Properties

Label 1110.2.ba.b.529.4
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.4
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.b.619.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.696189 - 2.12493i) q^{5} -1.00000i q^{6} +(1.07219 + 0.619032i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.696189 - 2.12493i) q^{5} -1.00000i q^{6} +(1.07219 + 0.619032i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(1.49215 - 1.66538i) q^{10} +2.37933 q^{11} +(0.866025 - 0.500000i) q^{12} +(1.12200 - 1.94336i) q^{13} +1.23806i q^{14} +(-0.459547 + 2.18834i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.499820 + 0.865713i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-7.10291 - 4.10087i) q^{19} +(2.18834 + 0.459547i) q^{20} +(-0.619032 - 1.07219i) q^{21} +(1.18966 + 2.06056i) q^{22} -1.09566 q^{23} +(0.866025 + 0.500000i) q^{24} +(-4.03064 + 2.95870i) q^{25} +2.24399 q^{26} -1.00000i q^{27} +(-1.07219 + 0.619032i) q^{28} -5.72463i q^{29} +(-2.12493 + 0.696189i) q^{30} -3.10566i q^{31} +(0.500000 - 0.866025i) q^{32} +(-2.06056 - 1.18966i) q^{33} +(-0.499820 + 0.865713i) q^{34} +(0.568948 - 2.70930i) q^{35} -1.00000 q^{36} +(5.14008 + 3.25263i) q^{37} -8.20173i q^{38} +(-1.94336 + 1.12200i) q^{39} +(0.696189 + 2.12493i) q^{40} +(4.36280 - 7.55659i) q^{41} +(0.619032 - 1.07219i) q^{42} +6.26728 q^{43} +(-1.18966 + 2.06056i) q^{44} +(1.49215 - 1.66538i) q^{45} +(-0.547828 - 0.948867i) q^{46} -6.29523i q^{47} +1.00000i q^{48} +(-2.73360 - 4.73473i) q^{49} +(-4.57763 - 2.01129i) q^{50} -0.999639i q^{51} +(1.12200 + 1.94336i) q^{52} +(10.0941 - 5.82782i) q^{53} +(0.866025 - 0.500000i) q^{54} +(-1.65646 - 5.05590i) q^{55} +(-1.07219 - 0.619032i) q^{56} +(4.10087 + 7.10291i) q^{57} +(4.95768 - 2.86232i) q^{58} +(1.06936 - 0.617394i) q^{59} +(-1.66538 - 1.49215i) q^{60} +(-4.52224 - 2.61091i) q^{61} +(2.68958 - 1.55283i) q^{62} +1.23806i q^{63} +1.00000 q^{64} +(-4.91061 - 1.03122i) q^{65} -2.37933i q^{66} +(1.63569 + 0.944369i) q^{67} -0.999639 q^{68} +(0.948867 + 0.547828i) q^{69} +(2.63080 - 0.861926i) q^{70} +(2.46057 - 4.26184i) q^{71} +(-0.500000 - 0.866025i) q^{72} +0.123967i q^{73} +(-0.246818 + 6.07775i) q^{74} +(4.96999 - 0.546992i) q^{75} +(7.10291 - 4.10087i) q^{76} +(2.55110 + 1.47288i) q^{77} +(-1.94336 - 1.12200i) q^{78} +(-13.2768 - 7.66536i) q^{79} +(-1.49215 + 1.66538i) q^{80} +(-0.500000 + 0.866025i) q^{81} +8.72560 q^{82} +(-6.36686 + 3.67591i) q^{83} +1.23806 q^{84} +(1.49161 - 1.66478i) q^{85} +(3.13364 + 5.42762i) q^{86} +(-2.86232 + 4.95768i) q^{87} -2.37933 q^{88} +(0.869603 - 0.502066i) q^{89} +(2.18834 + 0.459547i) q^{90} +(2.40600 - 1.38910i) q^{91} +(0.547828 - 0.948867i) q^{92} +(-1.55283 + 2.68958i) q^{93} +(5.45183 - 3.14762i) q^{94} +(-3.76908 + 17.9481i) q^{95} +(-0.866025 + 0.500000i) q^{96} -5.95504 q^{97} +(2.73360 - 4.73473i) q^{98} +(1.18966 + 2.06056i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} + 14q^{13} + 2q^{15} - 18q^{16} - 18q^{18} + 6q^{19} - 2q^{20} + 2q^{22} + 20q^{23} - 2q^{25} + 28q^{26} - 2q^{30} + 18q^{32} + 6q^{33} - 20q^{35} - 36q^{36} - 20q^{37} + 6q^{39} - 4q^{40} + 10q^{41} - 2q^{44} + 2q^{45} + 10q^{46} + 10q^{49} - 4q^{50} + 14q^{52} + 12q^{53} + 40q^{55} - 8q^{57} - 30q^{58} + 18q^{59} - 4q^{60} - 6q^{61} + 12q^{62} + 36q^{64} - 32q^{65} - 36q^{67} + 12q^{69} - 40q^{70} - 24q^{71} - 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} + 24q^{77} + 6q^{78} - 2q^{80} - 18q^{81} + 20q^{82} - 36q^{83} + 26q^{85} + 10q^{87} - 4q^{88} - 2q^{90} - 36q^{91} - 10q^{92} - 12q^{93} + 12q^{94} + 18q^{95} - 52q^{97} - 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.696189 2.12493i −0.311345 0.950297i
\(6\) 1.00000i 0.408248i
\(7\) 1.07219 + 0.619032i 0.405251 + 0.233972i 0.688747 0.725001i \(-0.258161\pi\)
−0.283496 + 0.958973i \(0.591494\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.49215 1.66538i 0.471858 0.526640i
\(11\) 2.37933 0.717394 0.358697 0.933454i \(-0.383221\pi\)
0.358697 + 0.933454i \(0.383221\pi\)
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) 1.12200 1.94336i 0.311186 0.538990i −0.667433 0.744670i \(-0.732607\pi\)
0.978619 + 0.205680i \(0.0659404\pi\)
\(14\) 1.23806i 0.330886i
\(15\) −0.459547 + 2.18834i −0.118654 + 0.565026i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.499820 + 0.865713i 0.121224 + 0.209966i 0.920251 0.391329i \(-0.127985\pi\)
−0.799027 + 0.601296i \(0.794651\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) −7.10291 4.10087i −1.62952 0.940803i −0.984236 0.176859i \(-0.943406\pi\)
−0.645283 0.763944i \(-0.723260\pi\)
\(20\) 2.18834 + 0.459547i 0.489327 + 0.102758i
\(21\) −0.619032 1.07219i −0.135084 0.233972i
\(22\) 1.18966 + 2.06056i 0.253637 + 0.439312i
\(23\) −1.09566 −0.228460 −0.114230 0.993454i \(-0.536440\pi\)
−0.114230 + 0.993454i \(0.536440\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) −4.03064 + 2.95870i −0.806128 + 0.591741i
\(26\) 2.24399 0.440083
\(27\) 1.00000i 0.192450i
\(28\) −1.07219 + 0.619032i −0.202626 + 0.116986i
\(29\) 5.72463i 1.06304i −0.847047 0.531519i \(-0.821622\pi\)
0.847047 0.531519i \(-0.178378\pi\)
\(30\) −2.12493 + 0.696189i −0.387957 + 0.127106i
\(31\) 3.10566i 0.557793i −0.960321 0.278897i \(-0.910031\pi\)
0.960321 0.278897i \(-0.0899687\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −2.06056 1.18966i −0.358697 0.207094i
\(34\) −0.499820 + 0.865713i −0.0857183 + 0.148469i
\(35\) 0.568948 2.70930i 0.0961698 0.457955i
\(36\) −1.00000 −0.166667
\(37\) 5.14008 + 3.25263i 0.845024 + 0.534729i
\(38\) 8.20173i 1.33050i
\(39\) −1.94336 + 1.12200i −0.311186 + 0.179663i
\(40\) 0.696189 + 2.12493i 0.110077 + 0.335981i
\(41\) 4.36280 7.55659i 0.681355 1.18014i −0.293213 0.956047i \(-0.594724\pi\)
0.974568 0.224094i \(-0.0719422\pi\)
\(42\) 0.619032 1.07219i 0.0955187 0.165443i
\(43\) 6.26728 0.955751 0.477876 0.878427i \(-0.341407\pi\)
0.477876 + 0.878427i \(0.341407\pi\)
\(44\) −1.18966 + 2.06056i −0.179349 + 0.310641i
\(45\) 1.49215 1.66538i 0.222436 0.248260i
\(46\) −0.547828 0.948867i −0.0807729 0.139903i
\(47\) 6.29523i 0.918254i −0.888371 0.459127i \(-0.848162\pi\)
0.888371 0.459127i \(-0.151838\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.73360 4.73473i −0.390514 0.676390i
\(50\) −4.57763 2.01129i −0.647375 0.284439i
\(51\) 0.999639i 0.139977i
\(52\) 1.12200 + 1.94336i 0.155593 + 0.269495i
\(53\) 10.0941 5.82782i 1.38653 0.800512i 0.393606 0.919279i \(-0.371228\pi\)
0.992922 + 0.118767i \(0.0378942\pi\)
\(54\) 0.866025 0.500000i 0.117851 0.0680414i
\(55\) −1.65646 5.05590i −0.223357 0.681737i
\(56\) −1.07219 0.619032i −0.143278 0.0827216i
\(57\) 4.10087 + 7.10291i 0.543173 + 0.940803i
\(58\) 4.95768 2.86232i 0.650975 0.375840i
\(59\) 1.06936 0.617394i 0.139218 0.0803778i −0.428773 0.903412i \(-0.641054\pi\)
0.567991 + 0.823034i \(0.307721\pi\)
\(60\) −1.66538 1.49215i −0.215000 0.192635i
\(61\) −4.52224 2.61091i −0.579013 0.334293i 0.181728 0.983349i \(-0.441831\pi\)
−0.760741 + 0.649055i \(0.775164\pi\)
\(62\) 2.68958 1.55283i 0.341577 0.197210i
\(63\) 1.23806i 0.155981i
\(64\) 1.00000 0.125000
\(65\) −4.91061 1.03122i −0.609087 0.127907i
\(66\) 2.37933i 0.292875i
\(67\) 1.63569 + 0.944369i 0.199832 + 0.115373i 0.596577 0.802556i \(-0.296527\pi\)
−0.396745 + 0.917929i \(0.629860\pi\)
\(68\) −0.999639 −0.121224
\(69\) 0.948867 + 0.547828i 0.114230 + 0.0659508i
\(70\) 2.63080 0.861926i 0.314440 0.103020i
\(71\) 2.46057 4.26184i 0.292016 0.505787i −0.682270 0.731100i \(-0.739007\pi\)
0.974286 + 0.225313i \(0.0723405\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 0.123967i 0.0145092i 0.999974 + 0.00725459i \(0.00230923\pi\)
−0.999974 + 0.00725459i \(0.997691\pi\)
\(74\) −0.246818 + 6.07775i −0.0286920 + 0.706524i
\(75\) 4.96999 0.546992i 0.573885 0.0631612i
\(76\) 7.10291 4.10087i 0.814759 0.470402i
\(77\) 2.55110 + 1.47288i 0.290725 + 0.167850i
\(78\) −1.94336 1.12200i −0.220042 0.127041i
\(79\) −13.2768 7.66536i −1.49376 0.862420i −0.493782 0.869586i \(-0.664386\pi\)
−0.999974 + 0.00716550i \(0.997719\pi\)
\(80\) −1.49215 + 1.66538i −0.166827 + 0.186195i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 8.72560 0.963581
\(83\) −6.36686 + 3.67591i −0.698854 + 0.403483i −0.806920 0.590660i \(-0.798867\pi\)
0.108067 + 0.994144i \(0.465534\pi\)
\(84\) 1.23806 0.135084
\(85\) 1.49161 1.66478i 0.161788 0.180571i
\(86\) 3.13364 + 5.42762i 0.337909 + 0.585276i
\(87\) −2.86232 + 4.95768i −0.306872 + 0.531519i
\(88\) −2.37933 −0.253637
\(89\) 0.869603 0.502066i 0.0921778 0.0532189i −0.453203 0.891408i \(-0.649719\pi\)
0.545380 + 0.838189i \(0.316385\pi\)
\(90\) 2.18834 + 0.459547i 0.230671 + 0.0484405i
\(91\) 2.40600 1.38910i 0.252217 0.145618i
\(92\) 0.547828 0.948867i 0.0571151 0.0989262i
\(93\) −1.55283 + 2.68958i −0.161021 + 0.278897i
\(94\) 5.45183 3.14762i 0.562313 0.324652i
\(95\) −3.76908 + 17.9481i −0.386699 + 1.84144i
\(96\) −0.866025 + 0.500000i −0.0883883 + 0.0510310i
\(97\) −5.95504 −0.604643 −0.302321 0.953206i \(-0.597762\pi\)
−0.302321 + 0.953206i \(0.597762\pi\)
\(98\) 2.73360 4.73473i 0.276135 0.478280i
\(99\) 1.18966 + 2.06056i 0.119566 + 0.207094i
\(100\) −0.546992 4.96999i −0.0546992 0.496999i
\(101\) 4.28415 0.426288 0.213144 0.977021i \(-0.431630\pi\)
0.213144 + 0.977021i \(0.431630\pi\)
\(102\) 0.865713 0.499820i 0.0857183 0.0494895i
\(103\) −8.69905 −0.857143 −0.428572 0.903508i \(-0.640983\pi\)
−0.428572 + 0.903508i \(0.640983\pi\)
\(104\) −1.12200 + 1.94336i −0.110021 + 0.190562i
\(105\) −1.84737 + 2.06185i −0.180285 + 0.201216i
\(106\) 10.0941 + 5.82782i 0.980423 + 0.566048i
\(107\) 7.24046 + 4.18028i 0.699962 + 0.404123i 0.807333 0.590096i \(-0.200910\pi\)
−0.107371 + 0.994219i \(0.534243\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −7.48885 + 4.32369i −0.717302 + 0.414135i −0.813759 0.581203i \(-0.802582\pi\)
0.0964568 + 0.995337i \(0.469249\pi\)
\(110\) 3.55031 3.96249i 0.338509 0.377808i
\(111\) −2.82513 5.38690i −0.268149 0.511302i
\(112\) 1.23806i 0.116986i
\(113\) 5.72597 + 9.91767i 0.538654 + 0.932976i 0.998977 + 0.0452242i \(0.0144002\pi\)
−0.460323 + 0.887751i \(0.652266\pi\)
\(114\) −4.10087 + 7.10291i −0.384081 + 0.665248i
\(115\) 0.762784 + 2.32819i 0.0711300 + 0.217105i
\(116\) 4.95768 + 2.86232i 0.460309 + 0.265759i
\(117\) 2.24399 0.207457
\(118\) 1.06936 + 0.617394i 0.0984423 + 0.0568357i
\(119\) 1.23762i 0.113452i
\(120\) 0.459547 2.18834i 0.0419507 0.199767i
\(121\) −5.33880 −0.485346
\(122\) 5.22183i 0.472762i
\(123\) −7.55659 + 4.36280i −0.681355 + 0.393380i
\(124\) 2.68958 + 1.55283i 0.241532 + 0.139448i
\(125\) 9.09312 + 6.50501i 0.813314 + 0.581826i
\(126\) −1.07219 + 0.619032i −0.0955187 + 0.0551477i
\(127\) 3.39135 1.95799i 0.300933 0.173744i −0.341929 0.939726i \(-0.611080\pi\)
0.642862 + 0.765982i \(0.277747\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −5.42762 3.13364i −0.477876 0.275902i
\(130\) −1.56224 4.76833i −0.137018 0.418210i
\(131\) 2.74014 1.58202i 0.239407 0.138222i −0.375497 0.926823i \(-0.622528\pi\)
0.614904 + 0.788602i \(0.289195\pi\)
\(132\) 2.06056 1.18966i 0.179349 0.103547i
\(133\) −5.07713 8.79385i −0.440243 0.762524i
\(134\) 1.88874i 0.163162i
\(135\) −2.12493 + 0.696189i −0.182885 + 0.0599184i
\(136\) −0.499820 0.865713i −0.0428592 0.0742343i
\(137\) 8.45319i 0.722204i −0.932526 0.361102i \(-0.882401\pi\)
0.932526 0.361102i \(-0.117599\pi\)
\(138\) 1.09566i 0.0932685i
\(139\) −0.500249 0.866457i −0.0424306 0.0734919i 0.844030 0.536296i \(-0.180177\pi\)
−0.886461 + 0.462804i \(0.846843\pi\)
\(140\) 2.06185 + 1.84737i 0.174258 + 0.156132i
\(141\) −3.14762 + 5.45183i −0.265077 + 0.459127i
\(142\) 4.92115 0.412973
\(143\) 2.66960 4.62388i 0.223243 0.386668i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −12.1644 + 3.98543i −1.01020 + 0.330972i
\(146\) −0.107358 + 0.0619833i −0.00888502 + 0.00512977i
\(147\) 5.46720i 0.450927i
\(148\) −5.38690 + 2.82513i −0.442800 + 0.232224i
\(149\) 22.8315 1.87043 0.935216 0.354076i \(-0.115205\pi\)
0.935216 + 0.354076i \(0.115205\pi\)
\(150\) 2.95870 + 4.03064i 0.241577 + 0.329100i
\(151\) −5.98037 + 10.3583i −0.486676 + 0.842947i −0.999883 0.0153178i \(-0.995124\pi\)
0.513207 + 0.858265i \(0.328457\pi\)
\(152\) 7.10291 + 4.10087i 0.576122 + 0.332624i
\(153\) −0.499820 + 0.865713i −0.0404080 + 0.0699887i
\(154\) 2.94576i 0.237376i
\(155\) −6.59931 + 2.16213i −0.530069 + 0.173666i
\(156\) 2.24399i 0.179663i
\(157\) 12.5430 7.24170i 1.00104 0.577951i 0.0924842 0.995714i \(-0.470519\pi\)
0.908556 + 0.417763i \(0.137186\pi\)
\(158\) 15.3307i 1.21965i
\(159\) −11.6556 −0.924352
\(160\) −2.18834 0.459547i −0.173003 0.0363304i
\(161\) −1.17476 0.678246i −0.0925838 0.0534533i
\(162\) −1.00000 −0.0785674
\(163\) 6.02844 + 10.4416i 0.472184 + 0.817847i 0.999493 0.0318265i \(-0.0101324\pi\)
−0.527309 + 0.849673i \(0.676799\pi\)
\(164\) 4.36280 + 7.55659i 0.340677 + 0.590071i
\(165\) −1.09341 + 5.20677i −0.0851220 + 0.405346i
\(166\) −6.36686 3.67591i −0.494164 0.285306i
\(167\) −3.98320 + 6.89910i −0.308229 + 0.533869i −0.977975 0.208722i \(-0.933070\pi\)
0.669746 + 0.742590i \(0.266403\pi\)
\(168\) 0.619032 + 1.07219i 0.0477593 + 0.0827216i
\(169\) 3.98224 + 6.89745i 0.306327 + 0.530573i
\(170\) 2.18755 + 0.459381i 0.167777 + 0.0352329i
\(171\) 8.20173i 0.627202i
\(172\) −3.13364 + 5.42762i −0.238938 + 0.413852i
\(173\) −19.4302 + 11.2180i −1.47725 + 0.852890i −0.999670 0.0256988i \(-0.991819\pi\)
−0.477579 + 0.878589i \(0.658486\pi\)
\(174\) −5.72463 −0.433983
\(175\) −6.15316 + 0.677211i −0.465135 + 0.0511923i
\(176\) −1.18966 2.06056i −0.0896743 0.155320i
\(177\) −1.23479 −0.0928123
\(178\) 0.869603 + 0.502066i 0.0651795 + 0.0376314i
\(179\) 20.9665i 1.56711i 0.621321 + 0.783556i \(0.286596\pi\)
−0.621321 + 0.783556i \(0.713404\pi\)
\(180\) 0.696189 + 2.12493i 0.0518909 + 0.158383i
\(181\) 2.90937 5.03918i 0.216252 0.374560i −0.737407 0.675449i \(-0.763950\pi\)
0.953659 + 0.300889i \(0.0972834\pi\)
\(182\) 2.40600 + 1.38910i 0.178344 + 0.102967i
\(183\) 2.61091 + 4.52224i 0.193004 + 0.334293i
\(184\) 1.09566 0.0807729
\(185\) 3.33313 13.1867i 0.245057 0.969509i
\(186\) −3.10566 −0.227718
\(187\) 1.18923 + 2.05981i 0.0869654 + 0.150629i
\(188\) 5.45183 + 3.14762i 0.397616 + 0.229563i
\(189\) 0.619032 1.07219i 0.0450279 0.0779907i
\(190\) −17.4281 + 5.70996i −1.26437 + 0.414244i
\(191\) 22.1872i 1.60541i 0.596377 + 0.802704i \(0.296606\pi\)
−0.596377 + 0.802704i \(0.703394\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) −24.2611 −1.74635 −0.873176 0.487405i \(-0.837944\pi\)
−0.873176 + 0.487405i \(0.837944\pi\)
\(194\) −2.97752 5.15722i −0.213774 0.370267i
\(195\) 3.73711 + 3.34837i 0.267620 + 0.239782i
\(196\) 5.46720 0.390514
\(197\) 14.7868 8.53718i 1.05352 0.608249i 0.129886 0.991529i \(-0.458539\pi\)
0.923632 + 0.383280i \(0.125206\pi\)
\(198\) −1.18966 + 2.06056i −0.0845457 + 0.146437i
\(199\) 3.69947i 0.262248i −0.991366 0.131124i \(-0.958141\pi\)
0.991366 0.131124i \(-0.0418586\pi\)
\(200\) 4.03064 2.95870i 0.285009 0.209212i
\(201\) −0.944369 1.63569i −0.0666106 0.115373i
\(202\) 2.14207 + 3.71018i 0.150716 + 0.261047i
\(203\) 3.54373 6.13792i 0.248721 0.430797i
\(204\) 0.865713 + 0.499820i 0.0606120 + 0.0349944i
\(205\) −19.0945 4.00982i −1.33362 0.280058i
\(206\) −4.34953 7.53360i −0.303046 0.524891i
\(207\) −0.547828 0.948867i −0.0380767 0.0659508i
\(208\) −2.24399 −0.155593
\(209\) −16.9001 9.75730i −1.16901 0.674927i
\(210\) −2.70930 0.568948i −0.186959 0.0392611i
\(211\) −1.25592 −0.0864614 −0.0432307 0.999065i \(-0.513765\pi\)
−0.0432307 + 0.999065i \(0.513765\pi\)
\(212\) 11.6556i 0.800512i
\(213\) −4.26184 + 2.46057i −0.292016 + 0.168596i
\(214\) 8.36056i 0.571516i
\(215\) −4.36321 13.3175i −0.297569 0.908247i
\(216\) 1.00000i 0.0680414i
\(217\) 1.92250 3.32987i 0.130508 0.226047i
\(218\) −7.48885 4.32369i −0.507209 0.292837i
\(219\) 0.0619833 0.107358i 0.00418844 0.00725459i
\(220\) 5.20677 + 1.09341i 0.351040 + 0.0737178i
\(221\) 2.24318 0.150893
\(222\) 3.25263 5.14008i 0.218302 0.344980i
\(223\) 2.60823i 0.174660i −0.996179 0.0873300i \(-0.972167\pi\)
0.996179 0.0873300i \(-0.0278335\pi\)
\(224\) 1.07219 0.619032i 0.0716390 0.0413608i
\(225\) −4.57763 2.01129i −0.305176 0.134086i
\(226\) −5.72597 + 9.91767i −0.380886 + 0.659713i
\(227\) −3.45993 + 5.99277i −0.229643 + 0.397754i −0.957702 0.287760i \(-0.907089\pi\)
0.728059 + 0.685514i \(0.240423\pi\)
\(228\) −8.20173 −0.543173
\(229\) 4.10971 7.11822i 0.271577 0.470386i −0.697689 0.716401i \(-0.745788\pi\)
0.969266 + 0.246016i \(0.0791214\pi\)
\(230\) −1.63488 + 1.82469i −0.107801 + 0.120316i
\(231\) −1.47288 2.55110i −0.0969083 0.167850i
\(232\) 5.72463i 0.375840i
\(233\) 21.4026i 1.40213i −0.713097 0.701065i \(-0.752708\pi\)
0.713097 0.701065i \(-0.247292\pi\)
\(234\) 1.12200 + 1.94336i 0.0733472 + 0.127041i
\(235\) −13.3769 + 4.38267i −0.872614 + 0.285894i
\(236\) 1.23479i 0.0803778i
\(237\) 7.66536 + 13.2768i 0.497919 + 0.862420i
\(238\) −1.07181 + 0.618808i −0.0694750 + 0.0401114i
\(239\) −14.7756 + 8.53068i −0.955752 + 0.551804i −0.894863 0.446341i \(-0.852727\pi\)
−0.0608893 + 0.998145i \(0.519394\pi\)
\(240\) 2.12493 0.696189i 0.137164 0.0449388i
\(241\) 14.1835 + 8.18883i 0.913637 + 0.527489i 0.881600 0.471998i \(-0.156467\pi\)
0.0320375 + 0.999487i \(0.489800\pi\)
\(242\) −2.66940 4.62354i −0.171596 0.297212i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 4.52224 2.61091i 0.289507 0.167147i
\(245\) −8.15787 + 9.10497i −0.521187 + 0.581695i
\(246\) −7.55659 4.36280i −0.481791 0.278162i
\(247\) −15.9389 + 9.20232i −1.01417 + 0.585530i
\(248\) 3.10566i 0.197210i
\(249\) 7.35182 0.465903
\(250\) −1.08694 + 11.1274i −0.0687441 + 0.703757i
\(251\) 21.4733i 1.35539i −0.735345 0.677693i \(-0.762980\pi\)
0.735345 0.677693i \(-0.237020\pi\)
\(252\) −1.07219 0.619032i −0.0675419 0.0389953i
\(253\) −2.60693 −0.163896
\(254\) 3.39135 + 1.95799i 0.212792 + 0.122855i
\(255\) −2.12416 + 0.695938i −0.133020 + 0.0435813i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.119612 0.207174i −0.00746119 0.0129232i 0.862271 0.506448i \(-0.169042\pi\)
−0.869732 + 0.493524i \(0.835708\pi\)
\(258\) 6.26728i 0.390184i
\(259\) 3.49769 + 6.66932i 0.217336 + 0.414411i
\(260\) 3.34837 3.73711i 0.207657 0.231766i
\(261\) 4.95768 2.86232i 0.306872 0.177173i
\(262\) 2.74014 + 1.58202i 0.169286 + 0.0977374i
\(263\) 24.2624 + 14.0079i 1.49608 + 0.863765i 0.999990 0.00450381i \(-0.00143361\pi\)
0.496095 + 0.868269i \(0.334767\pi\)
\(264\) 2.06056 + 1.18966i 0.126819 + 0.0732187i
\(265\) −19.4111 17.3919i −1.19241 1.06838i
\(266\) 5.07713 8.79385i 0.311299 0.539186i
\(267\) −1.00413 −0.0614519
\(268\) −1.63569 + 0.944369i −0.0999160 + 0.0576865i
\(269\) 14.1365 0.861915 0.430958 0.902372i \(-0.358176\pi\)
0.430958 + 0.902372i \(0.358176\pi\)
\(270\) −1.66538 1.49215i −0.101352 0.0908092i
\(271\) 13.6113 + 23.5755i 0.826828 + 1.43211i 0.900515 + 0.434826i \(0.143190\pi\)
−0.0736871 + 0.997281i \(0.523477\pi\)
\(272\) 0.499820 0.865713i 0.0303060 0.0524916i
\(273\) −2.77821 −0.168145
\(274\) 7.32067 4.22659i 0.442258 0.255338i
\(275\) −9.59022 + 7.03973i −0.578312 + 0.424511i
\(276\) −0.948867 + 0.547828i −0.0571151 + 0.0329754i
\(277\) 11.9667 20.7270i 0.719012 1.24537i −0.242380 0.970181i \(-0.577928\pi\)
0.961392 0.275184i \(-0.0887387\pi\)
\(278\) 0.500249 0.866457i 0.0300030 0.0519667i
\(279\) 2.68958 1.55283i 0.161021 0.0929655i
\(280\) −0.568948 + 2.70930i −0.0340012 + 0.161912i
\(281\) 12.8178 7.40036i 0.764646 0.441469i −0.0663152 0.997799i \(-0.521124\pi\)
0.830961 + 0.556330i \(0.187791\pi\)
\(282\) −6.29523 −0.374876
\(283\) −14.9913 + 25.9658i −0.891143 + 1.54351i −0.0526364 + 0.998614i \(0.516762\pi\)
−0.838507 + 0.544891i \(0.816571\pi\)
\(284\) 2.46057 + 4.26184i 0.146008 + 0.252894i
\(285\) 12.2382 13.6590i 0.724928 0.809090i
\(286\) 5.33920 0.315713
\(287\) 9.35554 5.40142i 0.552240 0.318836i
\(288\) 1.00000 0.0589256
\(289\) 8.00036 13.8570i 0.470609 0.815119i
\(290\) −9.53370 8.54199i −0.559838 0.501603i
\(291\) 5.15722 + 2.97752i 0.302321 + 0.174545i
\(292\) −0.107358 0.0619833i −0.00628266 0.00362730i
\(293\) 11.3931 + 6.57779i 0.665590 + 0.384279i 0.794404 0.607390i \(-0.207783\pi\)
−0.128813 + 0.991669i \(0.541117\pi\)
\(294\) −4.73473 + 2.73360i −0.276135 + 0.159427i
\(295\) −2.05639 1.84248i −0.119728 0.107274i
\(296\) −5.14008 3.25263i −0.298761 0.189055i
\(297\) 2.37933i 0.138063i
\(298\) 11.4158 + 19.7727i 0.661298 + 1.14540i
\(299\) −1.22932 + 2.12925i −0.0710936 + 0.123138i
\(300\) −2.01129 + 4.57763i −0.116122 + 0.264290i
\(301\) 6.71974 + 3.87965i 0.387320 + 0.223619i
\(302\) −11.9607 −0.688263
\(303\) −3.71018 2.14207i −0.213144 0.123059i
\(304\) 8.20173i 0.470402i
\(305\) −2.39967 + 11.4271i −0.137405 + 0.654315i
\(306\) −0.999639 −0.0571456
\(307\) 11.1634i 0.637128i 0.947901 + 0.318564i \(0.103201\pi\)
−0.947901 + 0.318564i \(0.896799\pi\)
\(308\) −2.55110 + 1.47288i −0.145363 + 0.0839251i
\(309\) 7.53360 + 4.34953i 0.428572 + 0.247436i
\(310\) −5.17211 4.63410i −0.293756 0.263199i
\(311\) −22.1416 + 12.7835i −1.25554 + 0.724884i −0.972203 0.234138i \(-0.924773\pi\)
−0.283332 + 0.959022i \(0.591440\pi\)
\(312\) 1.94336 1.12200i 0.110021 0.0635206i
\(313\) 1.00387 + 1.73875i 0.0567420 + 0.0982800i 0.893001 0.450054i \(-0.148595\pi\)
−0.836259 + 0.548334i \(0.815262\pi\)
\(314\) 12.5430 + 7.24170i 0.707842 + 0.408673i
\(315\) 2.63080 0.861926i 0.148229 0.0485641i
\(316\) 13.2768 7.66536i 0.746878 0.431210i
\(317\) −0.127184 + 0.0734298i −0.00714337 + 0.00412423i −0.503567 0.863956i \(-0.667979\pi\)
0.496424 + 0.868080i \(0.334646\pi\)
\(318\) −5.82782 10.0941i −0.326808 0.566048i
\(319\) 13.6208i 0.762617i
\(320\) −0.696189 2.12493i −0.0389182 0.118787i
\(321\) −4.18028 7.24046i −0.233321 0.404123i
\(322\) 1.35649i 0.0755944i
\(323\) 8.19877i 0.456192i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 1.22745 + 11.1526i 0.0680865 + 0.618637i
\(326\) −6.02844 + 10.4416i −0.333885 + 0.578305i
\(327\) 8.64738 0.478201
\(328\) −4.36280 + 7.55659i −0.240895 + 0.417243i
\(329\) 3.89695 6.74971i 0.214846 0.372124i
\(330\) −5.05590 + 1.65646i −0.278318 + 0.0911852i
\(331\) −8.53127 + 4.92553i −0.468921 + 0.270732i −0.715788 0.698318i \(-0.753932\pi\)
0.246867 + 0.969049i \(0.420599\pi\)
\(332\) 7.35182i 0.403483i
\(333\) −0.246818 + 6.07775i −0.0135255 + 0.333059i
\(334\) −7.96640 −0.435902
\(335\) 0.867963 4.13319i 0.0474219 0.225821i
\(336\) −0.619032 + 1.07219i −0.0337710 + 0.0584930i
\(337\) 9.95412 + 5.74702i 0.542236 + 0.313060i 0.745985 0.665963i \(-0.231979\pi\)
−0.203749 + 0.979023i \(0.565313\pi\)
\(338\) −3.98224 + 6.89745i −0.216606 + 0.375172i
\(339\) 11.4519i 0.621984i
\(340\) 0.695938 + 2.12416i 0.0377425 + 0.115199i
\(341\) 7.38938i 0.400158i
\(342\) 7.10291 4.10087i 0.384081 0.221749i
\(343\) 15.4352i 0.833422i
\(344\) −6.26728 −0.337909
\(345\) 0.503506 2.39767i 0.0271078 0.129086i
\(346\) −19.4302 11.2180i −1.04457 0.603084i
\(347\) 3.73796 0.200664 0.100332 0.994954i \(-0.468009\pi\)
0.100332 + 0.994954i \(0.468009\pi\)
\(348\) −2.86232 4.95768i −0.153436 0.265759i
\(349\) −13.6535 23.6486i −0.730857 1.26588i −0.956517 0.291676i \(-0.905787\pi\)
0.225660 0.974206i \(-0.427546\pi\)
\(350\) −3.66306 4.99019i −0.195799 0.266737i
\(351\) −1.94336 1.12200i −0.103729 0.0598878i
\(352\) 1.18966 2.06056i 0.0634093 0.109828i
\(353\) −17.7727 30.7832i −0.945946 1.63843i −0.753846 0.657052i \(-0.771803\pi\)
−0.192100 0.981375i \(-0.561530\pi\)
\(354\) −0.617394 1.06936i −0.0328141 0.0568357i
\(355\) −10.7691 2.26150i −0.571566 0.120028i
\(356\) 1.00413i 0.0532189i
\(357\) 0.618808 1.07181i 0.0327508 0.0567261i
\(358\) −18.1576 + 10.4833i −0.959656 + 0.554058i
\(359\) 15.8548 0.836786 0.418393 0.908266i \(-0.362593\pi\)
0.418393 + 0.908266i \(0.362593\pi\)
\(360\) −1.49215 + 1.66538i −0.0786431 + 0.0877733i
\(361\) 24.1342 + 41.8017i 1.27022 + 2.20009i
\(362\) 5.81875 0.305827
\(363\) 4.62354 + 2.66940i 0.242673 + 0.140107i
\(364\) 2.77821i 0.145618i
\(365\) 0.263420 0.0863041i 0.0137880 0.00451737i
\(366\) −2.61091 + 4.52224i −0.136475 + 0.236381i
\(367\) 15.4393 + 8.91388i 0.805925 + 0.465301i 0.845539 0.533914i \(-0.179280\pi\)
−0.0396140 + 0.999215i \(0.512613\pi\)
\(368\) 0.547828 + 0.948867i 0.0285575 + 0.0494631i
\(369\) 8.72560 0.454237
\(370\) 13.0866 3.70680i 0.680341 0.192707i
\(371\) 14.4304 0.749190
\(372\) −1.55283 2.68958i −0.0805105 0.139448i
\(373\) −4.77639 2.75765i −0.247312 0.142786i 0.371221 0.928545i \(-0.378939\pi\)
−0.618533 + 0.785759i \(0.712273\pi\)
\(374\) −1.18923 + 2.05981i −0.0614938 + 0.106510i
\(375\) −4.62237 10.1801i −0.238698 0.525696i
\(376\) 6.29523i 0.324652i
\(377\) −11.1250 6.42302i −0.572966 0.330802i
\(378\) 1.23806 0.0636791
\(379\) −0.979562 1.69665i −0.0503167 0.0871511i 0.839770 0.542942i \(-0.182690\pi\)
−0.890087 + 0.455791i \(0.849356\pi\)
\(380\) −13.6590 12.2382i −0.700693 0.627806i
\(381\) −3.91599 −0.200622
\(382\) −19.2147 + 11.0936i −0.983108 + 0.567598i
\(383\) −1.30790 + 2.26536i −0.0668308 + 0.115754i −0.897505 0.441005i \(-0.854622\pi\)
0.830674 + 0.556759i \(0.187955\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 1.35371 6.44631i 0.0689916 0.328534i
\(386\) −12.1306 21.0107i −0.617429 1.06942i
\(387\) 3.13364 + 5.42762i 0.159292 + 0.275902i
\(388\) 2.97752 5.15722i 0.151161 0.261818i
\(389\) −6.26174 3.61522i −0.317483 0.183299i 0.332787 0.943002i \(-0.392011\pi\)
−0.650270 + 0.759703i \(0.725344\pi\)
\(390\) −1.03122 + 4.91061i −0.0522179 + 0.248659i
\(391\) −0.547631 0.948524i −0.0276949 0.0479689i
\(392\) 2.73360 + 4.73473i 0.138068 + 0.239140i
\(393\) −3.16404 −0.159605
\(394\) 14.7868 + 8.53718i 0.744950 + 0.430097i
\(395\) −7.04518 + 33.5488i −0.354482 + 1.68802i
\(396\) −2.37933 −0.119566
\(397\) 3.16094i 0.158643i 0.996849 + 0.0793216i \(0.0252754\pi\)
−0.996849 + 0.0793216i \(0.974725\pi\)
\(398\) 3.20383 1.84973i 0.160594 0.0927188i
\(399\) 10.1543i 0.508349i
\(400\) 4.57763 + 2.01129i 0.228882 + 0.100564i
\(401\) 13.9479i 0.696524i −0.937397 0.348262i \(-0.886772\pi\)
0.937397 0.348262i \(-0.113228\pi\)
\(402\) 0.944369 1.63569i 0.0471008 0.0815810i
\(403\) −6.03541 3.48454i −0.300645 0.173577i
\(404\) −2.14207 + 3.71018i −0.106572 + 0.184588i
\(405\) 2.18834 + 0.459547i 0.108739 + 0.0228351i
\(406\) 7.08746 0.351745
\(407\) 12.2299 + 7.73906i 0.606215 + 0.383611i
\(408\) 0.999639i 0.0494895i
\(409\) 0.511337 0.295220i 0.0252840 0.0145977i −0.487305 0.873232i \(-0.662020\pi\)
0.512589 + 0.858634i \(0.328687\pi\)
\(410\) −6.07467 18.5413i −0.300006 0.915688i
\(411\) −4.22659 + 7.32067i −0.208482 + 0.361102i
\(412\) 4.34953 7.53360i 0.214286 0.371154i
\(413\) 1.52875 0.0752246
\(414\) 0.547828 0.948867i 0.0269243 0.0466343i
\(415\) 12.2436 + 10.9700i 0.601014 + 0.538496i
\(416\) −1.12200 1.94336i −0.0550104 0.0952809i
\(417\) 1.00050i 0.0489946i
\(418\) 19.5146i 0.954490i
\(419\) −5.94109 10.2903i −0.290241 0.502712i 0.683625 0.729833i \(-0.260402\pi\)
−0.973867 + 0.227121i \(0.927069\pi\)
\(420\) −0.861926 2.63080i −0.0420577 0.128370i
\(421\) 36.7548i 1.79132i 0.444743 + 0.895658i \(0.353295\pi\)
−0.444743 + 0.895658i \(0.646705\pi\)
\(422\) −0.627962 1.08766i −0.0305687 0.0529466i
\(423\) 5.45183 3.14762i 0.265077 0.153042i
\(424\) −10.0941 + 5.82782i −0.490212 + 0.283024i
\(425\) −4.57598 2.01056i −0.221968 0.0975265i
\(426\) −4.26184 2.46057i −0.206487 0.119215i
\(427\) −3.23248 5.59882i −0.156431 0.270946i
\(428\) −7.24046 + 4.18028i −0.349981 + 0.202062i
\(429\) −4.62388 + 2.66960i −0.223243 + 0.128889i
\(430\) 9.35171 10.4374i 0.450979 0.503337i
\(431\) −11.2708 6.50722i −0.542897 0.313442i 0.203355 0.979105i \(-0.434815\pi\)
−0.746252 + 0.665663i \(0.768149\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 13.0035i 0.624910i 0.949933 + 0.312455i \(0.101151\pi\)
−0.949933 + 0.312455i \(0.898849\pi\)
\(434\) 3.84501 0.184566
\(435\) 12.5274 + 2.63074i 0.600644 + 0.126134i
\(436\) 8.64738i 0.414135i
\(437\) 7.78235 + 4.49314i 0.372280 + 0.214936i
\(438\) 0.123967 0.00592335
\(439\) −7.58476 4.37906i −0.362001 0.209001i 0.307957 0.951400i \(-0.400355\pi\)
−0.669958 + 0.742399i \(0.733688\pi\)
\(440\) 1.65646 + 5.05590i 0.0789687 + 0.241031i
\(441\) 2.73360 4.73473i 0.130171 0.225463i
\(442\) 1.12159 + 1.94265i 0.0533487 + 0.0924027i
\(443\) 5.44946i 0.258912i 0.991585 + 0.129456i \(0.0413230\pi\)
−0.991585 + 0.129456i \(0.958677\pi\)
\(444\) 6.07775 + 0.246818i 0.288437 + 0.0117135i
\(445\) −1.67226 1.49831i −0.0792728 0.0710268i
\(446\) 2.25879 1.30412i 0.106957 0.0617517i
\(447\) −19.7727 11.4158i −0.935216 0.539947i
\(448\) 1.07219 + 0.619032i 0.0506564 + 0.0292465i
\(449\) −8.97982 5.18450i −0.423784 0.244672i 0.272911 0.962039i \(-0.412013\pi\)
−0.696695 + 0.717368i \(0.745347\pi\)
\(450\) −0.546992 4.96999i −0.0257855 0.234288i
\(451\) 10.3805 17.9796i 0.488800 0.846626i
\(452\) −11.4519 −0.538654
\(453\) 10.3583 5.98037i 0.486676 0.280982i
\(454\) −6.91985 −0.324765
\(455\) −4.62678 4.14550i −0.216907 0.194344i
\(456\) −4.10087 7.10291i −0.192041 0.332624i
\(457\) −5.58456 + 9.67274i −0.261235 + 0.452472i −0.966570 0.256402i \(-0.917463\pi\)
0.705336 + 0.708873i \(0.250796\pi\)
\(458\) 8.21942 0.384068
\(459\) 0.865713 0.499820i 0.0404080 0.0233296i
\(460\) −2.39767 0.503506i −0.111792 0.0234761i
\(461\) −20.0478 + 11.5746i −0.933718 + 0.539082i −0.887986 0.459871i \(-0.847896\pi\)
−0.0457325 + 0.998954i \(0.514562\pi\)
\(462\) 1.47288 2.55110i 0.0685245 0.118688i
\(463\) 1.70132 2.94678i 0.0790672 0.136948i −0.823781 0.566909i \(-0.808139\pi\)
0.902848 + 0.429960i \(0.141472\pi\)
\(464\) −4.95768 + 2.86232i −0.230154 + 0.132880i
\(465\) 6.79623 + 1.42720i 0.315168 + 0.0661847i
\(466\) 18.5352 10.7013i 0.858626 0.495728i
\(467\) 9.08042 0.420192 0.210096 0.977681i \(-0.432622\pi\)
0.210096 + 0.977681i \(0.432622\pi\)
\(468\) −1.12200 + 1.94336i −0.0518643 + 0.0898317i
\(469\) 1.16919 + 2.02509i 0.0539881 + 0.0935102i
\(470\) −10.4840 9.39341i −0.483589 0.433286i
\(471\) −14.4834 −0.667360
\(472\) −1.06936 + 0.617394i −0.0492212 + 0.0284178i
\(473\) 14.9119 0.685650
\(474\) −7.66536 + 13.2768i −0.352082 + 0.609823i
\(475\) 40.7625 4.48628i 1.87031 0.205845i
\(476\) −1.07181 0.618808i −0.0491262 0.0283630i
\(477\) 10.0941 + 5.82782i 0.462176 + 0.266837i
\(478\) −14.7756 8.53068i −0.675819 0.390184i
\(479\) 28.3565 16.3716i 1.29564 0.748038i 0.315992 0.948762i \(-0.397663\pi\)
0.979648 + 0.200724i \(0.0643295\pi\)
\(480\) 1.66538 + 1.49215i 0.0760139 + 0.0681069i
\(481\) 12.0882 6.33957i 0.551173 0.289059i
\(482\) 16.3777i 0.745982i
\(483\) 0.678246 + 1.17476i 0.0308613 + 0.0534533i
\(484\) 2.66940 4.62354i 0.121336 0.210161i
\(485\) 4.14583 + 12.6540i 0.188253 + 0.574590i
\(486\) 0.866025 + 0.500000i 0.0392837 + 0.0226805i
\(487\) 8.57654 0.388640 0.194320 0.980938i \(-0.437750\pi\)
0.194320 + 0.980938i \(0.437750\pi\)
\(488\) 4.52224 + 2.61091i 0.204712 + 0.118191i
\(489\) 12.0569i 0.545231i
\(490\) −11.9641 2.51243i −0.540482 0.113500i
\(491\) −38.2338 −1.72547 −0.862733 0.505660i \(-0.831249\pi\)
−0.862733 + 0.505660i \(0.831249\pi\)
\(492\) 8.72560i 0.393380i
\(493\) 4.95589 2.86128i 0.223202 0.128866i
\(494\) −15.9389 9.20232i −0.717124 0.414032i
\(495\) 3.55031 3.96249i 0.159574 0.178101i
\(496\) −2.68958 + 1.55283i −0.120766 + 0.0697242i
\(497\) 5.27643 3.04635i 0.236680 0.136647i
\(498\) 3.67591 + 6.36686i 0.164721 + 0.285306i
\(499\) −13.6781 7.89704i −0.612315 0.353520i 0.161556 0.986864i \(-0.448349\pi\)
−0.773871 + 0.633343i \(0.781682\pi\)
\(500\) −10.1801 + 4.62237i −0.455266 + 0.206719i
\(501\) 6.89910 3.98320i 0.308229 0.177956i
\(502\) 18.5965 10.7367i 0.830001 0.479201i
\(503\) 13.6766 + 23.6886i 0.609809 + 1.05622i 0.991272 + 0.131836i \(0.0420872\pi\)
−0.381462 + 0.924384i \(0.624579\pi\)
\(504\) 1.23806i 0.0551477i
\(505\) −2.98258 9.10350i −0.132723 0.405101i
\(506\) −1.30346 2.25766i −0.0579460 0.100365i
\(507\) 7.96449i 0.353715i
\(508\) 3.91599i 0.173744i
\(509\) 7.38847 + 12.7972i 0.327488 + 0.567226i 0.982013 0.188815i \(-0.0604645\pi\)
−0.654525 + 0.756041i \(0.727131\pi\)
\(510\) −1.66478 1.49161i −0.0737177 0.0660496i
\(511\) −0.0767392 + 0.132916i −0.00339474 + 0.00587987i
\(512\) −1.00000 −0.0441942
\(513\) −4.10087 + 7.10291i −0.181058 + 0.313601i
\(514\) 0.119612 0.207174i 0.00527586 0.00913806i
\(515\) 6.05619 + 18.4849i 0.266867 + 0.814540i
\(516\) 5.42762 3.13364i 0.238938 0.137951i
\(517\) 14.9784i 0.658750i
\(518\) −4.02696 + 6.36375i −0.176934 + 0.279607i
\(519\) 22.4360 0.984832
\(520\) 4.91061 + 1.03122i 0.215345 + 0.0452220i
\(521\) 18.3365 31.7597i 0.803335 1.39142i −0.114075 0.993472i \(-0.536390\pi\)
0.917409 0.397945i \(-0.130276\pi\)
\(522\) 4.95768 + 2.86232i 0.216992 + 0.125280i
\(523\) 8.03277 13.9132i 0.351249 0.608381i −0.635220 0.772331i \(-0.719090\pi\)
0.986469 + 0.163951i \(0.0524238\pi\)
\(524\) 3.16404i 0.138222i
\(525\) 5.66740 + 2.49010i 0.247346 + 0.108677i
\(526\) 28.0158i 1.22155i
\(527\) 2.68861 1.55227i 0.117118 0.0676180i
\(528\) 2.37933i 0.103547i
\(529\) −21.7995 −0.947806
\(530\) 5.35631 25.5064i 0.232663 1.10793i
\(531\) 1.06936 + 0.617394i 0.0464061 + 0.0267926i
\(532\) 10.1543 0.440243
\(533\) −9.79010 16.9569i −0.424056 0.734487i
\(534\) −0.502066 0.869603i −0.0217265 0.0376314i
\(535\) 3.84207 18.2957i 0.166107 0.790993i
\(536\) −1.63569 0.944369i −0.0706513 0.0407905i
\(537\) 10.4833 18.1576i 0.452386 0.783556i
\(538\) 7.06823 + 12.2425i 0.304733 + 0.527813i
\(539\) −6.50413 11.2655i −0.280153 0.485239i
\(540\) 0.459547 2.18834i 0.0197757 0.0941710i
\(541\) 6.40179i 0.275234i 0.990485 + 0.137617i \(0.0439444\pi\)
−0.990485 + 0.137617i \(0.956056\pi\)
\(542\) −13.6113 + 23.5755i −0.584655 + 1.01265i
\(543\) −5.03918 + 2.90937i −0.216252 + 0.124853i
\(544\) 0.999639 0.0428592
\(545\) 14.4012 + 12.9032i 0.616879 + 0.552711i
\(546\) −1.38910 2.40600i −0.0594482 0.102967i
\(547\) 23.8504 1.01977 0.509884 0.860243i \(-0.329688\pi\)
0.509884 + 0.860243i \(0.329688\pi\)
\(548\) 7.32067 + 4.22659i 0.312724 + 0.180551i
\(549\) 5.22183i 0.222862i
\(550\) −10.8917 4.78551i −0.464423 0.204055i
\(551\) −23.4759 + 40.6615i −1.00011 + 1.73224i
\(552\) −0.948867 0.547828i −0.0403864 0.0233171i
\(553\) −9.49020 16.4375i −0.403564 0.698994i
\(554\) 23.9335 1.01684
\(555\) −9.47995 + 9.75349i −0.402401 + 0.414013i
\(556\) 1.00050 0.0424306
\(557\) 10.5226 + 18.2256i 0.445856 + 0.772245i 0.998111 0.0614299i \(-0.0195661\pi\)
−0.552256 + 0.833675i \(0.686233\pi\)
\(558\) 2.68958 + 1.55283i 0.113859 + 0.0657366i
\(559\) 7.03187 12.1796i 0.297416 0.515140i
\(560\) −2.63080 + 0.861926i −0.111171 + 0.0364230i
\(561\) 2.37847i 0.100419i
\(562\) 12.8178 + 7.40036i 0.540687 + 0.312166i
\(563\) 25.0957 1.05766 0.528828 0.848729i \(-0.322632\pi\)
0.528828 + 0.848729i \(0.322632\pi\)
\(564\) −3.14762 5.45183i −0.132539 0.229563i
\(565\) 17.0880 19.0718i 0.718897 0.802359i
\(566\) −29.9827 −1.26027
\(567\) −1.07219 + 0.619032i −0.0450279 + 0.0259969i
\(568\) −2.46057 + 4.26184i −0.103243 + 0.178823i
\(569\) 16.9057i 0.708723i −0.935108 0.354362i \(-0.884698\pi\)
0.935108 0.354362i \(-0.115302\pi\)
\(570\) 17.9481 + 3.76908i 0.751765 + 0.157869i
\(571\) −13.7384 23.7956i −0.574935 0.995817i −0.996049 0.0888088i \(-0.971694\pi\)
0.421114 0.907008i \(-0.361639\pi\)
\(572\) 2.66960 + 4.62388i 0.111622 + 0.193334i
\(573\) 11.0936 19.2147i 0.463442 0.802704i
\(574\) 9.35554 + 5.40142i 0.390493 + 0.225451i
\(575\) 4.41620 3.24172i 0.184168 0.135189i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −8.05589 13.9532i −0.335371 0.580880i 0.648185 0.761483i \(-0.275528\pi\)
−0.983556 + 0.180603i \(0.942195\pi\)
\(578\) 16.0007 0.665542
\(579\) 21.0107 + 12.1306i 0.873176 + 0.504128i
\(580\) 2.63074 12.5274i 0.109235 0.520173i
\(581\) −9.10202 −0.377615
\(582\) 5.95504i 0.246844i
\(583\) 24.0171 13.8663i 0.994687 0.574283i
\(584\) 0.123967i 0.00512977i
\(585\) −1.56224 4.76833i −0.0645909 0.197146i
\(586\) 13.1556i 0.543452i
\(587\) −4.15035 + 7.18861i −0.171303 + 0.296706i −0.938876 0.344256i \(-0.888131\pi\)
0.767573 + 0.640962i \(0.221464\pi\)
\(588\) −4.73473 2.73360i −0.195257 0.112732i
\(589\) −12.7359 + 22.0592i −0.524774 + 0.908935i
\(590\) 0.567442 2.70213i 0.0233612 0.111245i
\(591\) −17.0744 −0.702345
\(592\) 0.246818 6.07775i 0.0101442 0.249794i
\(593\) 19.9341i 0.818597i 0.912401 + 0.409298i \(0.134226\pi\)
−0.912401 + 0.409298i \(0.865774\pi\)
\(594\) 2.06056 1.18966i 0.0845457 0.0488125i
\(595\) 2.62985 0.861615i 0.107813 0.0353228i
\(596\) −11.4158 + 19.7727i −0.467608 + 0.809921i
\(597\) −1.84973 + 3.20383i −0.0757046 + 0.131124i
\(598\) −2.45865 −0.100542
\(599\) 8.49888 14.7205i 0.347255 0.601463i −0.638506 0.769617i \(-0.720447\pi\)
0.985761 + 0.168154i \(0.0537805\pi\)
\(600\) −4.96999 + 0.546992i −0.202899 + 0.0223309i
\(601\) 20.6808 + 35.8202i 0.843588 + 1.46114i 0.886842 + 0.462073i \(0.152894\pi\)
−0.0432539 + 0.999064i \(0.513772\pi\)
\(602\) 7.75929i 0.316245i
\(603\) 1.88874i 0.0769153i
\(604\) −5.98037 10.3583i −0.243338 0.421474i
\(605\) 3.71682 + 11.3446i 0.151110 + 0.461222i
\(606\) 4.28415i 0.174032i
\(607\) 15.3148 + 26.5261i 0.621610 + 1.07666i 0.989186 + 0.146667i \(0.0468546\pi\)
−0.367575 + 0.929994i \(0.619812\pi\)
\(608\) −7.10291 + 4.10087i −0.288061 + 0.166312i
\(609\) −6.13792 + 3.54373i −0.248721 + 0.143599i
\(610\) −11.0960 + 3.63538i −0.449264 + 0.147192i
\(611\) −12.2339 7.06323i −0.494930 0.285748i
\(612\) −0.499820 0.865713i −0.0202040 0.0349944i
\(613\) 13.8680 8.00669i 0.560123 0.323387i −0.193072 0.981185i \(-0.561845\pi\)
0.753195 + 0.657797i \(0.228512\pi\)
\(614\) −9.66777 + 5.58169i −0.390159 + 0.225259i
\(615\) 14.5315 + 13.0199i 0.585965 + 0.525012i
\(616\) −2.55110 1.47288i −0.102787 0.0593440i
\(617\) −3.18990 + 1.84169i −0.128420 + 0.0741436i −0.562834 0.826570i \(-0.690289\pi\)
0.434414 + 0.900714i \(0.356956\pi\)
\(618\) 8.69905i 0.349927i
\(619\) 19.9125 0.800350 0.400175 0.916439i \(-0.368949\pi\)
0.400175 + 0.916439i \(0.368949\pi\)
\(620\) 1.42720 6.79623i 0.0573176 0.272943i
\(621\) 1.09566i 0.0439672i
\(622\) −22.1416 12.7835i −0.887798 0.512570i
\(623\) 1.24318 0.0498069
\(624\) 1.94336 + 1.12200i 0.0777965 + 0.0449158i
\(625\) 7.49214 23.8510i 0.299686 0.954038i
\(626\) −1.00387 + 1.73875i −0.0401226 + 0.0694944i
\(627\) 9.75730 + 16.9001i 0.389669 + 0.674927i
\(628\) 14.4834i 0.577951i
\(629\) −0.246729 + 6.07556i −0.00983772 + 0.242248i
\(630\) 2.06185 + 1.84737i 0.0821460 + 0.0736011i
\(631\) −32.9638 + 19.0317i −1.31227 + 0.757638i −0.982471 0.186414i \(-0.940313\pi\)
−0.329797 + 0.944052i \(0.606980\pi\)
\(632\) 13.2768 + 7.66536i 0.528122 + 0.304912i
\(633\) 1.08766 + 0.627962i 0.0432307 + 0.0249593i
\(634\) −0.127184 0.0734298i −0.00505113 0.00291627i
\(635\) −6.52161 5.84323i −0.258802 0.231882i
\(636\) 5.82782 10.0941i 0.231088 0.400256i
\(637\) −12.2684 −0.486090
\(638\) 11.7959 6.81039i 0.467006 0.269626i
\(639\) 4.92115 0.194678
\(640\) 1.49215 1.66538i 0.0589823 0.0658300i
\(641\) 11.7219 + 20.3029i 0.462986 + 0.801916i 0.999108 0.0422248i \(-0.0134446\pi\)
−0.536122 + 0.844141i \(0.680111\pi\)
\(642\) 4.18028 7.24046i 0.164983 0.285758i
\(643\) 26.3688 1.03989 0.519943 0.854201i \(-0.325953\pi\)
0.519943 + 0.854201i \(0.325953\pi\)
\(644\) 1.17476 0.678246i 0.0462919 0.0267267i
\(645\) −2.88011 + 13.7149i −0.113404 + 0.540024i
\(646\) 7.10034 4.09939i 0.279359 0.161288i
\(647\) 7.15731 12.3968i 0.281383 0.487370i −0.690343 0.723483i \(-0.742540\pi\)
0.971726 + 0.236113i \(0.0758736\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) 2.54435 1.46898i 0.0998745 0.0576626i
\(650\) −9.04474 + 6.63931i −0.354764 + 0.260415i
\(651\) −3.32987 + 1.92250i −0.130508 + 0.0753488i
\(652\) −12.0569 −0.472184
\(653\) 5.19792 9.00305i 0.203410 0.352317i −0.746215 0.665705i \(-0.768131\pi\)
0.949625 + 0.313388i \(0.101464\pi\)
\(654\) 4.32369 + 7.48885i 0.169070 + 0.292837i
\(655\) −5.26933 4.72121i −0.205890 0.184473i
\(656\) −8.72560 −0.340677
\(657\) −0.107358 + 0.0619833i −0.00418844 + 0.00241820i
\(658\) 7.79390 0.303838
\(659\) 2.73699 4.74060i 0.106618 0.184668i −0.807780 0.589484i \(-0.799331\pi\)
0.914398 + 0.404816i \(0.132665\pi\)
\(660\) −3.96249 3.55031i −0.154240 0.138196i
\(661\) 38.0482 + 21.9671i 1.47990 + 0.854423i 0.999741 0.0227571i \(-0.00724443\pi\)
0.480162 + 0.877180i \(0.340578\pi\)
\(662\) −8.53127 4.92553i −0.331577 0.191436i
\(663\) −1.94265 1.12159i −0.0754465 0.0435590i
\(664\) 6.36686 3.67591i 0.247082 0.142653i
\(665\) −15.1517 + 16.9107i −0.587556 + 0.655770i
\(666\) −5.38690 + 2.82513i −0.208738 + 0.109471i
\(667\) 6.27223i 0.242862i
\(668\) −3.98320 6.89910i −0.154115 0.266934i
\(669\) −1.30412 + 2.25879i −0.0504200 + 0.0873300i
\(670\) 4.01343 1.31492i 0.155052 0.0507997i
\(671\) −10.7599 6.21222i −0.415381 0.239820i
\(672\) −1.23806 −0.0477593
\(673\) −6.80338 3.92793i −0.262251 0.151411i 0.363110 0.931746i \(-0.381715\pi\)
−0.625361 + 0.780336i \(0.715048\pi\)
\(674\) 11.4940i 0.442734i
\(675\) 2.95870 + 4.03064i 0.113881 + 0.155139i
\(676\) −7.96449 −0.306327
\(677\) 36.4834i 1.40217i −0.713078 0.701085i \(-0.752700\pi\)
0.713078 0.701085i \(-0.247300\pi\)
\(678\) 9.91767 5.72597i 0.380886 0.219904i
\(679\) −6.38496 3.68636i −0.245032 0.141469i
\(680\) −1.49161 + 1.66478i −0.0572006 + 0.0638414i
\(681\) 5.99277 3.45993i 0.229643 0.132585i
\(682\) 6.39940 3.69469i 0.245045 0.141477i
\(683\) 9.00252 + 15.5928i 0.344472 + 0.596643i 0.985258 0.171077i \(-0.0547247\pi\)
−0.640786 + 0.767720i \(0.721391\pi\)
\(684\) 7.10291 + 4.10087i 0.271586 + 0.156801i
\(685\) −17.9624 + 5.88502i −0.686309 + 0.224855i
\(686\) 13.3673 7.71759i 0.510364 0.294659i
\(687\) −7.11822 + 4.10971i −0.271577 + 0.156795i
\(688\) −3.13364 5.42762i −0.119469 0.206926i
\(689\) 26.1552i 0.996433i
\(690\) 2.32819 0.762784i 0.0886328 0.0290387i
\(691\) −8.00024 13.8568i −0.304344 0.527139i 0.672771 0.739850i \(-0.265104\pi\)
−0.977115 + 0.212712i \(0.931770\pi\)
\(692\) 22.4360i 0.852890i
\(693\) 2.94576i 0.111900i
\(694\) 1.86898 + 3.23717i 0.0709455 + 0.122881i
\(695\) −1.49289 + 1.66621i −0.0566286 + 0.0632030i
\(696\) 2.86232 4.95768i 0.108496 0.187920i
\(697\) 8.72245 0.330386
\(698\) 13.6535 23.6486i 0.516794 0.895113i
\(699\) −10.7013 + 18.5352i −0.404760 + 0.701065i
\(700\) 2.49010 5.66740i 0.0941169 0.214208i
\(701\) 18.0634 10.4289i 0.682247 0.393895i −0.118454 0.992959i \(-0.537794\pi\)
0.800701 + 0.599064i \(0.204461\pi\)
\(702\) 2.24399i 0.0846941i
\(703\) −23.1709 44.1819i −0.873908 1.66635i
\(704\) 2.37933 0.0896743
\(705\) 13.7761 + 2.89295i 0.518837 + 0.108955i
\(706\) 17.7727 30.7832i 0.668885 1.15854i
\(707\) 4.59344 + 2.65202i 0.172754 + 0.0997396i
\(708\) 0.617394 1.06936i 0.0232031 0.0401889i
\(709\) 11.6988i 0.439359i 0.975572 + 0.219679i \(0.0705011\pi\)
−0.975572 + 0.219679i \(0.929499\pi\)
\(710\) −3.42605 10.4571i −0.128577 0.392447i
\(711\) 15.3307i 0.574947i
\(712\) −0.869603 + 0.502066i −0.0325898 + 0.0188157i
\(713\) 3.40274i 0.127434i
\(714\) 1.23762 0.0463166
\(715\) −11.6840 2.45361i −0.436955 0.0917598i
\(716\) −18.1576 10.4833i −0.678580 0.391778i
\(717\) 17.0614 0.637168
\(718\) 7.92742 + 13.7307i 0.295849 + 0.512425i
\(719\) −12.4299 21.5293i −0.463559 0.802907i 0.535577 0.844487i \(-0.320094\pi\)
−0.999135 + 0.0415796i \(0.986761\pi\)
\(720\) −2.18834 0.459547i −0.0815545 0.0171263i
\(721\) −9.32708 5.38499i −0.347358 0.200547i
\(722\) −24.1342 + 41.8017i −0.898182 + 1.55570i
\(723\) −8.18883 14.1835i −0.304546 0.527489i
\(724\) 2.90937 + 5.03918i 0.108126 + 0.187280i
\(725\) 16.9375 + 23.0739i 0.629043 + 0.856944i
\(726\) 5.33880i 0.198142i
\(727\) −13.0391 + 22.5845i −0.483595 + 0.837611i −0.999823 0.0188403i \(-0.994003\pi\)
0.516227 + 0.856452i \(0.327336\pi\)
\(728\) −2.40600 + 1.38910i −0.0891722 + 0.0514836i
\(729\) −1.00000 −0.0370370
\(730\) 0.206452 + 0.184976i 0.00764112 + 0.00684628i
\(731\) 3.13251 + 5.42567i 0.115860 + 0.200675i
\(732\) −5.22183 −0.193004
\(733\) −40.4937 23.3790i −1.49567 0.863524i −0.495680 0.868505i \(-0.665081\pi\)
−0.999988 + 0.00498092i \(0.998415\pi\)
\(734\) 17.8278i 0.658035i
\(735\) 11.6174 3.80620i 0.428514 0.140394i
\(736\) −0.547828 + 0.948867i −0.0201932 + 0.0349757i
\(737\) 3.89185 + 2.24696i 0.143358 + 0.0827679i
\(738\) 4.36280 + 7.55659i 0.160597 + 0.278162i
\(739\) 24.3403 0.895372 0.447686 0.894191i \(-0.352248\pi\)
0.447686 + 0.894191i \(0.352248\pi\)
\(740\) 9.75349 + 9.47995i 0.358545 + 0.348490i
\(741\) 18.4046 0.676111
\(742\) 7.21521 + 12.4971i 0.264879 + 0.458783i
\(743\) −24.0446 13.8822i −0.882111 0.509287i −0.0107573 0.999942i \(-0.503424\pi\)
−0.871354 + 0.490655i \(0.836758\pi\)
\(744\) 1.55283 2.68958i 0.0569295 0.0986048i
\(745\) −15.8951 48.5154i −0.582350 1.77747i
\(746\) 5.51530i 0.201930i
\(747\) −6.36686 3.67591i −0.232951 0.134494i
\(748\) −2.37847 −0.0869654
\(749\) 5.17546 + 8.96415i 0.189107 + 0.327543i
\(750\) 6.50501 9.09312i 0.237529 0.332034i
\(751\) 3.45365 0.126026 0.0630128 0.998013i \(-0.479929\pi\)
0.0630128 + 0.998013i \(0.479929\pi\)
\(752\) −5.45183 + 3.14762i −0.198808 + 0.114782i
\(753\) −10.7367 + 18.5965i −0.391266 + 0.677693i
\(754\) 12.8460i 0.467825i
\(755\) 26.1741 + 5.49652i 0.952574 + 0.200039i
\(756\) 0.619032 + 1.07219i 0.0225140 + 0.0389953i
\(757\) −8.28057 14.3424i −0.300962 0.521282i 0.675392 0.737459i \(-0.263975\pi\)
−0.976354 + 0.216177i \(0.930641\pi\)
\(758\) 0.979562 1.69665i 0.0355793 0.0616251i
\(759\) 2.25766 + 1.30346i 0.0819480 + 0.0473127i
\(760\) 3.76908 17.9481i 0.136719 0.651048i
\(761\) −13.0643 22.6280i −0.473580 0.820265i 0.525962 0.850508i \(-0.323705\pi\)
−0.999543 + 0.0302429i \(0.990372\pi\)
\(762\) −1.95799 3.39135i −0.0709306 0.122855i
\(763\) −10.7060 −0.387584
\(764\) −19.2147 11.0936i −0.695162 0.401352i
\(765\) 2.18755 + 0.459381i 0.0790909 + 0.0166090i
\(766\) −2.61581 −0.0945130
\(767\) 2.77086i 0.100050i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 8.68949i 0.313351i −0.987650 0.156675i \(-0.949922\pi\)
0.987650 0.156675i \(-0.0500777\pi\)
\(770\) 6.25953 2.05081i 0.225578 0.0739059i
\(771\) 0.239224i 0.00861545i
\(772\) 12.1306 21.0107i 0.436588 0.756193i
\(773\) 22.1990 + 12.8166i 0.798444 + 0.460982i 0.842927 0.538028i \(-0.180831\pi\)
−0.0444828 + 0.999010i \(0.514164\pi\)
\(774\) −3.13364 + 5.42762i −0.112636 + 0.195092i
\(775\) 9.18873 + 12.5178i 0.330069 + 0.449653i
\(776\) 5.95504 0.213774