Properties

Label 1110.2.ba.b.529.3
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.3
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.b.619.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.56260 + 1.59947i) q^{5} -1.00000i q^{6} +(-0.998396 - 0.576424i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.56260 + 1.59947i) q^{5} -1.00000i q^{6} +(-0.998396 - 0.576424i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-2.16648 - 0.553515i) q^{10} +1.60140 q^{11} +(0.866025 - 0.500000i) q^{12} +(-1.89712 + 3.28591i) q^{13} -1.15285i q^{14} +(2.15298 - 0.603880i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-3.28940 - 5.69741i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-0.174421 - 0.100702i) q^{19} +(-0.603880 - 2.15298i) q^{20} +(0.576424 + 0.998396i) q^{21} +(0.800700 + 1.38685i) q^{22} +0.633422 q^{23} +(0.866025 + 0.500000i) q^{24} +(-0.116584 - 4.99864i) q^{25} -3.79425 q^{26} -1.00000i q^{27} +(0.998396 - 0.576424i) q^{28} +5.73899i q^{29} +(1.59947 + 1.56260i) q^{30} -8.34912i q^{31} +(0.500000 - 0.866025i) q^{32} +(-1.38685 - 0.800700i) q^{33} +(3.28940 - 5.69741i) q^{34} +(2.48206 - 0.696182i) q^{35} -1.00000 q^{36} +(-6.07690 + 0.267030i) q^{37} -0.201405i q^{38} +(3.28591 - 1.89712i) q^{39} +(1.56260 - 1.59947i) q^{40} +(4.00330 - 6.93392i) q^{41} +(-0.576424 + 0.998396i) q^{42} -1.95146 q^{43} +(-0.800700 + 1.38685i) q^{44} +(-2.16648 - 0.553515i) q^{45} +(0.316711 + 0.548560i) q^{46} -4.65434i q^{47} +1.00000i q^{48} +(-2.83547 - 4.91118i) q^{49} +(4.27066 - 2.60029i) q^{50} +6.57881i q^{51} +(-1.89712 - 3.28591i) q^{52} +(7.47374 - 4.31497i) q^{53} +(0.866025 - 0.500000i) q^{54} +(-2.50234 + 2.56138i) q^{55} +(0.998396 + 0.576424i) q^{56} +(0.100702 + 0.174421i) q^{57} +(-4.97011 + 2.86950i) q^{58} +(10.3918 - 5.99970i) q^{59} +(-0.553515 + 2.16648i) q^{60} +(-11.3423 - 6.54846i) q^{61} +(7.23055 - 4.17456i) q^{62} -1.15285i q^{63} +1.00000 q^{64} +(-2.29127 - 8.16894i) q^{65} -1.60140i q^{66} +(-9.33087 - 5.38718i) q^{67} +6.57881 q^{68} +(-0.548560 - 0.316711i) q^{69} +(1.84394 + 1.80144i) q^{70} +(-5.52164 + 9.56376i) q^{71} +(-0.500000 - 0.866025i) q^{72} +4.32373i q^{73} +(-3.26970 - 5.12923i) q^{74} +(-2.39836 + 4.38724i) q^{75} +(0.174421 - 0.100702i) q^{76} +(-1.59883 - 0.923086i) q^{77} +(3.28591 + 1.89712i) q^{78} +(6.91117 + 3.99017i) q^{79} +(2.16648 + 0.553515i) q^{80} +(-0.500000 + 0.866025i) q^{81} +8.00660 q^{82} +(-12.4882 + 7.21006i) q^{83} -1.15285 q^{84} +(14.2528 + 3.64147i) q^{85} +(-0.975731 - 1.69002i) q^{86} +(2.86950 - 4.97011i) q^{87} -1.60140 q^{88} +(15.6356 - 9.02723i) q^{89} +(-0.603880 - 2.15298i) q^{90} +(3.78816 - 2.18710i) q^{91} +(-0.316711 + 0.548560i) q^{92} +(-4.17456 + 7.23055i) q^{93} +(4.03078 - 2.32717i) q^{94} +(0.433620 - 0.121624i) q^{95} +(-0.866025 + 0.500000i) q^{96} -2.93176 q^{97} +(2.83547 - 4.91118i) q^{98} +(0.800700 + 1.38685i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} + 14q^{13} + 2q^{15} - 18q^{16} - 18q^{18} + 6q^{19} - 2q^{20} + 2q^{22} + 20q^{23} - 2q^{25} + 28q^{26} - 2q^{30} + 18q^{32} + 6q^{33} - 20q^{35} - 36q^{36} - 20q^{37} + 6q^{39} - 4q^{40} + 10q^{41} - 2q^{44} + 2q^{45} + 10q^{46} + 10q^{49} - 4q^{50} + 14q^{52} + 12q^{53} + 40q^{55} - 8q^{57} - 30q^{58} + 18q^{59} - 4q^{60} - 6q^{61} + 12q^{62} + 36q^{64} - 32q^{65} - 36q^{67} + 12q^{69} - 40q^{70} - 24q^{71} - 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} + 24q^{77} + 6q^{78} - 2q^{80} - 18q^{81} + 20q^{82} - 36q^{83} + 26q^{85} + 10q^{87} - 4q^{88} - 2q^{90} - 36q^{91} - 10q^{92} - 12q^{93} + 12q^{94} + 18q^{95} - 52q^{97} - 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.56260 + 1.59947i −0.698814 + 0.715303i
\(6\) 1.00000i 0.408248i
\(7\) −0.998396 0.576424i −0.377358 0.217868i 0.299310 0.954156i \(-0.403244\pi\)
−0.676668 + 0.736288i \(0.736577\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −2.16648 0.553515i −0.685100 0.175037i
\(11\) 1.60140 0.482840 0.241420 0.970421i \(-0.422387\pi\)
0.241420 + 0.970421i \(0.422387\pi\)
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) −1.89712 + 3.28591i −0.526167 + 0.911349i 0.473368 + 0.880865i \(0.343038\pi\)
−0.999535 + 0.0304838i \(0.990295\pi\)
\(14\) 1.15285i 0.308112i
\(15\) 2.15298 0.603880i 0.555897 0.155921i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.28940 5.69741i −0.797798 1.38183i −0.921048 0.389450i \(-0.872665\pi\)
0.123250 0.992376i \(-0.460668\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) −0.174421 0.100702i −0.0400150 0.0231027i 0.479859 0.877346i \(-0.340688\pi\)
−0.519874 + 0.854243i \(0.674021\pi\)
\(20\) −0.603880 2.15298i −0.135032 0.481421i
\(21\) 0.576424 + 0.998396i 0.125786 + 0.217868i
\(22\) 0.800700 + 1.38685i 0.170710 + 0.295678i
\(23\) 0.633422 0.132078 0.0660388 0.997817i \(-0.478964\pi\)
0.0660388 + 0.997817i \(0.478964\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) −0.116584 4.99864i −0.0233168 0.999728i
\(26\) −3.79425 −0.744113
\(27\) 1.00000i 0.192450i
\(28\) 0.998396 0.576424i 0.188679 0.108934i
\(29\) 5.73899i 1.06570i 0.846208 + 0.532852i \(0.178880\pi\)
−0.846208 + 0.532852i \(0.821120\pi\)
\(30\) 1.59947 + 1.56260i 0.292021 + 0.285290i
\(31\) 8.34912i 1.49955i −0.661695 0.749773i \(-0.730163\pi\)
0.661695 0.749773i \(-0.269837\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −1.38685 0.800700i −0.241420 0.139384i
\(34\) 3.28940 5.69741i 0.564128 0.977098i
\(35\) 2.48206 0.696182i 0.419545 0.117676i
\(36\) −1.00000 −0.166667
\(37\) −6.07690 + 0.267030i −0.999036 + 0.0438995i
\(38\) 0.201405i 0.0326721i
\(39\) 3.28591 1.89712i 0.526167 0.303783i
\(40\) 1.56260 1.59947i 0.247068 0.252898i
\(41\) 4.00330 6.93392i 0.625211 1.08290i −0.363289 0.931676i \(-0.618346\pi\)
0.988500 0.151220i \(-0.0483203\pi\)
\(42\) −0.576424 + 0.998396i −0.0889442 + 0.154056i
\(43\) −1.95146 −0.297595 −0.148798 0.988868i \(-0.547540\pi\)
−0.148798 + 0.988868i \(0.547540\pi\)
\(44\) −0.800700 + 1.38685i −0.120710 + 0.209076i
\(45\) −2.16648 0.553515i −0.322959 0.0825132i
\(46\) 0.316711 + 0.548560i 0.0466965 + 0.0808807i
\(47\) 4.65434i 0.678905i −0.940623 0.339453i \(-0.889758\pi\)
0.940623 0.339453i \(-0.110242\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.83547 4.91118i −0.405067 0.701597i
\(50\) 4.27066 2.60029i 0.603962 0.367736i
\(51\) 6.57881i 0.921217i
\(52\) −1.89712 3.28591i −0.263084 0.455674i
\(53\) 7.47374 4.31497i 1.02660 0.592706i 0.110589 0.993866i \(-0.464726\pi\)
0.916008 + 0.401160i \(0.131393\pi\)
\(54\) 0.866025 0.500000i 0.117851 0.0680414i
\(55\) −2.50234 + 2.56138i −0.337416 + 0.345377i
\(56\) 0.998396 + 0.576424i 0.133416 + 0.0770279i
\(57\) 0.100702 + 0.174421i 0.0133383 + 0.0231027i
\(58\) −4.97011 + 2.86950i −0.652608 + 0.376783i
\(59\) 10.3918 5.99970i 1.35289 0.781094i 0.364241 0.931305i \(-0.381329\pi\)
0.988654 + 0.150211i \(0.0479953\pi\)
\(60\) −0.553515 + 2.16648i −0.0714585 + 0.279691i
\(61\) −11.3423 6.54846i −1.45223 0.838445i −0.453621 0.891195i \(-0.649868\pi\)
−0.998608 + 0.0527502i \(0.983201\pi\)
\(62\) 7.23055 4.17456i 0.918280 0.530169i
\(63\) 1.15285i 0.145245i
\(64\) 1.00000 0.125000
\(65\) −2.29127 8.16894i −0.284197 1.01323i
\(66\) 1.60140i 0.197119i
\(67\) −9.33087 5.38718i −1.13995 0.658149i −0.193529 0.981094i \(-0.561993\pi\)
−0.946417 + 0.322946i \(0.895327\pi\)
\(68\) 6.57881 0.797798
\(69\) −0.548560 0.316711i −0.0660388 0.0381275i
\(70\) 1.84394 + 1.80144i 0.220393 + 0.215313i
\(71\) −5.52164 + 9.56376i −0.655298 + 1.13501i 0.326521 + 0.945190i \(0.394124\pi\)
−0.981819 + 0.189819i \(0.939210\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 4.32373i 0.506054i 0.967459 + 0.253027i \(0.0814262\pi\)
−0.967459 + 0.253027i \(0.918574\pi\)
\(74\) −3.26970 5.12923i −0.380095 0.596261i
\(75\) −2.39836 + 4.38724i −0.276938 + 0.506595i
\(76\) 0.174421 0.100702i 0.0200075 0.0115513i
\(77\) −1.59883 0.923086i −0.182204 0.105195i
\(78\) 3.28591 + 1.89712i 0.372057 + 0.214807i
\(79\) 6.91117 + 3.99017i 0.777568 + 0.448929i 0.835568 0.549388i \(-0.185139\pi\)
−0.0580000 + 0.998317i \(0.518472\pi\)
\(80\) 2.16648 + 0.553515i 0.242219 + 0.0618849i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 8.00660 0.884181
\(83\) −12.4882 + 7.21006i −1.37076 + 0.791407i −0.991023 0.133689i \(-0.957318\pi\)
−0.379734 + 0.925096i \(0.623984\pi\)
\(84\) −1.15285 −0.125786
\(85\) 14.2528 + 3.64147i 1.54594 + 0.394973i
\(86\) −0.975731 1.69002i −0.105216 0.182239i
\(87\) 2.86950 4.97011i 0.307642 0.532852i
\(88\) −1.60140 −0.170710
\(89\) 15.6356 9.02723i 1.65737 0.956885i 0.683452 0.729995i \(-0.260478\pi\)
0.973920 0.226890i \(-0.0728557\pi\)
\(90\) −0.603880 2.15298i −0.0636545 0.226944i
\(91\) 3.78816 2.18710i 0.397107 0.229270i
\(92\) −0.316711 + 0.548560i −0.0330194 + 0.0571913i
\(93\) −4.17456 + 7.23055i −0.432882 + 0.749773i
\(94\) 4.03078 2.32717i 0.415743 0.240029i
\(95\) 0.433620 0.121624i 0.0444885 0.0124784i
\(96\) −0.866025 + 0.500000i −0.0883883 + 0.0510310i
\(97\) −2.93176 −0.297675 −0.148838 0.988862i \(-0.547553\pi\)
−0.148838 + 0.988862i \(0.547553\pi\)
\(98\) 2.83547 4.91118i 0.286426 0.496104i
\(99\) 0.800700 + 1.38685i 0.0804734 + 0.139384i
\(100\) 4.38724 + 2.39836i 0.438724 + 0.239836i
\(101\) −14.8756 −1.48018 −0.740088 0.672510i \(-0.765216\pi\)
−0.740088 + 0.672510i \(0.765216\pi\)
\(102\) −5.69741 + 3.28940i −0.564128 + 0.325699i
\(103\) 2.82877 0.278727 0.139363 0.990241i \(-0.455494\pi\)
0.139363 + 0.990241i \(0.455494\pi\)
\(104\) 1.89712 3.28591i 0.186028 0.322210i
\(105\) −2.49762 0.638119i −0.243743 0.0622741i
\(106\) 7.47374 + 4.31497i 0.725914 + 0.419107i
\(107\) 8.16662 + 4.71500i 0.789497 + 0.455816i 0.839786 0.542918i \(-0.182681\pi\)
−0.0502882 + 0.998735i \(0.516014\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −11.8873 + 6.86312i −1.13859 + 0.657367i −0.946082 0.323927i \(-0.894997\pi\)
−0.192512 + 0.981295i \(0.561663\pi\)
\(110\) −3.46940 0.886399i −0.330794 0.0845148i
\(111\) 5.39626 + 2.80719i 0.512191 + 0.266447i
\(112\) 1.15285i 0.108934i
\(113\) −4.45519 7.71661i −0.419109 0.725917i 0.576741 0.816927i \(-0.304324\pi\)
−0.995850 + 0.0910093i \(0.970991\pi\)
\(114\) −0.100702 + 0.174421i −0.00943163 + 0.0163361i
\(115\) −0.989784 + 1.01314i −0.0922978 + 0.0944756i
\(116\) −4.97011 2.86950i −0.461463 0.266426i
\(117\) −3.79425 −0.350778
\(118\) 10.3918 + 5.99970i 0.956641 + 0.552317i
\(119\) 7.58437i 0.695258i
\(120\) −2.15298 + 0.603880i −0.196539 + 0.0551265i
\(121\) −8.43552 −0.766865
\(122\) 13.0969i 1.18574i
\(123\) −6.93392 + 4.00330i −0.625211 + 0.360966i
\(124\) 7.23055 + 4.17456i 0.649322 + 0.374886i
\(125\) 8.17733 + 7.62439i 0.731403 + 0.681946i
\(126\) 0.998396 0.576424i 0.0889442 0.0513520i
\(127\) −10.7457 + 6.20405i −0.953529 + 0.550520i −0.894175 0.447717i \(-0.852237\pi\)
−0.0593538 + 0.998237i \(0.518904\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 1.69002 + 0.975731i 0.148798 + 0.0859083i
\(130\) 5.92888 6.06877i 0.519997 0.532266i
\(131\) −0.150501 + 0.0868917i −0.0131493 + 0.00759176i −0.506560 0.862205i \(-0.669083\pi\)
0.493411 + 0.869796i \(0.335750\pi\)
\(132\) 1.38685 0.800700i 0.120710 0.0696920i
\(133\) 0.116094 + 0.201082i 0.0100667 + 0.0174360i
\(134\) 10.7744i 0.930763i
\(135\) 1.59947 + 1.56260i 0.137660 + 0.134487i
\(136\) 3.28940 + 5.69741i 0.282064 + 0.488549i
\(137\) 0.163889i 0.0140020i 0.999975 + 0.00700100i \(0.00222850\pi\)
−0.999975 + 0.00700100i \(0.997771\pi\)
\(138\) 0.633422i 0.0539205i
\(139\) −0.808880 1.40102i −0.0686083 0.118833i 0.829681 0.558238i \(-0.188523\pi\)
−0.898289 + 0.439405i \(0.855189\pi\)
\(140\) −0.638119 + 2.49762i −0.0539309 + 0.211087i
\(141\) −2.32717 + 4.03078i −0.195983 + 0.339453i
\(142\) −11.0433 −0.926731
\(143\) −3.03805 + 5.26206i −0.254055 + 0.440036i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −9.17932 8.96773i −0.762301 0.744729i
\(146\) −3.74446 + 2.16187i −0.309894 + 0.178917i
\(147\) 5.67094i 0.467731i
\(148\) 2.80719 5.39626i 0.230750 0.443570i
\(149\) −16.0986 −1.31885 −0.659423 0.751772i \(-0.729200\pi\)
−0.659423 + 0.751772i \(0.729200\pi\)
\(150\) −4.99864 + 0.116584i −0.408137 + 0.00951905i
\(151\) 3.14518 5.44761i 0.255951 0.443320i −0.709202 0.705005i \(-0.750945\pi\)
0.965153 + 0.261685i \(0.0842780\pi\)
\(152\) 0.174421 + 0.100702i 0.0141474 + 0.00816803i
\(153\) 3.28940 5.69741i 0.265933 0.460609i
\(154\) 1.84617i 0.148769i
\(155\) 13.3541 + 13.0463i 1.07263 + 1.04790i
\(156\) 3.79425i 0.303783i
\(157\) 3.38321 1.95330i 0.270009 0.155890i −0.358883 0.933383i \(-0.616842\pi\)
0.628892 + 0.777493i \(0.283509\pi\)
\(158\) 7.98033i 0.634881i
\(159\) −8.62993 −0.684398
\(160\) 0.603880 + 2.15298i 0.0477409 + 0.170208i
\(161\) −0.632406 0.365120i −0.0498406 0.0287755i
\(162\) −1.00000 −0.0785674
\(163\) 3.44377 + 5.96478i 0.269737 + 0.467198i 0.968794 0.247868i \(-0.0797300\pi\)
−0.699057 + 0.715066i \(0.746397\pi\)
\(164\) 4.00330 + 6.93392i 0.312605 + 0.541448i
\(165\) 3.44778 0.967053i 0.268410 0.0752850i
\(166\) −12.4882 7.21006i −0.969272 0.559609i
\(167\) −2.06388 + 3.57474i −0.159708 + 0.276622i −0.934763 0.355271i \(-0.884389\pi\)
0.775055 + 0.631893i \(0.217722\pi\)
\(168\) −0.576424 0.998396i −0.0444721 0.0770279i
\(169\) −0.698155 1.20924i −0.0537042 0.0930185i
\(170\) 3.97281 + 14.1640i 0.304701 + 1.08633i
\(171\) 0.201405i 0.0154018i
\(172\) 0.975731 1.69002i 0.0743988 0.128862i
\(173\) 20.7126 11.9584i 1.57475 0.909181i 0.579173 0.815204i \(-0.303375\pi\)
0.995574 0.0939768i \(-0.0299579\pi\)
\(174\) 5.73899 0.435072
\(175\) −2.76494 + 5.05783i −0.209010 + 0.382336i
\(176\) −0.800700 1.38685i −0.0603550 0.104538i
\(177\) −11.9994 −0.901930
\(178\) 15.6356 + 9.02723i 1.17194 + 0.676620i
\(179\) 16.2259i 1.21278i 0.795167 + 0.606390i \(0.207383\pi\)
−0.795167 + 0.606390i \(0.792617\pi\)
\(180\) 1.56260 1.59947i 0.116469 0.119217i
\(181\) −2.06172 + 3.57100i −0.153246 + 0.265431i −0.932419 0.361379i \(-0.882306\pi\)
0.779173 + 0.626809i \(0.215639\pi\)
\(182\) 3.78816 + 2.18710i 0.280797 + 0.162118i
\(183\) 6.54846 + 11.3423i 0.484076 + 0.838445i
\(184\) −0.633422 −0.0466965
\(185\) 9.06863 10.1371i 0.666739 0.745291i
\(186\) −8.34912 −0.612187
\(187\) −5.26765 9.12384i −0.385209 0.667201i
\(188\) 4.03078 + 2.32717i 0.293975 + 0.169726i
\(189\) −0.576424 + 0.998396i −0.0419287 + 0.0726226i
\(190\) 0.322140 + 0.314714i 0.0233705 + 0.0228318i
\(191\) 4.40002i 0.318374i −0.987248 0.159187i \(-0.949113\pi\)
0.987248 0.159187i \(-0.0508873\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) −1.15300 −0.0829950 −0.0414975 0.999139i \(-0.513213\pi\)
−0.0414975 + 0.999139i \(0.513213\pi\)
\(194\) −1.46588 2.53898i −0.105244 0.182288i
\(195\) −2.10017 + 8.22015i −0.150397 + 0.588657i
\(196\) 5.67094 0.405067
\(197\) −1.50044 + 0.866279i −0.106902 + 0.0617199i −0.552498 0.833514i \(-0.686325\pi\)
0.445596 + 0.895234i \(0.352992\pi\)
\(198\) −0.800700 + 1.38685i −0.0569033 + 0.0985593i
\(199\) 19.8702i 1.40856i 0.709922 + 0.704281i \(0.248730\pi\)
−0.709922 + 0.704281i \(0.751270\pi\)
\(200\) 0.116584 + 4.99864i 0.00824374 + 0.353457i
\(201\) 5.38718 + 9.33087i 0.379982 + 0.658149i
\(202\) −7.43779 12.8826i −0.523321 0.906419i
\(203\) 3.30809 5.72979i 0.232183 0.402152i
\(204\) −5.69741 3.28940i −0.398899 0.230304i
\(205\) 4.83503 + 17.2381i 0.337693 + 1.20396i
\(206\) 1.41438 + 2.44978i 0.0985447 + 0.170684i
\(207\) 0.316711 + 0.548560i 0.0220129 + 0.0381275i
\(208\) 3.79425 0.263084
\(209\) −0.279319 0.161265i −0.0193209 0.0111549i
\(210\) −0.696182 2.48206i −0.0480411 0.171279i
\(211\) −15.6536 −1.07764 −0.538820 0.842421i \(-0.681130\pi\)
−0.538820 + 0.842421i \(0.681130\pi\)
\(212\) 8.62993i 0.592706i
\(213\) 9.56376 5.52164i 0.655298 0.378336i
\(214\) 9.43000i 0.644622i
\(215\) 3.04935 3.12130i 0.207964 0.212871i
\(216\) 1.00000i 0.0680414i
\(217\) −4.81263 + 8.33573i −0.326703 + 0.565866i
\(218\) −11.8873 6.86312i −0.805107 0.464829i
\(219\) 2.16187 3.74446i 0.146085 0.253027i
\(220\) −0.967053 3.44778i −0.0651987 0.232450i
\(221\) 24.9616 1.67910
\(222\) 0.267030 + 6.07690i 0.0179219 + 0.407855i
\(223\) 16.3946i 1.09786i 0.835867 + 0.548932i \(0.184965\pi\)
−0.835867 + 0.548932i \(0.815035\pi\)
\(224\) −0.998396 + 0.576424i −0.0667081 + 0.0385140i
\(225\) 4.27066 2.60029i 0.284711 0.173352i
\(226\) 4.45519 7.71661i 0.296355 0.513301i
\(227\) 13.6135 23.5793i 0.903562 1.56502i 0.0807258 0.996736i \(-0.474276\pi\)
0.822836 0.568279i \(-0.192390\pi\)
\(228\) −0.201405 −0.0133383
\(229\) −6.12750 + 10.6131i −0.404917 + 0.701336i −0.994312 0.106509i \(-0.966033\pi\)
0.589395 + 0.807845i \(0.299366\pi\)
\(230\) −1.37229 0.350609i −0.0904864 0.0231185i
\(231\) 0.923086 + 1.59883i 0.0607346 + 0.105195i
\(232\) 5.73899i 0.376783i
\(233\) 12.4646i 0.816581i −0.912852 0.408290i \(-0.866125\pi\)
0.912852 0.408290i \(-0.133875\pi\)
\(234\) −1.89712 3.28591i −0.124019 0.214807i
\(235\) 7.44446 + 7.27285i 0.485623 + 0.474429i
\(236\) 11.9994i 0.781094i
\(237\) −3.99017 6.91117i −0.259189 0.448929i
\(238\) −6.56826 + 3.79218i −0.425757 + 0.245811i
\(239\) −13.9717 + 8.06659i −0.903757 + 0.521784i −0.878417 0.477894i \(-0.841400\pi\)
−0.0253399 + 0.999679i \(0.508067\pi\)
\(240\) −1.59947 1.56260i −0.103245 0.100865i
\(241\) −0.462479 0.267013i −0.0297909 0.0171998i 0.485031 0.874497i \(-0.338808\pi\)
−0.514821 + 0.857297i \(0.672142\pi\)
\(242\) −4.21776 7.30537i −0.271128 0.469607i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 11.3423 6.54846i 0.726114 0.419222i
\(245\) 12.2860 + 3.13895i 0.784921 + 0.200540i
\(246\) −6.93392 4.00330i −0.442091 0.255241i
\(247\) 0.661798 0.382089i 0.0421092 0.0243118i
\(248\) 8.34912i 0.530169i
\(249\) 14.4201 0.913838
\(250\) −2.51425 + 10.8940i −0.159015 + 0.688995i
\(251\) 17.0952i 1.07904i 0.841973 + 0.539520i \(0.181394\pi\)
−0.841973 + 0.539520i \(0.818606\pi\)
\(252\) 0.998396 + 0.576424i 0.0628930 + 0.0363113i
\(253\) 1.01436 0.0637724
\(254\) −10.7457 6.20405i −0.674247 0.389277i
\(255\) −10.5226 10.2800i −0.658949 0.643760i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −2.85889 4.95174i −0.178333 0.308881i 0.762977 0.646426i \(-0.223737\pi\)
−0.941310 + 0.337544i \(0.890404\pi\)
\(258\) 1.95146i 0.121493i
\(259\) 6.22107 + 3.23627i 0.386559 + 0.201092i
\(260\) 8.22015 + 2.10017i 0.509792 + 0.130247i
\(261\) −4.97011 + 2.86950i −0.307642 + 0.177617i
\(262\) −0.150501 0.0868917i −0.00929797 0.00536819i
\(263\) −26.5295 15.3168i −1.63588 0.944474i −0.982232 0.187672i \(-0.939906\pi\)
−0.653645 0.756802i \(-0.726761\pi\)
\(264\) 1.38685 + 0.800700i 0.0853549 + 0.0492797i
\(265\) −4.77680 + 18.6965i −0.293436 + 1.14852i
\(266\) −0.116094 + 0.201082i −0.00711821 + 0.0123291i
\(267\) −18.0545 −1.10492
\(268\) 9.33087 5.38718i 0.569973 0.329074i
\(269\) 11.7982 0.719351 0.359675 0.933077i \(-0.382887\pi\)
0.359675 + 0.933077i \(0.382887\pi\)
\(270\) −0.553515 + 2.16648i −0.0336859 + 0.131848i
\(271\) −5.06391 8.77094i −0.307610 0.532797i 0.670229 0.742155i \(-0.266196\pi\)
−0.977839 + 0.209358i \(0.932863\pi\)
\(272\) −3.28940 + 5.69741i −0.199449 + 0.345456i
\(273\) −4.37419 −0.264738
\(274\) −0.141932 + 0.0819446i −0.00857443 + 0.00495045i
\(275\) −0.186698 8.00482i −0.0112583 0.482709i
\(276\) 0.548560 0.316711i 0.0330194 0.0190638i
\(277\) 14.9276 25.8554i 0.896913 1.55350i 0.0654936 0.997853i \(-0.479138\pi\)
0.831419 0.555646i \(-0.187529\pi\)
\(278\) 0.808880 1.40102i 0.0485134 0.0840277i
\(279\) 7.23055 4.17456i 0.432882 0.249924i
\(280\) −2.48206 + 0.696182i −0.148332 + 0.0416048i
\(281\) −14.1619 + 8.17640i −0.844831 + 0.487763i −0.858903 0.512138i \(-0.828854\pi\)
0.0140724 + 0.999901i \(0.495520\pi\)
\(282\) −4.65434 −0.277162
\(283\) 2.38752 4.13531i 0.141924 0.245819i −0.786297 0.617848i \(-0.788005\pi\)
0.928221 + 0.372029i \(0.121338\pi\)
\(284\) −5.52164 9.56376i −0.327649 0.567505i
\(285\) −0.436338 0.111480i −0.0258464 0.00660353i
\(286\) −6.07611 −0.359288
\(287\) −7.99376 + 4.61520i −0.471857 + 0.272427i
\(288\) 1.00000 0.0589256
\(289\) −13.1403 + 22.7598i −0.772962 + 1.33881i
\(290\) 3.17662 12.4334i 0.186538 0.730114i
\(291\) 2.53898 + 1.46588i 0.148838 + 0.0859314i
\(292\) −3.74446 2.16187i −0.219128 0.126514i
\(293\) 3.03946 + 1.75483i 0.177567 + 0.102518i 0.586149 0.810203i \(-0.300643\pi\)
−0.408582 + 0.912722i \(0.633977\pi\)
\(294\) −4.91118 + 2.83547i −0.286426 + 0.165368i
\(295\) −6.64185 + 25.9964i −0.386703 + 1.51357i
\(296\) 6.07690 0.267030i 0.353213 0.0155208i
\(297\) 1.60140i 0.0929226i
\(298\) −8.04929 13.9418i −0.466283 0.807625i
\(299\) −1.20168 + 2.08137i −0.0694950 + 0.120369i
\(300\) −2.60029 4.27066i −0.150128 0.246567i
\(301\) 1.94833 + 1.12487i 0.112300 + 0.0648364i
\(302\) 6.29036 0.361970
\(303\) 12.8826 + 7.43779i 0.740088 + 0.427290i
\(304\) 0.201405i 0.0115513i
\(305\) 28.1974 7.90897i 1.61458 0.452866i
\(306\) 6.57881 0.376085
\(307\) 13.8678i 0.791479i 0.918363 + 0.395739i \(0.129512\pi\)
−0.918363 + 0.395739i \(0.870488\pi\)
\(308\) 1.59883 0.923086i 0.0911019 0.0525977i
\(309\) −2.44978 1.41438i −0.139363 0.0804614i
\(310\) −4.62136 + 18.0882i −0.262476 + 1.02734i
\(311\) −13.6673 + 7.89080i −0.775000 + 0.447446i −0.834655 0.550773i \(-0.814333\pi\)
0.0596555 + 0.998219i \(0.481000\pi\)
\(312\) −3.28591 + 1.89712i −0.186028 + 0.107403i
\(313\) −6.99253 12.1114i −0.395241 0.684578i 0.597891 0.801578i \(-0.296006\pi\)
−0.993132 + 0.117000i \(0.962672\pi\)
\(314\) 3.38321 + 1.95330i 0.190925 + 0.110231i
\(315\) 1.84394 + 1.80144i 0.103894 + 0.101499i
\(316\) −6.91117 + 3.99017i −0.388784 + 0.224464i
\(317\) 4.22693 2.44042i 0.237408 0.137068i −0.376577 0.926385i \(-0.622899\pi\)
0.613985 + 0.789318i \(0.289566\pi\)
\(318\) −4.31497 7.47374i −0.241971 0.419107i
\(319\) 9.19042i 0.514565i
\(320\) −1.56260 + 1.59947i −0.0873518 + 0.0894129i
\(321\) −4.71500 8.16662i −0.263166 0.455816i
\(322\) 0.730240i 0.0406947i
\(323\) 1.32500i 0.0737251i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 16.6463 + 9.09995i 0.923369 + 0.504775i
\(326\) −3.44377 + 5.96478i −0.190733 + 0.330359i
\(327\) 13.7262 0.759063
\(328\) −4.00330 + 6.93392i −0.221045 + 0.382862i
\(329\) −2.68287 + 4.64687i −0.147912 + 0.256190i
\(330\) 2.56138 + 2.50234i 0.141000 + 0.137749i
\(331\) 8.03353 4.63816i 0.441563 0.254936i −0.262698 0.964878i \(-0.584612\pi\)
0.704260 + 0.709942i \(0.251279\pi\)
\(332\) 14.4201i 0.791407i
\(333\) −3.26970 5.12923i −0.179179 0.281080i
\(334\) −4.12776 −0.225861
\(335\) 23.1970 6.50642i 1.26739 0.355484i
\(336\) 0.576424 0.998396i 0.0314465 0.0544670i
\(337\) −26.0610 15.0463i −1.41963 0.819625i −0.423367 0.905958i \(-0.639152\pi\)
−0.996266 + 0.0863330i \(0.972485\pi\)
\(338\) 0.698155 1.20924i 0.0379746 0.0657740i
\(339\) 8.91037i 0.483945i
\(340\) −10.2800 + 10.5226i −0.557512 + 0.570667i
\(341\) 13.3703i 0.724041i
\(342\) 0.174421 0.100702i 0.00943163 0.00544536i
\(343\) 14.6077i 0.788740i
\(344\) 1.95146 0.105216
\(345\) 1.36375 0.382511i 0.0734216 0.0205937i
\(346\) 20.7126 + 11.9584i 1.11351 + 0.642888i
\(347\) −24.1815 −1.29813 −0.649066 0.760733i \(-0.724840\pi\)
−0.649066 + 0.760733i \(0.724840\pi\)
\(348\) 2.86950 + 4.97011i 0.153821 + 0.266426i
\(349\) −3.22778 5.59068i −0.172779 0.299262i 0.766611 0.642111i \(-0.221941\pi\)
−0.939390 + 0.342849i \(0.888608\pi\)
\(350\) −5.76268 + 0.134404i −0.308028 + 0.00718419i
\(351\) 3.28591 + 1.89712i 0.175389 + 0.101261i
\(352\) 0.800700 1.38685i 0.0426774 0.0739195i
\(353\) 5.33390 + 9.23859i 0.283895 + 0.491721i 0.972341 0.233567i \(-0.0750399\pi\)
−0.688446 + 0.725288i \(0.741707\pi\)
\(354\) −5.99970 10.3918i −0.318880 0.552317i
\(355\) −6.66882 23.7760i −0.353944 1.26190i
\(356\) 18.0545i 0.956885i
\(357\) 3.79218 6.56826i 0.200704 0.347629i
\(358\) −14.0520 + 8.11294i −0.742673 + 0.428782i
\(359\) −7.32628 −0.386666 −0.193333 0.981133i \(-0.561930\pi\)
−0.193333 + 0.981133i \(0.561930\pi\)
\(360\) 2.16648 + 0.553515i 0.114183 + 0.0291728i
\(361\) −9.47972 16.4194i −0.498933 0.864176i
\(362\) −4.12344 −0.216723
\(363\) 7.30537 + 4.21776i 0.383433 + 0.221375i
\(364\) 4.37419i 0.229270i
\(365\) −6.91566 6.75625i −0.361982 0.353638i
\(366\) −6.54846 + 11.3423i −0.342294 + 0.592870i
\(367\) −3.73951 2.15901i −0.195201 0.112699i 0.399214 0.916858i \(-0.369283\pi\)
−0.594415 + 0.804159i \(0.702616\pi\)
\(368\) −0.316711 0.548560i −0.0165097 0.0285957i
\(369\) 8.00660 0.416807
\(370\) 13.3133 + 2.78514i 0.692124 + 0.144793i
\(371\) −9.94900 −0.516527
\(372\) −4.17456 7.23055i −0.216441 0.374886i
\(373\) −0.164880 0.0951938i −0.00853719 0.00492895i 0.495725 0.868479i \(-0.334902\pi\)
−0.504263 + 0.863550i \(0.668236\pi\)
\(374\) 5.26765 9.12384i 0.272384 0.471782i
\(375\) −3.26958 10.6916i −0.168841 0.552111i
\(376\) 4.65434i 0.240029i
\(377\) −18.8578 10.8876i −0.971228 0.560739i
\(378\) −1.15285 −0.0592961
\(379\) −15.9392 27.6075i −0.818742 1.41810i −0.906610 0.421970i \(-0.861339\pi\)
0.0878680 0.996132i \(-0.471995\pi\)
\(380\) −0.111480 + 0.436338i −0.00571883 + 0.0223837i
\(381\) 12.4081 0.635686
\(382\) 3.81053 2.20001i 0.194963 0.112562i
\(383\) 11.9491 20.6964i 0.610569 1.05754i −0.380575 0.924750i \(-0.624274\pi\)
0.991145 0.132787i \(-0.0423926\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 3.97477 1.11487i 0.202573 0.0568188i
\(386\) −0.576502 0.998530i −0.0293432 0.0508238i
\(387\) −0.975731 1.69002i −0.0495992 0.0859083i
\(388\) 1.46588 2.53898i 0.0744188 0.128897i
\(389\) 6.13244 + 3.54056i 0.310927 + 0.179514i 0.647341 0.762200i \(-0.275881\pi\)
−0.336414 + 0.941714i \(0.609214\pi\)
\(390\) −8.16894 + 2.29127i −0.413651 + 0.116023i
\(391\) −2.08358 3.60887i −0.105371 0.182508i
\(392\) 2.83547 + 4.91118i 0.143213 + 0.248052i
\(393\) 0.173783 0.00876621
\(394\) −1.50044 0.866279i −0.0755911 0.0436425i
\(395\) −17.1815 + 4.81916i −0.864496 + 0.242478i
\(396\) −1.60140 −0.0804734
\(397\) 1.61077i 0.0808422i 0.999183 + 0.0404211i \(0.0128699\pi\)
−0.999183 + 0.0404211i \(0.987130\pi\)
\(398\) −17.2081 + 9.93510i −0.862564 + 0.498002i
\(399\) 0.232189i 0.0116240i
\(400\) −4.27066 + 2.60029i −0.213533 + 0.130014i
\(401\) 8.93803i 0.446344i 0.974779 + 0.223172i \(0.0716411\pi\)
−0.974779 + 0.223172i \(0.928359\pi\)
\(402\) −5.38718 + 9.33087i −0.268688 + 0.465381i
\(403\) 27.4345 + 15.8393i 1.36661 + 0.789012i
\(404\) 7.43779 12.8826i 0.370044 0.640935i
\(405\) −0.603880 2.15298i −0.0300070 0.106983i
\(406\) 6.61619 0.328356
\(407\) −9.73154 + 0.427622i −0.482375 + 0.0211964i
\(408\) 6.57881i 0.325699i
\(409\) −24.5929 + 14.1987i −1.21604 + 0.702080i −0.964068 0.265654i \(-0.914412\pi\)
−0.251971 + 0.967735i \(0.581079\pi\)
\(410\) −12.5111 + 12.8063i −0.617879 + 0.632458i
\(411\) 0.0819446 0.141932i 0.00404203 0.00700100i
\(412\) −1.41438 + 2.44978i −0.0696816 + 0.120692i
\(413\) −13.8335 −0.680701
\(414\) −0.316711 + 0.548560i −0.0155655 + 0.0269602i
\(415\) 7.98176 31.2409i 0.391809 1.53355i
\(416\) 1.89712 + 3.28591i 0.0930141 + 0.161105i
\(417\) 1.61776i 0.0792221i
\(418\) 0.322529i 0.0157754i
\(419\) −17.6867 30.6343i −0.864053 1.49658i −0.867984 0.496592i \(-0.834584\pi\)
0.00393056 0.999992i \(-0.498749\pi\)
\(420\) 1.80144 1.84394i 0.0879011 0.0899752i
\(421\) 6.87298i 0.334968i −0.985875 0.167484i \(-0.946436\pi\)
0.985875 0.167484i \(-0.0535643\pi\)
\(422\) −7.82681 13.5564i −0.381003 0.659917i
\(423\) 4.03078 2.32717i 0.195983 0.113151i
\(424\) −7.47374 + 4.31497i −0.362957 + 0.209553i
\(425\) −28.0958 + 17.1068i −1.36285 + 0.829800i
\(426\) 9.56376 + 5.52164i 0.463366 + 0.267524i
\(427\) 7.54938 + 13.0759i 0.365340 + 0.632788i
\(428\) −8.16662 + 4.71500i −0.394749 + 0.227908i
\(429\) 5.26206 3.03805i 0.254055 0.146679i
\(430\) 4.22780 + 1.08016i 0.203882 + 0.0520901i
\(431\) 29.8230 + 17.2183i 1.43652 + 0.829376i 0.997606 0.0691529i \(-0.0220296\pi\)
0.438915 + 0.898529i \(0.355363\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 17.7398i 0.852520i −0.904601 0.426260i \(-0.859831\pi\)
0.904601 0.426260i \(-0.140169\pi\)
\(434\) −9.62527 −0.462028
\(435\) 3.46566 + 12.3559i 0.166166 + 0.592422i
\(436\) 13.7262i 0.657367i
\(437\) −0.110482 0.0637871i −0.00528509 0.00305135i
\(438\) 4.32373 0.206596
\(439\) −4.36970 2.52285i −0.208554 0.120409i 0.392085 0.919929i \(-0.371754\pi\)
−0.600639 + 0.799520i \(0.705087\pi\)
\(440\) 2.50234 2.56138i 0.119294 0.122109i
\(441\) 2.83547 4.91118i 0.135022 0.233866i
\(442\) 12.4808 + 21.6174i 0.593652 + 1.02823i
\(443\) 5.67021i 0.269400i 0.990886 + 0.134700i \(0.0430070\pi\)
−0.990886 + 0.134700i \(0.956993\pi\)
\(444\) −5.12923 + 3.26970i −0.243423 + 0.155173i
\(445\) −9.99342 + 39.1146i −0.473734 + 1.85421i
\(446\) −14.1981 + 8.19730i −0.672301 + 0.388153i
\(447\) 13.9418 + 8.04929i 0.659423 + 0.380718i
\(448\) −0.998396 0.576424i −0.0471698 0.0272335i
\(449\) −5.83240 3.36734i −0.275248 0.158914i 0.356022 0.934477i \(-0.384133\pi\)
−0.631270 + 0.775563i \(0.717466\pi\)
\(450\) 4.38724 + 2.39836i 0.206817 + 0.113060i
\(451\) 6.41089 11.1040i 0.301877 0.522866i
\(452\) 8.91037 0.419109
\(453\) −5.44761 + 3.14518i −0.255951 + 0.147773i
\(454\) 27.2271 1.27783
\(455\) −2.42118 + 9.47659i −0.113507 + 0.444269i
\(456\) −0.100702 0.174421i −0.00471582 0.00816803i
\(457\) 12.5902 21.8068i 0.588944 1.02008i −0.405427 0.914127i \(-0.632877\pi\)
0.994371 0.105953i \(-0.0337894\pi\)
\(458\) −12.2550 −0.572639
\(459\) −5.69741 + 3.28940i −0.265933 + 0.153536i
\(460\) −0.382511 1.36375i −0.0178347 0.0635850i
\(461\) 30.6749 17.7102i 1.42867 0.824846i 0.431658 0.902037i \(-0.357929\pi\)
0.997016 + 0.0771914i \(0.0245952\pi\)
\(462\) −0.923086 + 1.59883i −0.0429458 + 0.0743844i
\(463\) 10.5328 18.2434i 0.489502 0.847842i −0.510425 0.859922i \(-0.670512\pi\)
0.999927 + 0.0120800i \(0.00384527\pi\)
\(464\) 4.97011 2.86950i 0.230732 0.133213i
\(465\) −5.04187 17.9755i −0.233811 0.833594i
\(466\) 10.7946 6.23228i 0.500052 0.288705i
\(467\) 36.8742 1.70634 0.853168 0.521636i \(-0.174678\pi\)
0.853168 + 0.521636i \(0.174678\pi\)
\(468\) 1.89712 3.28591i 0.0876946 0.151891i
\(469\) 6.21060 + 10.7571i 0.286779 + 0.496716i
\(470\) −2.57625 + 10.0835i −0.118833 + 0.465118i
\(471\) −3.90659 −0.180006
\(472\) −10.3918 + 5.99970i −0.478320 + 0.276158i
\(473\) −3.12507 −0.143691
\(474\) 3.99017 6.91117i 0.183274 0.317441i
\(475\) −0.483040 + 0.883611i −0.0221634 + 0.0405428i
\(476\) −6.56826 3.79218i −0.301055 0.173814i
\(477\) 7.47374 + 4.31497i 0.342199 + 0.197569i
\(478\) −13.9717 8.06659i −0.639053 0.368957i
\(479\) 3.93591 2.27240i 0.179836 0.103829i −0.407379 0.913259i \(-0.633557\pi\)
0.587216 + 0.809430i \(0.300224\pi\)
\(480\) 0.553515 2.16648i 0.0252644 0.0988857i
\(481\) 10.6512 20.4748i 0.485652 0.933569i
\(482\) 0.534025i 0.0243242i
\(483\) 0.365120 + 0.632406i 0.0166135 + 0.0287755i
\(484\) 4.21776 7.30537i 0.191716 0.332062i
\(485\) 4.58116 4.68925i 0.208020 0.212928i
\(486\) 0.866025 + 0.500000i 0.0392837 + 0.0226805i
\(487\) 26.0473 1.18032 0.590158 0.807288i \(-0.299065\pi\)
0.590158 + 0.807288i \(0.299065\pi\)
\(488\) 11.3423 + 6.54846i 0.513440 + 0.296435i
\(489\) 6.88754i 0.311465i
\(490\) 3.42457 + 12.2094i 0.154706 + 0.551566i
\(491\) 28.0039 1.26380 0.631900 0.775050i \(-0.282276\pi\)
0.631900 + 0.775050i \(0.282276\pi\)
\(492\) 8.00660i 0.360966i
\(493\) 32.6974 18.8779i 1.47262 0.850216i
\(494\) 0.661798 + 0.382089i 0.0297757 + 0.0171910i
\(495\) −3.46940 0.886399i −0.155938 0.0398407i
\(496\) −7.23055 + 4.17456i −0.324661 + 0.187443i
\(497\) 11.0256 6.36561i 0.494564 0.285537i
\(498\) 7.21006 + 12.4882i 0.323091 + 0.559609i
\(499\) 22.5995 + 13.0478i 1.01169 + 0.584100i 0.911686 0.410887i \(-0.134781\pi\)
0.100005 + 0.994987i \(0.468114\pi\)
\(500\) −10.6916 + 3.26958i −0.478142 + 0.146220i
\(501\) 3.57474 2.06388i 0.159708 0.0922073i
\(502\) −14.8049 + 8.54760i −0.660774 + 0.381498i
\(503\) 14.5457 + 25.1938i 0.648559 + 1.12334i 0.983467 + 0.181087i \(0.0579615\pi\)
−0.334908 + 0.942251i \(0.608705\pi\)
\(504\) 1.15285i 0.0513520i
\(505\) 23.2445 23.7930i 1.03437 1.05877i
\(506\) 0.507181 + 0.878464i 0.0225470 + 0.0390525i
\(507\) 1.39631i 0.0620123i
\(508\) 12.4081i 0.550520i
\(509\) −5.98303 10.3629i −0.265193 0.459328i 0.702421 0.711762i \(-0.252102\pi\)
−0.967614 + 0.252434i \(0.918769\pi\)
\(510\) 3.64147 14.2528i 0.161247 0.631126i
\(511\) 2.49230 4.31680i 0.110253 0.190964i
\(512\) −1.00000 −0.0441942
\(513\) −0.100702 + 0.174421i −0.00444611 + 0.00770090i
\(514\) 2.85889 4.95174i 0.126100 0.218412i
\(515\) −4.42022 + 4.52451i −0.194778 + 0.199374i
\(516\) −1.69002 + 0.975731i −0.0743988 + 0.0429542i
\(517\) 7.45346i 0.327803i
\(518\) 0.307845 + 7.00574i 0.0135259 + 0.307815i
\(519\) −23.9168 −1.04983
\(520\) 2.29127 + 8.16894i 0.100479 + 0.358232i
\(521\) 18.7348 32.4496i 0.820787 1.42164i −0.0843099 0.996440i \(-0.526869\pi\)
0.905097 0.425205i \(-0.139798\pi\)
\(522\) −4.97011 2.86950i −0.217536 0.125594i
\(523\) −17.4308 + 30.1910i −0.762195 + 1.32016i 0.179522 + 0.983754i \(0.442545\pi\)
−0.941717 + 0.336407i \(0.890788\pi\)
\(524\) 0.173783i 0.00759176i
\(525\) 4.92342 2.99773i 0.214876 0.130832i
\(526\) 30.6336i 1.33569i
\(527\) −47.5684 + 27.4636i −2.07211 + 1.19633i
\(528\) 1.60140i 0.0696920i
\(529\) −22.5988 −0.982555
\(530\) −18.5801 + 5.21144i −0.807067 + 0.226371i
\(531\) 10.3918 + 5.99970i 0.450965 + 0.260365i
\(532\) −0.232189 −0.0100667
\(533\) 15.1895 + 26.3090i 0.657931 + 1.13957i
\(534\) −9.02723 15.6356i −0.390647 0.676620i
\(535\) −20.3026 + 5.69459i −0.877759 + 0.246199i
\(536\) 9.33087 + 5.38718i 0.403032 + 0.232691i
\(537\) 8.11294 14.0520i 0.350099 0.606390i
\(538\) 5.89911 + 10.2176i 0.254329 + 0.440511i
\(539\) −4.54072 7.86476i −0.195583 0.338759i
\(540\) −2.15298 + 0.603880i −0.0926496 + 0.0259869i
\(541\) 6.10400i 0.262432i −0.991354 0.131216i \(-0.958112\pi\)
0.991354 0.131216i \(-0.0418881\pi\)
\(542\) 5.06391 8.77094i 0.217513 0.376744i
\(543\) 3.57100 2.06172i 0.153246 0.0884769i
\(544\) −6.57881 −0.282064
\(545\) 7.59768 29.7376i 0.325449 1.27382i
\(546\) −2.18710 3.78816i −0.0935991 0.162118i
\(547\) 28.0504 1.19935 0.599675 0.800243i \(-0.295296\pi\)
0.599675 + 0.800243i \(0.295296\pi\)
\(548\) −0.141932 0.0819446i −0.00606304 0.00350050i
\(549\) 13.0969i 0.558963i
\(550\) 6.83903 4.16410i 0.291617 0.177558i
\(551\) 0.577930 1.00100i 0.0246206 0.0426442i
\(552\) 0.548560 + 0.316711i 0.0233483 + 0.0134801i
\(553\) −4.60006 7.96753i −0.195614 0.338814i
\(554\) 29.8552 1.26843
\(555\) −12.9222 + 4.24463i −0.548517 + 0.180174i
\(556\) 1.61776 0.0686083
\(557\) −1.04224 1.80521i −0.0441610 0.0764890i 0.843100 0.537757i \(-0.180728\pi\)
−0.887261 + 0.461268i \(0.847395\pi\)
\(558\) 7.23055 + 4.17456i 0.306093 + 0.176723i
\(559\) 3.70216 6.41234i 0.156585 0.271213i
\(560\) −1.84394 1.80144i −0.0779208 0.0761246i
\(561\) 10.5353i 0.444801i
\(562\) −14.1619 8.17640i −0.597386 0.344901i
\(563\) 6.83925 0.288240 0.144120 0.989560i \(-0.453965\pi\)
0.144120 + 0.989560i \(0.453965\pi\)
\(564\) −2.32717 4.03078i −0.0979915 0.169726i
\(565\) 19.3041 + 4.93203i 0.812130 + 0.207492i
\(566\) 4.77505 0.200710
\(567\) 0.998396 0.576424i 0.0419287 0.0242075i
\(568\) 5.52164 9.56376i 0.231683 0.401286i
\(569\) 1.30706i 0.0547947i 0.999625 + 0.0273973i \(0.00872194\pi\)
−0.999625 + 0.0273973i \(0.991278\pi\)
\(570\) −0.121624 0.433620i −0.00509428 0.0181624i
\(571\) 12.5935 + 21.8126i 0.527022 + 0.912829i 0.999504 + 0.0314890i \(0.0100249\pi\)
−0.472482 + 0.881340i \(0.656642\pi\)
\(572\) −3.03805 5.26206i −0.127027 0.220018i
\(573\) −2.20001 + 3.81053i −0.0919066 + 0.159187i
\(574\) −7.99376 4.61520i −0.333653 0.192635i
\(575\) −0.0738470 3.16625i −0.00307963 0.132042i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 14.3582 + 24.8692i 0.597741 + 1.03532i 0.993154 + 0.116814i \(0.0372681\pi\)
−0.395413 + 0.918503i \(0.629399\pi\)
\(578\) −26.2807 −1.09313
\(579\) 0.998530 + 0.576502i 0.0414975 + 0.0239586i
\(580\) 12.3559 3.46566i 0.513053 0.143904i
\(581\) 16.6242 0.689689
\(582\) 2.93176i 0.121525i
\(583\) 11.9684 6.90999i 0.495682 0.286182i
\(584\) 4.32373i 0.178917i
\(585\) 5.92888 6.06877i 0.245129 0.250913i
\(586\) 3.50966i 0.144983i
\(587\) −19.0536 + 33.0018i −0.786427 + 1.36213i 0.141716 + 0.989907i \(0.454738\pi\)
−0.928143 + 0.372224i \(0.878595\pi\)
\(588\) −4.91118 2.83547i −0.202534 0.116933i
\(589\) −0.840775 + 1.45627i −0.0346435 + 0.0600044i
\(590\) −25.8345 + 7.24620i −1.06359 + 0.298321i
\(591\) 1.73256 0.0712679
\(592\) 3.26970 + 5.12923i 0.134384 + 0.210810i
\(593\) 10.9777i 0.450800i 0.974266 + 0.225400i \(0.0723688\pi\)
−0.974266 + 0.225400i \(0.927631\pi\)
\(594\) 1.38685 0.800700i 0.0569033 0.0328531i
\(595\) −12.1309 11.8513i −0.497320 0.485856i
\(596\) 8.04929 13.9418i 0.329712 0.571077i
\(597\) 9.93510 17.2081i 0.406617 0.704281i
\(598\) −2.40336 −0.0982807
\(599\) 6.68729 11.5827i 0.273235 0.473258i −0.696453 0.717602i \(-0.745240\pi\)
0.969688 + 0.244345i \(0.0785729\pi\)
\(600\) 2.39836 4.38724i 0.0979125 0.179108i
\(601\) −8.44195 14.6219i −0.344354 0.596439i 0.640882 0.767639i \(-0.278569\pi\)
−0.985236 + 0.171200i \(0.945235\pi\)
\(602\) 2.24974i 0.0916926i
\(603\) 10.7744i 0.438766i
\(604\) 3.14518 + 5.44761i 0.127976 + 0.221660i
\(605\) 13.1813 13.4923i 0.535897 0.548541i
\(606\) 14.8756i 0.604279i
\(607\) −12.0273 20.8319i −0.488172 0.845539i 0.511735 0.859143i \(-0.329003\pi\)
−0.999907 + 0.0136043i \(0.995669\pi\)
\(608\) −0.174421 + 0.100702i −0.00707372 + 0.00408402i
\(609\) −5.72979 + 3.30809i −0.232183 + 0.134051i
\(610\) 20.9481 + 20.4652i 0.848163 + 0.828612i
\(611\) 15.2938 + 8.82986i 0.618719 + 0.357218i
\(612\) 3.28940 + 5.69741i 0.132966 + 0.230304i
\(613\) −17.7700 + 10.2595i −0.717724 + 0.414378i −0.813914 0.580985i \(-0.802668\pi\)
0.0961906 + 0.995363i \(0.469334\pi\)
\(614\) −12.0099 + 6.93391i −0.484680 + 0.279830i
\(615\) 4.43178 17.3461i 0.178706 0.699463i
\(616\) 1.59883 + 0.923086i 0.0644188 + 0.0371922i
\(617\) 17.4897 10.0977i 0.704108 0.406517i −0.104767 0.994497i \(-0.533410\pi\)
0.808876 + 0.587980i \(0.200076\pi\)
\(618\) 2.82877i 0.113790i
\(619\) 1.21856 0.0489782 0.0244891 0.999700i \(-0.492204\pi\)
0.0244891 + 0.999700i \(0.492204\pi\)
\(620\) −17.9755 + 5.04187i −0.721913 + 0.202486i
\(621\) 0.633422i 0.0254184i
\(622\) −13.6673 7.89080i −0.548008 0.316392i
\(623\) −20.8141 −0.833898
\(624\) −3.28591 1.89712i −0.131542 0.0759457i
\(625\) −24.9728 + 1.16552i −0.998913 + 0.0466210i
\(626\) 6.99253 12.1114i 0.279478 0.484070i
\(627\) 0.161265 + 0.279319i 0.00644029 + 0.0111549i
\(628\) 3.90659i 0.155890i
\(629\) 21.5108 + 33.7442i 0.857690 + 1.34547i
\(630\) −0.638119 + 2.49762i −0.0254233 + 0.0995075i
\(631\) 35.4811 20.4850i 1.41248 0.815497i 0.416860 0.908971i \(-0.363131\pi\)
0.995622 + 0.0934743i \(0.0297973\pi\)
\(632\) −6.91117 3.99017i −0.274912 0.158720i
\(633\) 13.5564 + 7.82681i 0.538820 + 0.311088i
\(634\) 4.22693 + 2.44042i 0.167873 + 0.0969215i
\(635\) 6.86807 26.8819i 0.272551 1.06677i
\(636\) 4.31497 7.47374i 0.171100 0.296353i
\(637\) 21.5169 0.852533
\(638\) −7.95914 + 4.59521i −0.315105 + 0.181926i
\(639\) −11.0433 −0.436865
\(640\) −2.16648 0.553515i −0.0856375 0.0218796i
\(641\) −7.32583 12.6887i −0.289353 0.501174i 0.684302 0.729198i \(-0.260107\pi\)
−0.973655 + 0.228024i \(0.926773\pi\)
\(642\) 4.71500 8.16662i 0.186086 0.322311i
\(643\) −26.8103 −1.05730 −0.528648 0.848841i \(-0.677301\pi\)
−0.528648 + 0.848841i \(0.677301\pi\)
\(644\) 0.632406 0.365120i 0.0249203 0.0143877i
\(645\) −4.20146 + 1.17845i −0.165432 + 0.0464014i
\(646\) −1.14749 + 0.662501i −0.0451472 + 0.0260657i
\(647\) −10.9636 + 18.9895i −0.431024 + 0.746555i −0.996962 0.0778928i \(-0.975181\pi\)
0.565938 + 0.824448i \(0.308514\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) 16.6414 9.60791i 0.653232 0.377144i
\(650\) 0.442349 + 18.9661i 0.0173504 + 0.743911i
\(651\) 8.33573 4.81263i 0.326703 0.188622i
\(652\) −6.88754 −0.269737
\(653\) −13.8367 + 23.9659i −0.541473 + 0.937859i 0.457346 + 0.889289i \(0.348800\pi\)
−0.998820 + 0.0485707i \(0.984533\pi\)
\(654\) 6.86312 + 11.8873i 0.268369 + 0.464829i
\(655\) 0.0961918 0.376498i 0.00375852 0.0147110i
\(656\) −8.00660 −0.312605
\(657\) −3.74446 + 2.16187i −0.146085 + 0.0843424i
\(658\) −5.36575 −0.209179
\(659\) −24.2847 + 42.0624i −0.945998 + 1.63852i −0.192258 + 0.981344i \(0.561581\pi\)
−0.753740 + 0.657172i \(0.771752\pi\)
\(660\) −0.886399 + 3.46940i −0.0345030 + 0.135046i
\(661\) −24.9498 14.4048i −0.970434 0.560280i −0.0710652 0.997472i \(-0.522640\pi\)
−0.899368 + 0.437192i \(0.855973\pi\)
\(662\) 8.03353 + 4.63816i 0.312232 + 0.180267i
\(663\) −21.6174 12.4808i −0.839550 0.484714i
\(664\) 12.4882 7.21006i 0.484636 0.279805i
\(665\) −0.503032 0.128520i −0.0195067 0.00498380i
\(666\) 2.80719 5.39626i 0.108777 0.209101i
\(667\) 3.63521i 0.140756i
\(668\) −2.06388 3.57474i −0.0798539 0.138311i
\(669\) 8.19730 14.1981i 0.316926 0.548932i
\(670\) 17.2332 + 16.8360i 0.665777 + 0.650430i
\(671\) −18.1635 10.4867i −0.701194 0.404835i
\(672\) 1.15285 0.0444721
\(673\) 25.5316 + 14.7407i 0.984171 + 0.568211i 0.903527 0.428532i \(-0.140969\pi\)
0.0806443 + 0.996743i \(0.474302\pi\)
\(674\) 30.0926i 1.15913i
\(675\) −4.99864 + 0.116584i −0.192398 + 0.00448733i
\(676\) 1.39631 0.0537042
\(677\) 15.7058i 0.603625i −0.953367 0.301812i \(-0.902408\pi\)
0.953367 0.301812i \(-0.0975916\pi\)
\(678\) −7.71661 + 4.45519i −0.296355 + 0.171100i
\(679\) 2.92706 + 1.68994i 0.112330 + 0.0648539i
\(680\) −14.2528 3.64147i −0.546571 0.139644i
\(681\) −23.5793 + 13.6135i −0.903562 + 0.521672i
\(682\) 11.5790 6.68514i 0.443383 0.255987i
\(683\) −10.5991 18.3581i −0.405562 0.702454i 0.588825 0.808261i \(-0.299591\pi\)
−0.994387 + 0.105807i \(0.966257\pi\)
\(684\) 0.174421 + 0.100702i 0.00666917 + 0.00385045i
\(685\) −0.262135 0.256093i −0.0100157 0.00978479i
\(686\) −12.6506 + 7.30384i −0.483003 + 0.278862i
\(687\) 10.6131 6.12750i 0.404917 0.233779i
\(688\) 0.975731 + 1.69002i 0.0371994 + 0.0644312i
\(689\) 32.7441i 1.24745i
\(690\) 1.01314 + 0.989784i 0.0385695 + 0.0376804i
\(691\) −24.3436 42.1643i −0.926073 1.60401i −0.789826 0.613331i \(-0.789829\pi\)
−0.136247 0.990675i \(-0.543504\pi\)
\(692\) 23.9168i 0.909181i
\(693\) 1.84617i 0.0701303i
\(694\) −12.0908 20.9418i −0.458959 0.794940i
\(695\) 3.50484 + 0.895455i 0.132946 + 0.0339665i
\(696\) −2.86950 + 4.97011i −0.108768 + 0.188392i
\(697\) −52.6739 −1.99517
\(698\) 3.22778 5.59068i 0.122173 0.211610i
\(699\) −6.23228 + 10.7946i −0.235727 + 0.408290i
\(700\) −2.99773 4.92342i −0.113304 0.186088i
\(701\) −26.2855 + 15.1759i −0.992788 + 0.573186i −0.906106 0.423050i \(-0.860960\pi\)
−0.0866814 + 0.996236i \(0.527626\pi\)
\(702\) 3.79425i 0.143205i
\(703\) 1.08683 + 0.565382i 0.0409906 + 0.0213238i
\(704\) 1.60140 0.0603550
\(705\) −2.81066 10.0207i −0.105856 0.377402i
\(706\) −5.33390 + 9.23859i −0.200744 + 0.347699i
\(707\) 14.8517 + 8.57465i 0.558557 + 0.322483i
\(708\) 5.99970 10.3918i 0.225482 0.390547i
\(709\) 12.2106i 0.458577i −0.973358 0.229289i \(-0.926360\pi\)
0.973358 0.229289i \(-0.0736400\pi\)
\(710\) 17.2562 17.6633i 0.647613 0.662894i
\(711\) 7.98033i 0.299286i
\(712\) −15.6356 + 9.02723i −0.585970 + 0.338310i
\(713\) 5.28852i 0.198057i
\(714\) 7.58437 0.283838
\(715\) −3.66924 13.0817i −0.137222 0.489230i
\(716\) −14.0520 8.11294i −0.525149 0.303195i
\(717\) 16.1332 0.602505
\(718\) −3.66314 6.34474i −0.136707 0.236784i
\(719\) −6.58657 11.4083i −0.245637 0.425457i 0.716673 0.697409i \(-0.245664\pi\)
−0.962311 + 0.271953i \(0.912331\pi\)
\(720\) 0.603880 + 2.15298i 0.0225053 + 0.0802369i
\(721\) −2.82423 1.63057i −0.105180 0.0607256i
\(722\) 9.47972 16.4194i 0.352799 0.611065i
\(723\) 0.267013 + 0.462479i 0.00993031 + 0.0171998i
\(724\) −2.06172 3.57100i −0.0766232 0.132715i
\(725\) 28.6872 0.669075i 1.06541 0.0248488i
\(726\) 8.43552i 0.313071i
\(727\) −4.14865 + 7.18568i −0.153865 + 0.266502i −0.932645 0.360795i \(-0.882505\pi\)
0.778780 + 0.627297i \(0.215839\pi\)
\(728\) −3.78816 + 2.18710i −0.140399 + 0.0810592i
\(729\) −1.00000 −0.0370370
\(730\) 2.39325 9.36726i 0.0885782 0.346698i
\(731\) 6.41915 + 11.1183i 0.237421 + 0.411225i
\(732\) −13.0969 −0.484076
\(733\) −25.5218 14.7350i −0.942669 0.544250i −0.0518729 0.998654i \(-0.516519\pi\)
−0.890796 + 0.454404i \(0.849852\pi\)
\(734\) 4.31801i 0.159381i
\(735\) −9.07048 8.86139i −0.334570 0.326857i
\(736\) 0.316711 0.548560i 0.0116741 0.0202202i
\(737\) −14.9424 8.62703i −0.550412 0.317781i
\(738\) 4.00330 + 6.93392i 0.147364 + 0.255241i
\(739\) 45.4776 1.67292 0.836461 0.548027i \(-0.184621\pi\)
0.836461 + 0.548027i \(0.184621\pi\)
\(740\) 4.24463 + 12.9222i 0.156036 + 0.475029i
\(741\) −0.764179 −0.0280728
\(742\) −4.97450 8.61609i −0.182620 0.316307i
\(743\) 19.0245 + 10.9838i 0.697941 + 0.402957i 0.806580 0.591125i \(-0.201316\pi\)
−0.108639 + 0.994081i \(0.534649\pi\)
\(744\) 4.17456 7.23055i 0.153047 0.265085i
\(745\) 25.1556 25.7491i 0.921629 0.943375i
\(746\) 0.190388i 0.00697058i
\(747\) −12.4882 7.21006i −0.456919 0.263802i
\(748\) 10.5353 0.385209
\(749\) −5.43568 9.41488i −0.198616 0.344012i
\(750\) 7.62439 8.17733i 0.278403 0.298594i
\(751\) 20.1290 0.734517 0.367258 0.930119i \(-0.380296\pi\)
0.367258 + 0.930119i \(0.380296\pi\)
\(752\) −4.03078 + 2.32717i −0.146987 + 0.0848631i
\(753\) 8.54760 14.8049i 0.311492 0.539520i
\(754\) 21.7752i 0.793004i
\(755\) 3.79862 + 13.5430i 0.138246 + 0.492881i
\(756\) −0.576424 0.998396i −0.0209643 0.0363113i
\(757\) 9.99404 + 17.3102i 0.363239 + 0.629149i 0.988492 0.151273i \(-0.0483374\pi\)
−0.625253 + 0.780422i \(0.715004\pi\)
\(758\) 15.9392 27.6075i 0.578938 1.00275i
\(759\) −0.878464 0.507181i −0.0318862 0.0184095i
\(760\) −0.433620 + 0.121624i −0.0157291 + 0.00441177i
\(761\) −3.62729 6.28264i −0.131489 0.227746i 0.792762 0.609532i \(-0.208642\pi\)
−0.924251 + 0.381786i \(0.875309\pi\)
\(762\) 6.20405 + 10.7457i 0.224749 + 0.389277i
\(763\) 15.8243 0.572877
\(764\) 3.81053 + 2.20001i 0.137860 + 0.0795935i
\(765\) 3.97281 + 14.1640i 0.143637 + 0.512102i
\(766\) 23.8982 0.863475
\(767\) 45.5287i 1.64394i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 17.8233i 0.642724i 0.946956 + 0.321362i \(0.104141\pi\)
−0.946956 + 0.321362i \(0.895859\pi\)
\(770\) 2.95289 + 2.88482i 0.106415 + 0.103962i
\(771\) 5.71778i 0.205921i
\(772\) 0.576502 0.998530i 0.0207487 0.0359379i
\(773\) −40.0301 23.1114i −1.43978 0.831260i −0.441950 0.897040i \(-0.645713\pi\)
−0.997834 + 0.0657804i \(0.979046\pi\)
\(774\) 0.975731 1.69002i 0.0350719 0.0607464i
\(775\) −41.7342 + 0.973374i −1.49914 + 0.0349646i
\(776\) 2.93176 0.105244