(0.969593\pi\)
\(242\) −5.39781 9.34929i −0.346985 0.600995i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) −7.10381 + 4.10139i −0.454775 + 0.262564i
\(245\) −1.41497 1.53883i −0.0903993 0.0983121i
\(246\) 2.04852 + 1.18271i 0.130609 + 0.0754071i
\(247\) 7.97475 4.60423i 0.507421 0.292960i
\(248\) 2.55531i 0.162262i
\(249\) 7.57432 0.480003
\(250\) 10.3513 + 4.22495i 0.654675 + 0.267209i
\(251\) 2.27414i 0.143542i −0.997421 0.0717712i \(-0.977135\pi\)
0.997421 0.0717712i \(-0.0228652\pi\)
\(252\) 2.13280 + 1.23137i 0.134354 + 0.0775691i
\(253\) −0.802817 −0.0504727
\(254\) −15.7823 9.11192i −0.990270 0.571733i
\(255\) 1.03145 + 4.61484i 0.0645920 + 0.288993i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 10.8758 + 18.8374i 0.678413 + 1.17505i 0.975459 + 0.220182i \(0.0706652\pi\)
−0.297046 + 0.954863i \(0.596001\pi\)
\(258\) 3.94663i 0.245707i
\(259\) −7.42724 + 13.0094i −0.461507 + 0.808366i
\(260\) 4.67379 + 5.08289i 0.289856 + 0.315228i
\(261\) 7.24777 4.18450i 0.448626 0.259014i
\(262\) 9.09771 + 5.25257i 0.562059 + 0.324505i
\(263\) −5.41619 3.12704i −0.333977 0.192822i 0.323629 0.946184i \(-0.395097\pi\)
−0.657605 + 0.753363i \(0.728431\pi\)
\(264\) −0.391509 0.226038i −0.0240957 0.0139117i
\(265\) 15.7085 14.4442i 0.964965 0.887299i
\(266\) 3.67191 6.35994i 0.225139 0.389953i
\(267\) −10.4220 −0.637817
\(268\) 8.26563 4.77217i 0.504904 0.291506i
\(269\) −7.07555 −0.431404 −0.215702 0.976459i \(-0.569204\pi\)
−0.215702 + 0.976459i \(0.569204\pi\)
\(270\) 1.64599 1.51351i 0.100172 0.0921093i
\(271\) −2.51174 4.35046i −0.152577 0.264272i 0.779597 0.626282i \(-0.215424\pi\)
−0.932174 + 0.362010i \(0.882091\pi\)
\(272\) −1.05737 + 1.83142i −0.0641125 + 0.111046i
\(273\) 7.60506 0.460279
\(274\) −13.4079 + 7.74103i −0.809999 + 0.467653i
\(275\) −2.04528 + 0.962347i −0.123335 + 0.0580317i
\(276\) 1.53793 0.887924i 0.0925725 0.0534467i
\(277\) −14.3006 + 24.7694i −0.859242 + 1.48825i 0.0134110 + 0.999910i \(0.495731\pi\)
−0.872653 + 0.488341i \(0.837602\pi\)
\(278\) 6.46352 11.1951i 0.387656 0.671440i
\(279\) 2.21296 1.27765i 0.132487 0.0764912i
\(280\) 5.25484 + 1.64687i 0.314037 + 0.0984194i
\(281\) −11.1812 + 6.45549i −0.667017 + 0.385102i −0.794945 0.606681i \(-0.792500\pi\)
0.127929 + 0.991783i \(0.459167\pi\)
\(282\) 2.64363 0.157426
\(283\) 10.3736 17.9677i 0.616648 1.06807i −0.373444 0.927653i \(-0.621823\pi\)
0.990093 0.140414i \(-0.0448433\pi\)
\(284\) 0.00323694 + 0.00560655i 0.000192077 + 0.000332687i
\(285\) −4.51324 4.90829i −0.267341 0.290742i
\(286\) −1.39603 −0.0825489
\(287\) 5.04498 2.91272i 0.297796 0.171933i
\(288\) 1.00000 0.0589256
\(289\) 6.26393 10.8495i 0.368467 0.638203i
\(290\) 13.7753 12.6666i 0.808913 0.743807i
\(291\) 4.88498 + 2.82034i 0.286363 + 0.165332i
\(292\) 7.90787 + 4.56561i 0.462773 + 0.267182i
\(293\) −8.12951 4.69358i −0.474931 0.274202i 0.243371 0.969933i \(-0.421747\pi\)
−0.718302 + 0.695732i \(0.755080\pi\)
\(294\) −0.809642 + 0.467447i −0.0472193 + 0.0272621i
\(295\) −5.29109 + 4.86523i −0.308059 + 0.283265i
\(296\) 0.0294493 + 6.08269i 0.00171171 + 0.353549i
\(297\) 0.452075i 0.0262321i
\(298\) 0.461139 + 0.798717i 0.0267131 + 0.0462684i
\(299\) 2.74195 4.74919i 0.158571 0.274653i
\(300\) 2.85372 4.10564i 0.164759 0.237039i
\(301\) −8.41738 4.85977i −0.485170 0.280113i
\(302\) −18.8679 −1.08573
\(303\) −5.70872 3.29593i −0.327957 0.189346i
\(304\) 2.98197i 0.171028i
\(305\) 17.5025 + 5.48531i 1.00219 + 0.314088i
\(306\) 2.11474 0.120892
\(307\) 2.11341i 0.120619i −0.998180 0.0603095i \(-0.980791\pi\)
0.998180 0.0603095i \(-0.0192088\pi\)
\(308\) −0.964186 + 0.556673i −0.0549396 + 0.0317194i
\(309\) −0.611563 0.353086i −0.0347906 0.0200864i
\(310\) 4.20601 3.86749i 0.238886 0.219658i
\(311\) 19.2848 11.1341i 1.09354 0.631355i 0.159023 0.987275i \(-0.449166\pi\)
0.934517 + 0.355920i \(0.115832\pi\)
\(312\) 2.67433 1.54402i 0.151404 0.0874130i
\(313\) 8.32368 + 14.4170i 0.470482 + 0.814899i 0.999430 0.0337549i \(-0.0107466\pi\)
−0.528948 + 0.848654i \(0.677413\pi\)
\(314\) −13.0389 7.52798i −0.735825 0.424829i
\(315\) −1.20119 5.37426i −0.0676792 0.302805i
\(316\) −10.9751 + 6.33650i −0.617400 + 0.356456i
\(317\) 2.95498 1.70606i 0.165968 0.0958219i −0.414715 0.909951i \(-0.636119\pi\)
0.580683 + 0.814129i \(0.302785\pi\)
\(318\) −4.77175 8.26490i −0.267586 0.463473i
\(319\) 3.78342i 0.211831i
\(320\) 2.18223 0.487744i 0.121990 0.0272657i
\(321\) −2.64892 4.58807i −0.147848 0.256081i
\(322\) 4.37346i 0.243723i
\(323\) 6.30609i 0.350880i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 1.29256 15.3860i 0.0716985 0.853463i
\(326\) 8.68670 15.0458i 0.481112 0.833311i
\(327\) −6.66007 −0.368303
\(328\) 1.18271 2.04852i 0.0653045 0.113111i
\(329\) 3.25529 5.63833i 0.179470 0.310851i
\(330\) 0.220497 + 0.986530i 0.0121380 + 0.0543067i
\(331\) 23.5466 13.5946i 1.29424 0.747229i 0.314835 0.949146i \(-0.398051\pi\)
0.979403 + 0.201918i \(0.0647173\pi\)
\(332\) 7.57432i 0.415695i
\(333\) 5.25304 3.06685i 0.287865 0.168062i
\(334\) 3.31403 0.181336
\(335\) −20.3651 6.38243i −1.11266 0.348709i
\(336\) 1.23137 2.13280i 0.0671768 0.116354i
\(337\) 10.0266 + 5.78887i 0.546185 + 0.315340i 0.747582 0.664170i \(-0.231215\pi\)
−0.201397 + 0.979510i \(0.564548\pi\)
\(338\) −1.73199 + 2.99990i −0.0942079 + 0.163173i
\(339\) 13.1731i 0.715465i
\(340\) 4.61484 1.03145i 0.250275 0.0559383i
\(341\) 1.15519i 0.0625571i
\(342\) −2.58246 + 1.49098i −0.139643 + 0.0806232i
\(343\) 19.5416i 1.05515i
\(344\) −3.94663 −0.212788
\(345\) −3.78919 1.18753i −0.204003 0.0639347i
\(346\) 0.977227 + 0.564202i 0.0525360 + 0.0303317i
\(347\) 18.7028 1.00402 0.502010 0.864862i \(-0.332594\pi\)
0.502010 + 0.864862i \(0.332594\pi\)
\(348\) −4.18450 7.24777i −0.224313 0.388521i
\(349\) 9.61263 + 16.6496i 0.514552 + 0.891231i 0.999857 + 0.0168860i \(0.00537524\pi\)
−0.485305 + 0.874345i \(0.661291\pi\)
\(350\) −5.24252 11.1420i −0.280225 0.595564i
\(351\) −2.67433 1.54402i −0.142745 0.0824138i
\(352\) −0.226038 + 0.391509i −0.0120478 + 0.0208675i
\(353\) 5.24212 + 9.07961i 0.279010 + 0.483259i 0.971139 0.238515i \(-0.0766605\pi\)
−0.692129 + 0.721774i \(0.743327\pi\)
\(354\) 1.60727 + 2.78387i 0.0854253 + 0.147961i
\(355\) 0.00432918 0.0138135i 0.000229769 0.000733147i
\(356\) 10.4220i 0.552366i
\(357\) 2.60403 4.51032i 0.137820 0.238711i
\(358\) −8.48051 + 4.89623i −0.448209 + 0.258774i
\(359\) −6.92393 −0.365431 −0.182716 0.983166i \(-0.558489\pi\)
−0.182716 + 0.983166i \(0.558489\pi\)
\(360\) −1.51351 1.64599i −0.0797690 0.0867513i
\(361\) −5.05393 8.75367i −0.265996 0.460719i
\(362\) −13.4026 −0.704425
\(363\) 9.34929 + 5.39781i 0.490710 + 0.283312i
\(364\) 7.60506i 0.398614i
\(365\) −4.45369 19.9264i −0.233117 1.04299i
\(366\) 4.10139 7.10381i 0.214383 0.371322i
\(367\) 9.18534 + 5.30316i 0.479471 + 0.276823i 0.720196 0.693771i \(-0.244052\pi\)
−0.240725 + 0.970593i \(0.577385\pi\)
\(368\) −0.887924 1.53793i −0.0462862 0.0801701i
\(369\) −2.36543 −0.123139
\(370\) 9.96748 9.25469i 0.518185 0.481129i
\(371\) −23.5032 −1.22022
\(372\) −1.27765 2.21296i −0.0662433 0.114737i
\(373\) 14.0490 + 8.11120i 0.727430 + 0.419982i 0.817481 0.575955i \(-0.195370\pi\)
−0.0900510 + 0.995937i \(0.528703\pi\)
\(374\) −0.478011 + 0.827940i −0.0247174 + 0.0428118i
\(375\) −11.0770 + 1.51674i −0.572013 + 0.0783243i
\(376\) 2.64363i 0.136335i
\(377\) −22.3814 12.9219i −1.15270 0.665513i
\(378\) −2.46274 −0.126670
\(379\) 1.83877 + 3.18484i 0.0944511 + 0.163594i 0.909379 0.415968i \(-0.136557\pi\)
−0.814928 + 0.579562i \(0.803224\pi\)
\(380\) −4.90829 + 4.51324i −0.251790 + 0.231524i
\(381\) 18.2238 0.933635
\(382\) −8.12557 + 4.69130i −0.415740 + 0.240028i
\(383\) 2.74370 4.75222i 0.140196 0.242827i −0.787374 0.616475i \(-0.788560\pi\)
0.927570 + 0.373648i \(0.121893\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 2.37558 + 0.744510i 0.121071 + 0.0379437i
\(386\) −6.25084 10.8268i −0.318159 0.551068i
\(387\) 1.97332 + 3.41789i 0.100309 + 0.173741i
\(388\) 2.82034 4.88498i 0.143181 0.247997i
\(389\) 24.9890 + 14.4274i 1.26699 + 0.731497i 0.974417 0.224746i \(-0.0721551\pi\)
0.292573 + 0.956243i \(0.405488\pi\)
\(390\) −6.58907 2.06502i −0.333650 0.104566i
\(391\) −1.87773 3.25232i −0.0949609 0.164477i
\(392\) 0.467447 + 0.809642i 0.0236096 + 0.0408931i
\(393\) −10.5051 −0.529914
\(394\) 1.70221 + 0.982774i 0.0857563 + 0.0495114i
\(395\) 27.0408 + 8.47461i 1.36057 + 0.426404i
\(396\) 0.452075 0.0227176
\(397\) 13.9468i 0.699970i 0.936755 + 0.349985i \(0.113813\pi\)
−0.936755 + 0.349985i \(0.886187\pi\)
\(398\) 11.0061 6.35438i 0.551687 0.318516i
\(399\) 7.34382i 0.367651i
\(400\) −4.10564 2.85372i −0.205282 0.142686i
\(401\) 20.0498i 1.00124i −0.865667 0.500620i \(-0.833105\pi\)
0.865667 0.500620i \(-0.166895\pi\)
\(402\) −4.77217 + 8.26563i −0.238014 + 0.412252i
\(403\) −6.83373 3.94545i −0.340412 0.196537i
\(404\) −3.29593 + 5.70872i −0.163979 + 0.284019i
\(405\) −0.668714 + 2.13373i −0.0332287 + 0.106026i
\(406\) −20.6107 −1.02289
\(407\) 0.0133133 + 2.74983i 0.000659916 + 0.136304i
\(408\) 2.11474i 0.104695i
\(409\) 16.0291 9.25441i 0.792588 0.457601i −0.0482847 0.998834i \(-0.515375\pi\)
0.840873 + 0.541233i \(0.182042\pi\)
\(410\) −5.16190 + 1.15372i −0.254928 + 0.0569783i
\(411\) 7.74103 13.4079i 0.381837 0.661361i
\(412\) −0.353086 + 0.611563i −0.0173953 + 0.0301295i
\(413\) 7.91658 0.389549
\(414\) −0.887924 + 1.53793i −0.0436391 + 0.0755851i
\(415\) −12.4673 + 11.4638i −0.611994 + 0.562737i
\(416\) −1.54402 2.67433i −0.0757019 0.131120i
\(417\) 12.9270i 0.633040i
\(418\) 1.34807i 0.0659365i
\(419\) 14.5978 + 25.2842i 0.713150 + 1.23521i 0.963669 + 0.267100i \(0.0860654\pi\)
−0.250519 + 0.968112i \(0.580601\pi\)
\(420\) −5.37426 + 1.20119i −0.262237 + 0.0586119i
\(421\) 26.4129i 1.28728i −0.765327 0.643642i \(-0.777423\pi\)
0.765327 0.643642i \(-0.222577\pi\)
\(422\) −5.64084 9.77021i −0.274592 0.475607i
\(423\) −2.28945 + 1.32182i −0.111317 + 0.0642689i
\(424\) −8.26490 + 4.77175i −0.401379 + 0.231736i
\(425\) −8.68237 6.03487i −0.421157 0.292734i
\(426\) −0.00560655 0.00323694i −0.000271638 0.000156830i
\(427\) −10.1007 17.4949i −0.488806 0.846636i
\(428\) −4.58807 + 2.64892i −0.221773 + 0.128041i
\(429\) 1.20900 0.698014i 0.0583709 0.0337005i
\(430\) 5.97327 + 6.49612i 0.288057 + 0.313271i
\(431\) 17.6376 + 10.1831i 0.849571 + 0.490500i 0.860506 0.509440i \(-0.170147\pi\)
−0.0109348 + 0.999940i \(0.503481\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 33.1108i 1.59120i 0.605820 + 0.795602i \(0.292845\pi\)
−0.605820 + 0.795602i \(0.707155\pi\)
\(434\) −6.29307 −0.302077
\(435\) −5.59647 + 17.8572i −0.268330 + 0.856188i
\(436\) 6.66007i 0.318960i
\(437\) 4.58606 + 2.64776i 0.219381 + 0.126660i
\(438\) −9.13122 −0.436307
\(439\) 9.84542 + 5.68426i 0.469896 + 0.271295i 0.716196 0.697899i \(-0.245882\pi\)
−0.246300 + 0.969194i \(0.579215\pi\)
\(440\) 0.986530 0.220497i 0.0470310 0.0105118i
\(441\) 0.467447 0.809642i 0.0222594 0.0385544i
\(442\) −3.26521 5.65551i −0.155310 0.269005i
\(443\) 3.67208i 0.174466i −0.996188 0.0872328i \(-0.972198\pi\)
0.996188 0.0872328i \(-0.0278024\pi\)
\(444\) −3.06685 5.25304i −0.145546 0.249298i
\(445\) 17.1545 15.7738i 0.813203 0.747752i
\(446\) 12.1086 6.99092i 0.573360 0.331029i
\(447\) −0.798717 0.461139i −0.0377780 0.0218111i
\(448\) −2.13280 1.23137i −0.100765 0.0581768i
\(449\) 13.3926 + 7.73221i 0.632035 + 0.364906i 0.781540 0.623855i \(-0.214435\pi\)
−0.149505 + 0.988761i \(0.547768\pi\)
\(450\) −0.418570 + 4.98245i −0.0197316 + 0.234875i
\(451\) 0.534676 0.926086i 0.0251769 0.0436077i
\(452\) −13.1731 −0.619611
\(453\) 16.3401 9.43397i 0.767726 0.443247i
\(454\) −20.0973 −0.943214
\(455\) −12.5179 + 11.5103i −0.586846 + 0.539613i
\(456\) 1.49098 + 2.58246i 0.0698217 + 0.120935i
\(457\) −1.63400 + 2.83018i −0.0764355 + 0.132390i −0.901710 0.432342i \(-0.857687\pi\)
0.825274 + 0.564732i \(0.191021\pi\)
\(458\) 5.62681 0.262924
\(459\) −1.83142 + 1.05737i −0.0854834 + 0.0493538i
\(460\) −1.18753 + 3.78919i −0.0553691 + 0.176672i
\(461\) 27.4011 15.8201i 1.27620 0.736813i 0.300051 0.953923i \(-0.402996\pi\)
0.976147 + 0.217110i \(0.0696629\pi\)
\(462\) 0.556673 0.964186i 0.0258988 0.0448580i
\(463\) 2.72366 4.71752i 0.126579 0.219242i −0.795770 0.605599i \(-0.792933\pi\)
0.922349 + 0.386357i \(0.126267\pi\)
\(464\) −7.24777 + 4.18450i −0.336469 + 0.194261i
\(465\) −1.70877 + 5.45235i −0.0792424 + 0.252847i
\(466\) −14.0888 + 8.13416i −0.652650 + 0.376808i
\(467\) −32.5303 −1.50532 −0.752662 0.658407i \(-0.771230\pi\)
−0.752662 + 0.658407i \(0.771230\pi\)
\(468\) −1.54402 + 2.67433i −0.0713725 + 0.123621i
\(469\) 11.7526 + 20.3561i 0.542686 + 0.939959i
\(470\) −4.35139 + 4.00116i −0.200715 + 0.184560i
\(471\) 15.0560 0.693742
\(472\) 2.78387 1.60727i 0.128138 0.0739805i
\(473\) −1.78418 −0.0820365
\(474\) 6.33650 10.9751i 0.291045 0.504105i
\(475\) 14.8575 + 1.24816i 0.681709 + 0.0572696i
\(476\) −4.51032 2.60403i −0.206730 0.119356i
\(477\) 8.26490 + 4.77175i 0.378424 + 0.218483i
\(478\) 4.52658 + 2.61342i 0.207041 + 0.119535i
\(479\) −2.08893 + 1.20604i −0.0954456 + 0.0551055i −0.546963 0.837157i \(-0.684216\pi\)
0.451517 + 0.892262i \(0.350883\pi\)
\(480\) −1.64599 + 1.51351i −0.0751288 + 0.0690820i
\(481\) −16.3126 9.31305i −0.743789 0.424639i
\(482\) 25.2854i 1.15172i
\(483\) 2.18673 + 3.78753i 0.0994996 + 0.172338i
\(484\) 5.39781 9.34929i 0.245355 0.424968i
\(485\) −12.3093 + 2.75121i −0.558934 + 0.124926i
\(486\) 0.866025 + 0.500000i 0.0392837 + 0.0226805i
\(487\) 15.6442 0.708907 0.354453 0.935074i \(-0.384667\pi\)
0.354453 + 0.935074i \(0.384667\pi\)
\(488\) −7.10381 4.10139i −0.321574 0.185661i
\(489\) 17.3734i 0.785653i
\(490\) 0.625177 1.99482i 0.0282426 0.0901166i
\(491\) −20.4625 −0.923459 −0.461730 0.887021i \(-0.652771\pi\)
−0.461730 + 0.887021i \(0.652771\pi\)
\(492\) 2.36543i 0.106642i
\(493\) −15.3272 + 8.84914i −0.690301 + 0.398545i
\(494\) 7.97475 + 4.60423i 0.358801 + 0.207154i
\(495\) −0.684221 0.744112i −0.0307534 0.0334453i
\(496\) −2.21296 + 1.27765i −0.0993649 + 0.0573684i
\(497\) −0.0138075 + 0.00797176i −0.000619351 + 0.000357582i
\(498\) 3.78716 + 6.55955i 0.169707 + 0.293941i
\(499\) 26.3043 + 15.1868i 1.17754 + 0.679854i 0.955444 0.295171i \(-0.0953766\pi\)
0.222097 + 0.975025i \(0.428710\pi\)
\(500\) 1.51674 + 11.0770i 0.0678308 + 0.495378i
\(501\) −2.87004 + 1.65702i −0.128224 + 0.0740300i
\(502\) 1.96946 1.13707i 0.0879015 0.0507499i
\(503\) −10.7612 18.6389i −0.479817 0.831068i 0.519915 0.854218i \(-0.325964\pi\)
−0.999732 + 0.0231501i \(0.992630\pi\)
\(504\) 2.46274i 0.109699i
\(505\) 14.3849 3.21514i 0.640120 0.143072i
\(506\) −0.401409 0.695260i −0.0178448 0.0309081i
\(507\) 3.46398i 0.153841i
\(508\) 18.2238i 0.808552i
\(509\) 7.88620 + 13.6593i 0.349550 + 0.605438i 0.986169 0.165740i \(-0.0530013\pi\)
−0.636620 + 0.771178i \(0.719668\pi\)
\(510\) −3.48085 + 3.20068i −0.154134 + 0.141729i
\(511\) −11.2439 + 19.4751i −0.497402 + 0.861526i
\(512\) −1.00000 −0.0441942
\(513\) 1.49098 2.58246i 0.0658286 0.114018i
\(514\) −10.8758 + 18.8374i −0.479710 + 0.830883i
\(515\) 1.54103 0.344431i 0.0679057 0.0151774i
\(516\) 3.41789 1.97332i 0.150464 0.0868705i
\(517\) 1.19512i 0.0525613i
\(518\) −14.9801 + 0.0725261i −0.658188 + 0.00318661i
\(519\) −1.12840 −0.0495314
\(520\) −2.06502 + 6.58907i −0.0905571 + 0.288950i
\(521\) −10.0002 + 17.3208i −0.438115 + 0.758837i −0.997544 0.0700410i \(-0.977687\pi\)
0.559429 + 0.828878i \(0.311020\pi\)
\(522\) 7.24777 + 4.18450i 0.317226 + 0.183151i
\(523\) −12.9129 + 22.3658i −0.564643 + 0.977990i 0.432440 + 0.901663i \(0.357653\pi\)
−0.997083 + 0.0763270i \(0.975681\pi\)
\(524\) 10.5051i 0.458919i
\(525\) 10.1111 + 7.02797i 0.441287 + 0.306726i
\(526\) 6.25408i 0.272691i
\(527\) −4.67984 + 2.70191i −0.203857 + 0.117697i
\(528\) 0.452075i 0.0196741i
\(529\) −19.8464 −0.862885
\(530\) 20.3633 + 6.38187i 0.884524 + 0.277211i
\(531\) −2.78387 1.60727i −0.120810 0.0697495i
\(532\) 7.34382 0.318395
\(533\) 3.65228 + 6.32593i 0.158198 + 0.274006i
\(534\) −5.21101 9.02573i −0.225502 0.390582i
\(535\) 11.3042 + 3.54275i 0.488723 + 0.153166i
\(536\) 8.26563 + 4.77217i 0.357021 + 0.206126i
\(537\) 4.89623 8.48051i 0.211288 0.365961i
\(538\) −3.53778 6.12761i −0.152524 0.264180i
\(539\) 0.211321 + 0.366019i 0.00910225 + 0.0157656i
\(540\) 2.13373 + 0.668714i 0.0918213 + 0.0287769i
\(541\) 18.3497i 0.788917i 0.918914 + 0.394459i \(0.129068\pi\)
−0.918914 + 0.394459i \(0.870932\pi\)
\(542\) 2.51174 4.35046i 0.107888 0.186868i
\(543\) 11.6070 6.70130i 0.498103 0.287580i
\(544\) −2.11474 −0.0906688
\(545\) 10.9624 10.0801i 0.469578 0.431784i
\(546\) 3.80253 + 6.58618i 0.162733 + 0.281862i
\(547\) −19.3385 −0.826856 −0.413428 0.910537i \(-0.635669\pi\)
−0.413428 + 0.910537i \(0.635669\pi\)
\(548\) −13.4079 7.74103i −0.572755 0.330681i
\(549\) 8.20278i 0.350086i
\(550\) −1.85606 1.29010i −0.0791427 0.0550098i
\(551\) 12.4780 21.6126i 0.531583 0.920728i
\(552\) 1.53793 + 0.887924i 0.0654586 + 0.0377926i
\(553\) −15.6052 27.0290i −0.663599 1.14939i
\(554\) −28.6013 −1.21515
\(555\) −4.00475 + 12.9985i −0.169992 + 0.551757i
\(556\) 12.9270 0.548228
\(557\) 2.23202 + 3.86597i 0.0945736 + 0.163806i 0.909431 0.415856i \(-0.136518\pi\)
−0.814857 + 0.579662i \(0.803185\pi\)
\(558\) 2.21296 + 1.27765i 0.0936821 + 0.0540874i
\(559\) 6.09369 10.5546i 0.257736 0.446411i
\(560\) 1.20119 + 5.37426i 0.0507594 + 0.227104i
\(561\) 0.956023i 0.0403633i
\(562\) −11.1812 6.45549i −0.471652 0.272308i
\(563\) 36.4158 1.53474 0.767371 0.641203i \(-0.221564\pi\)
0.767371 + 0.641203i \(0.221564\pi\)
\(564\) 1.32182 + 2.28945i 0.0556585 + 0.0964033i
\(565\) 19.9376 + 21.6828i 0.838783 + 0.912203i
\(566\) 20.7473 0.872073
\(567\) 2.13280 1.23137i 0.0895691 0.0517128i
\(568\) −0.00323694 + 0.00560655i −0.000135819 + 0.000235246i
\(569\) 19.5165i 0.818175i −0.912495 0.409087i \(-0.865847\pi\)
0.912495 0.409087i \(-0.134153\pi\)
\(570\) 1.99408 6.36273i 0.0835230 0.266505i
\(571\) 11.5820 + 20.0607i 0.484693 + 0.839512i 0.999845 0.0175863i \(-0.00559817\pi\)
−0.515153 + 0.857098i \(0.672265\pi\)
\(572\) −0.698014 1.20900i −0.0291854 0.0505507i
\(573\) 4.69130 8.12557i 0.195982 0.339451i
\(574\) 5.04498 + 2.91272i 0.210574 + 0.121575i
\(575\) 8.03431 3.78030i 0.335054 0.157650i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −1.50983 2.61511i −0.0628552 0.108868i 0.832885 0.553446i \(-0.186687\pi\)
−0.895741 + 0.444577i \(0.853354\pi\)
\(578\) 12.5279 0.521091
\(579\) 10.8268 + 6.25084i 0.449945 + 0.259776i
\(580\) 17.8572 + 5.59647i 0.741481 + 0.232381i
\(581\) 18.6536 0.773882
\(582\) 5.64069i 0.233814i
\(583\) −3.73636 + 2.15719i −0.154744 + 0.0893416i
\(584\) 9.13122i 0.377853i
\(585\) 6.73881 1.50617i 0.278615 0.0622726i
\(586\) 9.38715i 0.387780i
\(587\) 14.4633 25.0511i 0.596963 1.03397i −0.396303 0.918120i \(-0.629707\pi\)
0.993267 0.115851i \(-0.0369596\pi\)
\(588\) −0.809642 0.467447i −0.0333891 0.0192772i
\(589\) 3.80992 6.59898i 0.156985 0.271906i
\(590\) −6.85896 2.14961i −0.282379 0.0884979i
\(591\) −1.96555 −0.0808518
\(592\) −5.25304 + 3.06685i −0.215899 + 0.126047i
\(593\) 45.1760i 1.85516i −0.373630 0.927578i \(-0.621887\pi\)
0.373630 0.927578i \(-0.378113\pi\)
\(594\) −0.391509 + 0.226038i −0.0160638 + 0.00927444i
\(595\) 2.54020 + 11.3652i 0.104138 + 0.465927i
\(596\) −0.461139 + 0.798717i −0.0188890 + 0.0327167i
\(597\) −6.35438 + 11.0061i −0.260068 + 0.450450i
\(598\) 5.48390 0.224253
\(599\) −3.30328 + 5.72145i −0.134968 + 0.233772i −0.925585 0.378539i \(-0.876427\pi\)
0.790617 + 0.612311i \(0.209760\pi\)
\(600\) 4.98245 + 0.418570i 0.203408 + 0.0170881i
\(601\) −7.30388 12.6507i −0.297932 0.516033i 0.677731 0.735310i \(-0.262963\pi\)
−0.975663 + 0.219277i \(0.929630\pi\)
\(602\) 9.71955i 0.396139i
\(603\) 9.54433i 0.388675i
\(604\) −9.43397 16.3401i −0.383863 0.664870i
\(605\) −23.5585 + 5.26550i −0.957789 + 0.214073i
\(606\) 6.59186i 0.267776i
\(607\) −13.5413 23.4542i −0.549624 0.951976i −0.998300 0.0582820i \(-0.981438\pi\)
0.448676 0.893694i \(-0.351896\pi\)
\(608\) 2.58246 1.49098i 0.104733 0.0604674i
\(609\) 17.8494 10.3054i 0.723294 0.417594i
\(610\) 4.00085 + 17.9003i 0.161990 + 0.724762i
\(611\) 7.06993 + 4.08183i 0.286019 + 0.165133i
\(612\) 1.05737 + 1.83142i 0.0427417 + 0.0740308i
\(613\) −5.04052 + 2.91015i −0.203585 + 0.117540i −0.598326 0.801252i \(-0.704167\pi\)
0.394742 + 0.918792i \(0.370834\pi\)
\(614\) 1.83027 1.05671i 0.0738637 0.0426452i
\(615\) 3.89347 3.58010i 0.157000 0.144364i
\(616\) −0.964186 0.556673i −0.0388481 0.0224290i
\(617\) 25.8535 14.9265i 1.04082 0.600920i 0.120758 0.992682i \(-0.461468\pi\)
0.920067 + 0.391762i \(0.128134\pi\)
\(618\) 0.706172i 0.0284064i
\(619\) 36.9652 1.48576 0.742878 0.669427i \(-0.233460\pi\)
0.742878 + 0.669427i \(0.233460\pi\)
\(620\) 5.45235 + 1.70877i 0.218972 + 0.0686259i
\(621\) 1.77585i 0.0712623i
\(622\) 19.2848 + 11.1341i 0.773249 + 0.446436i
\(623\) −25.6668 −1.02832
\(624\) 2.67433 + 1.54402i 0.107059 + 0.0618104i
\(625\) 15.9370 19.2617i 0.637480 0.770467i
\(626\) −8.32368 + 14.4170i −0.332681 + 0.576221i
\(627\) 0.674037 + 1.16747i 0.0269185 + 0.0466241i
\(628\) 15.0560i 0.600799i
\(629\) −11.1088 + 6.48559i −0.442938 + 0.258598i
\(630\) 4.05365 3.72739i 0.161501 0.148503i
\(631\) 34.1186 19.6984i 1.35824 0.784179i 0.368852 0.929488i \(-0.379751\pi\)
0.989386 + 0.145309i \(0.0464175\pi\)
\(632\) −10.9751 6.33650i −0.436568 0.252052i
\(633\) 9.77021 + 5.64084i 0.388331 + 0.224203i
\(634\) 2.95498 + 1.70606i 0.117357 + 0.0677563i
\(635\) −29.9963 + 27.5820i −1.19037 + 1.09456i
\(636\) 4.77175 8.26490i 0.189212 0.327725i
\(637\) −2.88699 −0.114387
\(638\) −3.27654 + 1.89171i −0.129719 + 0.0748935i
\(639\) 0.00647388 0.000256103
\(640\) 1.51351 + 1.64599i 0.0598268 + 0.0650635i
\(641\) 14.7278 + 25.5093i 0.581714 + 1.00756i 0.995276 + 0.0970827i \(0.0309511\pi\)
−0.413562 + 0.910476i \(0.635716\pi\)
\(642\) 2.64892 4.58807i 0.104545 0.181077i
\(643\) 22.3938 0.883124 0.441562 0.897231i \(-0.354425\pi\)
0.441562 + 0.897231i \(0.354425\pi\)
\(644\) 3.78753 2.18673i 0.149249 0.0861692i
\(645\) −8.42107 2.63917i −0.331579 0.103917i
\(646\) 5.46124 3.15305i 0.214869 0.124055i
\(647\) −10.8449 + 18.7839i −0.426356 + 0.738471i −0.996546 0.0830421i \(-0.973536\pi\)
0.570190 + 0.821513i \(0.306870\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) 1.25852 0.726606i 0.0494012 0.0285218i
\(650\) 13.9710 6.57362i 0.547987 0.257839i
\(651\) 5.44996 3.14653i 0.213601 0.123322i
\(652\) 17.3734 0.680395
\(653\) 0.510467 0.884155i 0.0199761 0.0345996i −0.855865 0.517200i \(-0.826974\pi\)
0.875841 + 0.482600i \(0.160308\pi\)
\(654\) −3.33004 5.76779i −0.130215 0.225539i
\(655\) 17.2914 15.8996i 0.675629 0.621250i
\(656\) 2.36543 0.0923545
\(657\) 7.90787 4.56561i 0.308515 0.178121i
\(658\) 6.51059 0.253809
\(659\) −18.9266 + 32.7818i −0.737274 + 1.27700i 0.216444 + 0.976295i \(0.430554\pi\)
−0.953718 + 0.300701i \(0.902779\pi\)
\(660\) −0.744112 + 0.684221i −0.0289645 + 0.0266333i
\(661\) −23.1502 13.3658i −0.900437 0.519868i −0.0230953 0.999733i \(-0.507352\pi\)
−0.877342 + 0.479866i \(0.840685\pi\)
\(662\) 23.5466 + 13.5946i 0.915164 + 0.528370i
\(663\) 5.65551 + 3.26521i 0.219642 + 0.126810i
\(664\) 6.55955 3.78716i 0.254560 0.146970i
\(665\) −11.1150 12.0879i −0.431019 0.468747i
\(666\) 5.28249 + 3.01584i 0.204692 + 0.116861i
\(667\) 14.8621i 0.575462i
\(668\) 1.65702 + 2.87004i 0.0641119 + 0.111045i
\(669\) −6.99092 + 12.1086i −0.270284 + 0.468146i
\(670\) −4.65519 20.8279i −0.179846 0.804651i
\(671\) −3.21146 1.85414i −0.123977 0.0715781i
\(672\) 2.46274 0.0950024
\(673\) −5.95454 3.43786i −0.229531 0.132520i 0.380825 0.924647i \(-0.375640\pi\)
−0.610356 + 0.792128i \(0.708973\pi\)
\(674\) 11.5777i 0.445958i
\(675\) −2.12873 4.52421i −0.0819349 0.174137i
\(676\) −3.46398 −0.133230
\(677\) 32.9788i 1.26748i 0.773547 + 0.633739i \(0.218481\pi\)
−0.773547 + 0.633739i \(0.781519\pi\)
\(678\) 11.4082 6.58655i 0.438131 0.252955i
\(679\) 12.0305 + 6.94578i 0.461686 + 0.266555i
\(680\) 3.20068 + 3.48085i 0.122741 + 0.133484i
\(681\) 17.4048 10.0487i 0.666953 0.385065i
\(682\) −1.00043 + 0.577596i −0.0383083 + 0.0221173i
\(683\) 19.1756 + 33.2131i 0.733733 + 1.27086i 0.955277 + 0.295713i \(0.0955571\pi\)
−0.221544 + 0.975150i \(0.571110\pi\)
\(684\) −2.58246 1.49098i −0.0987428 0.0570092i
\(685\) 7.55128 + 33.7853i 0.288519 + 1.29087i
\(686\) −16.9235 + 9.77080i −0.646143 + 0.373051i
\(687\) −4.87296 + 2.81341i −0.185915 + 0.107338i
\(688\) −1.97332 3.41789i −0.0752320 0.130306i
\(689\) 29.4707i 1.12275i
\(690\) −0.866158 3.87530i −0.0329741 0.147530i
\(691\) 2.58576 + 4.47867i 0.0983669 + 0.170376i 0.911009 0.412387i \(-0.135305\pi\)
−0.812642 + 0.582763i \(0.801971\pi\)
\(692\) 1.12840i 0.0428955i
\(693\) 1.11335i 0.0422925i
\(694\) 9.35142 + 16.1971i 0.354975 + 0.614835i
\(695\) −19.5652 21.2778i −0.742151 0.807112i
\(696\) 4.18450 7.24777i 0.158613 0.274726i
\(697\) 5.00227 0.189475
\(698\) −9.61263 + 16.6496i −0.363844 + 0.630195i
\(699\) 8.13416 14.0888i 0.307662 0.532887i
\(700\) 7.02797 10.1111i 0.265632 0.382165i
\(701\) −9.82218 + 5.67084i −0.370979 + 0.214185i −0.673886 0.738835i \(-0.735376\pi\)
0.302907 + 0.953020i \(0.402043\pi\)
\(702\) 3.08804i 0.116551i
\(703\) 8.99314 15.7522i 0.339183 0.594106i
\(704\) −0.452075 −0.0170382
\(705\) 1.76783 5.64081i 0.0665805 0.212445i
\(706\) −5.24212 + 9.07961i −0.197290 + 0.341716i
\(707\) −14.0591 8.11703i −0.528747 0.305272i
\(708\) −1.60727 + 2.78387i −0.0604048 + 0.104624i
\(709\) 19.5292i 0.733434i −0.930332 0.366717i \(-0.880482\pi\)
0.930332 0.366717i \(-0.119518\pi\)
\(710\) 0.0141275 0.00315760i 0.000530195 0.000118502i
\(711\) 12.6730i 0.475275i
\(712\) −9.02573 + 5.21101i −0.338254 + 0.195291i
\(713\) 4.53784i 0.169943i
\(714\) 5.20807 0.194907
\(715\) −0.933544 + 2.97875i −0.0349126 + 0.111399i
\(716\) −8.48051 4.89623i −0.316932 0.182981i
\(717\) −5.22684 −0.195200
\(718\) −3.46197 5.99630i −0.129199 0.223780i
\(719\) −0.612617 1.06108i −0.0228468 0.0395718i 0.854376 0.519655i \(-0.173940\pi\)
−0.877223 + 0.480084i \(0.840606\pi\)
\(720\) 0.668714 2.13373i 0.0249215 0.0795196i
\(721\) −1.50612 0.869560i −0.0560909 0.0323841i
\(722\) 5.05393 8.75367i 0.188088 0.325778i
\(723\) 12.6427 + 21.8978i 0.470187 + 0.814387i
\(724\) −6.70130 11.6070i −0.249052 0.431370i
\(725\) −17.8154 37.8631i −0.661646 1.40620i
\(726\) 10.7956i 0.400663i
\(727\) −3.71182 + 6.42905i −0.137664 + 0.238440i −0.926612 0.376019i \(-0.877293\pi\)
0.788948 + 0.614460i \(0.210626\pi\)
\(728\) 6.58618 3.80253i 0.244100 0.140931i
\(729\) −1.00000 −0.0370370
\(730\) 15.0299 13.8202i 0.556282 0.511509i
\(731\) −4.17306 7.22795i −0.154346 0.267335i
\(732\) 8.20278 0.303183
\(733\) 12.8570 + 7.42300i 0.474885 + 0.274175i 0.718282 0.695752i \(-0.244929\pi\)
−0.243398 + 0.969927i \(0.578262\pi\)
\(734\) 10.6063i 0.391486i
\(735\) 0.455989 + 2.04015i 0.0168194 + 0.0752520i
\(736\) 0.887924 1.53793i 0.0327293 0.0566888i
\(737\) 3.73669 + 2.15738i 0.137643 + 0.0794681i
\(738\) −1.18271 2.04852i −0.0435363 0.0754071i
\(739\) −10.3995 −0.382552 −0.191276 0.981536i \(-0.561263\pi\)
−0.191276 + 0.981536i \(0.561263\pi\)
\(740\) 12.9985 + 4.00475i 0.477836 + 0.147217i
\(741\) −9.20845 −0.338281
\(742\) −11.7516 20.3543i −0.431414 0.747231i
\(743\) −44.2189 25.5298i −1.62223 0.936597i −0.986321 0.164836i \(-0.947290\pi\)
−0.635913 0.771761i \(-0.719376\pi\)
\(744\) 1.27765 2.21296i 0.0468411 0.0811311i
\(745\) 2.01262 0.449835i 0.0737367 0.0164807i
\(746\) 16.2224i 0.593944i
\(747\) −6.55955 3.78716i −0.240002 0.138565i
\(748\) −0.956023 −0.0349556
\(749\) −6.52362 11.2992i −0.238368 0.412865i
\(750\) −6.85203 8.83457i −0.250201 0.322593i
\(751\) −51.8267 −1.89118 −0.945591 0.325357i \(-0.894516\pi\)
−0.945591 + 0.325357i \(0.894516\pi\)
\(752\) 2.28945 1.32182i 0.0834877 0.0482017i
\(753\) −1.13707 + 1.96946i −0.0414371 + 0.0717712i
\(754\) 25.8439i 0.941178i
\(755\) −12.6173 + 40.2592i −0.459189 + 1.46518i
\(756\) −1.23137 2.13280i −0.0447846 0.0775691i
\(757\) −15.0203 26.0160i −0.545924 0.945567i −0.998548 0.0538661i \(-0.982846\pi\)
0.452625 0.891701i \(-0.350488\pi\)
\(758\) −1.83877 + 3.18484i −0.0667870 + 0.115679i
\(759\) 0.695260 + 0.401409i 0.0252363 + 0.0145702i
\(760\) −6.36273 1.99408i −0.230800 0.0723331i
\(761\) −4.46887 7.74032i −0.161997 0.280586i 0.773588 0.633689i \(-0.218460\pi\)
−0.935585 + 0.353103i \(0.885127\pi\)
\(762\) 9.11192 + 15.7823i 0.330090 + 0.571733i
\(763\) −16.4021 −0.593794
\(764\) −8.12557 4.69130i −0.293973 0.169725i
\(765\) 1.41416 4.51230i 0.0511290 0.163142i
\(766\) 5.48739 0.198267
\(767\) 9.92663i 0.358430i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 24.4645i 0.882214i −0.897455 0.441107i \(-0.854586\pi\)
0.897455 0.441107i \(-0.145414\pi\)
\(770\) 0.543027 + 2.42957i 0.0195693 + 0.0875557i
\(771\) 21.7516i 0.783364i
\(772\) 6.25084 10.8268i 0.224973 0.389664i
\(773\) 30.1761 + 17.4222i 1.08536 + 0.626633i 0.932337 0.361590i \(-0.117766\pi\)
0.153023 + 0.988223i \(0.451099\pi\)
\(774\) −1.97332 + 3.41789i −0.0709294 + 0.122853i
\(775\) −5.43957 11.5608i −0.195395 0.415275i
\(776\) 5.64069 0.202489