# Properties

 Label 1110.2.ba.b.529.16 Level $1110$ Weight $2$ Character 1110.529 Analytic conductor $8.863$ Analytic rank $0$ Dimension $36$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1110 = 2 \cdot 3 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1110.ba (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$8.86339462436$$ Analytic rank: $$0$$ Dimension: $$36$$ Relative dimension: $$18$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 529.16 Character $$\chi$$ $$=$$ 1110.529 Dual form 1110.2.ba.b.619.16

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.64331 - 1.51642i) q^{5} +1.00000i q^{6} +(0.916644 + 0.529225i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.64331 - 1.51642i) q^{5} +1.00000i q^{6} +(0.916644 + 0.529225i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(2.13491 + 0.664945i) q^{10} -0.825600 q^{11} +(-0.866025 + 0.500000i) q^{12} +(-1.81865 + 3.14999i) q^{13} +1.05845i q^{14} +(2.18136 - 0.491597i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.742138 + 1.28542i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(4.75785 + 2.74695i) q^{19} +(0.491597 + 2.18136i) q^{20} +(0.529225 + 0.916644i) q^{21} +(-0.412800 - 0.714991i) q^{22} +2.23982 q^{23} +(-0.866025 - 0.500000i) q^{24} +(0.400968 - 4.98390i) q^{25} -3.63729 q^{26} +1.00000i q^{27} +(-0.916644 + 0.529225i) q^{28} +2.02537i q^{29} +(1.51642 + 1.64331i) q^{30} +6.27676i q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.714991 - 0.412800i) q^{33} +(-0.742138 + 1.28542i) q^{34} +(2.30886 - 0.520331i) q^{35} -1.00000 q^{36} +(5.95462 + 1.24197i) q^{37} +5.49389i q^{38} +(-3.14999 + 1.81865i) q^{39} +(-1.64331 + 1.51642i) q^{40} +(-1.42858 + 2.47438i) q^{41} +(-0.529225 + 0.916644i) q^{42} +10.6694 q^{43} +(0.412800 - 0.714991i) q^{44} +(2.13491 + 0.664945i) q^{45} +(1.11991 + 1.93975i) q^{46} -11.7632i q^{47} -1.00000i q^{48} +(-2.93984 - 5.09196i) q^{49} +(4.51666 - 2.14470i) q^{50} +1.48428i q^{51} +(-1.81865 - 3.14999i) q^{52} +(8.00978 - 4.62445i) q^{53} +(-0.866025 + 0.500000i) q^{54} +(-1.35672 + 1.25195i) q^{55} +(-0.916644 - 0.529225i) q^{56} +(2.74695 + 4.75785i) q^{57} +(-1.75402 + 1.01268i) q^{58} +(-6.33426 + 3.65709i) q^{59} +(-0.664945 + 2.13491i) q^{60} +(-5.60990 - 3.23888i) q^{61} +(-5.43583 + 3.13838i) q^{62} +1.05845i q^{63} +1.00000 q^{64} +(1.78808 + 7.93425i) q^{65} -0.825600i q^{66} +(-11.2463 - 6.49307i) q^{67} -1.48428 q^{68} +(1.93975 + 1.11991i) q^{69} +(1.60505 + 1.73937i) q^{70} +(-0.701131 + 1.21439i) q^{71} +(-0.500000 - 0.866025i) q^{72} +8.82512i q^{73} +(1.90173 + 5.77784i) q^{74} +(2.83920 - 4.11570i) q^{75} +(-4.75785 + 2.74695i) q^{76} +(-0.756782 - 0.436928i) q^{77} +(-3.14999 - 1.81865i) q^{78} +(-3.10453 - 1.79240i) q^{79} +(-2.13491 - 0.664945i) q^{80} +(-0.500000 + 0.866025i) q^{81} -2.85716 q^{82} +(13.4101 - 7.74230i) q^{83} -1.05845 q^{84} +(3.16880 + 0.986962i) q^{85} +(5.33471 + 9.23999i) q^{86} +(-1.01268 + 1.75402i) q^{87} +0.825600 q^{88} +(-2.86558 + 1.65444i) q^{89} +(0.491597 + 2.18136i) q^{90} +(-3.33410 + 1.92495i) q^{91} +(-1.11991 + 1.93975i) q^{92} +(-3.13838 + 5.43583i) q^{93} +(10.1872 - 5.88160i) q^{94} +(11.9842 - 2.70078i) q^{95} +(0.866025 - 0.500000i) q^{96} -5.18358 q^{97} +(2.93984 - 5.09196i) q^{98} +(-0.412800 - 0.714991i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + O(q^{10})$$ $$36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} + 14q^{13} + 2q^{15} - 18q^{16} - 18q^{18} + 6q^{19} - 2q^{20} + 2q^{22} + 20q^{23} - 2q^{25} + 28q^{26} - 2q^{30} + 18q^{32} + 6q^{33} - 20q^{35} - 36q^{36} - 20q^{37} + 6q^{39} - 4q^{40} + 10q^{41} - 2q^{44} + 2q^{45} + 10q^{46} + 10q^{49} - 4q^{50} + 14q^{52} + 12q^{53} + 40q^{55} - 8q^{57} - 30q^{58} + 18q^{59} - 4q^{60} - 6q^{61} + 12q^{62} + 36q^{64} - 32q^{65} - 36q^{67} + 12q^{69} - 40q^{70} - 24q^{71} - 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} + 24q^{77} + 6q^{78} - 2q^{80} - 18q^{81} + 20q^{82} - 36q^{83} + 26q^{85} + 10q^{87} - 4q^{88} - 2q^{90} - 36q^{91} - 10q^{92} - 12q^{93} + 12q^{94} + 18q^{95} - 52q^{97} - 10q^{98} + 2q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times$$.

 $$n$$ $$371$$ $$631$$ $$667$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ 0.866025 + 0.500000i 0.500000 + 0.288675i
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ 1.64331 1.51642i 0.734913 0.678162i
$$6$$ 1.00000i 0.408248i
$$7$$ 0.916644 + 0.529225i 0.346459 + 0.200028i 0.663125 0.748509i $$-0.269230\pi$$
−0.316666 + 0.948537i $$0.602563\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ 0.500000 + 0.866025i 0.166667 + 0.288675i
$$10$$ 2.13491 + 0.664945i 0.675118 + 0.210274i
$$11$$ −0.825600 −0.248928 −0.124464 0.992224i $$-0.539721\pi$$
−0.124464 + 0.992224i $$0.539721\pi$$
$$12$$ −0.866025 + 0.500000i −0.250000 + 0.144338i
$$13$$ −1.81865 + 3.14999i −0.504402 + 0.873649i 0.495585 + 0.868559i $$0.334954\pi$$
−0.999987 + 0.00509014i $$0.998380\pi$$
$$14$$ 1.05845i 0.282883i
$$15$$ 2.18136 0.491597i 0.563225 0.126930i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 0.742138 + 1.28542i 0.179995 + 0.311760i 0.941879 0.335954i $$-0.109059\pi$$
−0.761884 + 0.647714i $$0.775725\pi$$
$$18$$ −0.500000 + 0.866025i −0.117851 + 0.204124i
$$19$$ 4.75785 + 2.74695i 1.09153 + 0.630193i 0.933982 0.357319i $$-0.116309\pi$$
0.157543 + 0.987512i $$0.449643\pi$$
$$20$$ 0.491597 + 2.18136i 0.109924 + 0.487767i
$$21$$ 0.529225 + 0.916644i 0.115486 + 0.200028i
$$22$$ −0.412800 0.714991i −0.0880093 0.152437i
$$23$$ 2.23982 0.467036 0.233518 0.972353i $$-0.424976\pi$$
0.233518 + 0.972353i $$0.424976\pi$$
$$24$$ −0.866025 0.500000i −0.176777 0.102062i
$$25$$ 0.400968 4.98390i 0.0801936 0.996779i
$$26$$ −3.63729 −0.713332
$$27$$ 1.00000i 0.192450i
$$28$$ −0.916644 + 0.529225i −0.173229 + 0.100014i
$$29$$ 2.02537i 0.376101i 0.982159 + 0.188050i $$0.0602168\pi$$
−0.982159 + 0.188050i $$0.939783\pi$$
$$30$$ 1.51642 + 1.64331i 0.276858 + 0.300027i
$$31$$ 6.27676i 1.12734i 0.826000 + 0.563669i $$0.190611\pi$$
−0.826000 + 0.563669i $$0.809389\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ −0.714991 0.412800i −0.124464 0.0718593i
$$34$$ −0.742138 + 1.28542i −0.127276 + 0.220448i
$$35$$ 2.30886 0.520331i 0.390269 0.0879519i
$$36$$ −1.00000 −0.166667
$$37$$ 5.95462 + 1.24197i 0.978934 + 0.204179i
$$38$$ 5.49389i 0.891227i
$$39$$ −3.14999 + 1.81865i −0.504402 + 0.291216i
$$40$$ −1.64331 + 1.51642i −0.259831 + 0.239766i
$$41$$ −1.42858 + 2.47438i −0.223107 + 0.386433i −0.955750 0.294181i $$-0.904953\pi$$
0.732643 + 0.680613i $$0.238287\pi$$
$$42$$ −0.529225 + 0.916644i −0.0816612 + 0.141441i
$$43$$ 10.6694 1.62707 0.813536 0.581515i $$-0.197540\pi$$
0.813536 + 0.581515i $$0.197540\pi$$
$$44$$ 0.412800 0.714991i 0.0622319 0.107789i
$$45$$ 2.13491 + 0.664945i 0.318254 + 0.0991241i
$$46$$ 1.11991 + 1.93975i 0.165122 + 0.286000i
$$47$$ 11.7632i 1.71584i −0.513783 0.857920i $$-0.671756\pi$$
0.513783 0.857920i $$-0.328244\pi$$
$$48$$ 1.00000i 0.144338i
$$49$$ −2.93984 5.09196i −0.419977 0.727422i
$$50$$ 4.51666 2.14470i 0.638753 0.303306i
$$51$$ 1.48428i 0.207840i
$$52$$ −1.81865 3.14999i −0.252201 0.436825i
$$53$$ 8.00978 4.62445i 1.10023 0.635217i 0.163947 0.986469i $$-0.447577\pi$$
0.936281 + 0.351252i $$0.114244\pi$$
$$54$$ −0.866025 + 0.500000i −0.117851 + 0.0680414i
$$55$$ −1.35672 + 1.25195i −0.182940 + 0.168813i
$$56$$ −0.916644 0.529225i −0.122492 0.0707206i
$$57$$ 2.74695 + 4.75785i 0.363842 + 0.630193i
$$58$$ −1.75402 + 1.01268i −0.230314 + 0.132972i
$$59$$ −6.33426 + 3.65709i −0.824651 + 0.476112i −0.852018 0.523513i $$-0.824621\pi$$
0.0273670 + 0.999625i $$0.491288\pi$$
$$60$$ −0.664945 + 2.13491i −0.0858440 + 0.275616i
$$61$$ −5.60990 3.23888i −0.718274 0.414696i 0.0958432 0.995396i $$-0.469445\pi$$
−0.814117 + 0.580701i $$0.802779\pi$$
$$62$$ −5.43583 + 3.13838i −0.690351 + 0.398574i
$$63$$ 1.05845i 0.133352i
$$64$$ 1.00000 0.125000
$$65$$ 1.78808 + 7.93425i 0.221784 + 0.984122i
$$66$$ 0.825600i 0.101624i
$$67$$ −11.2463 6.49307i −1.37396 0.793255i −0.382535 0.923941i $$-0.624949\pi$$
−0.991424 + 0.130686i $$0.958282\pi$$
$$68$$ −1.48428 −0.179995
$$69$$ 1.93975 + 1.11991i 0.233518 + 0.134822i
$$70$$ 1.60505 + 1.73937i 0.191840 + 0.207894i
$$71$$ −0.701131 + 1.21439i −0.0832089 + 0.144122i −0.904627 0.426205i $$-0.859850\pi$$
0.821418 + 0.570327i $$0.193184\pi$$
$$72$$ −0.500000 0.866025i −0.0589256 0.102062i
$$73$$ 8.82512i 1.03290i 0.856317 + 0.516451i $$0.172747\pi$$
−0.856317 + 0.516451i $$0.827253\pi$$
$$74$$ 1.90173 + 5.77784i 0.221072 + 0.671660i
$$75$$ 2.83920 4.11570i 0.327842 0.475240i
$$76$$ −4.75785 + 2.74695i −0.545763 + 0.315096i
$$77$$ −0.756782 0.436928i −0.0862433 0.0497926i
$$78$$ −3.14999 1.81865i −0.356666 0.205921i
$$79$$ −3.10453 1.79240i −0.349287 0.201661i 0.315084 0.949064i $$-0.397967\pi$$
−0.664371 + 0.747403i $$0.731300\pi$$
$$80$$ −2.13491 0.664945i −0.238690 0.0743431i
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ −2.85716 −0.315521
$$83$$ 13.4101 7.74230i 1.47195 0.849828i 0.472443 0.881361i $$-0.343372\pi$$
0.999503 + 0.0315331i $$0.0100390\pi$$
$$84$$ −1.05845 −0.115486
$$85$$ 3.16880 + 0.986962i 0.343705 + 0.107051i
$$86$$ 5.33471 + 9.23999i 0.575257 + 0.996374i
$$87$$ −1.01268 + 1.75402i −0.108571 + 0.188050i
$$88$$ 0.825600 0.0880093
$$89$$ −2.86558 + 1.65444i −0.303751 + 0.175371i −0.644127 0.764919i $$-0.722779\pi$$
0.340376 + 0.940289i $$0.389446\pi$$
$$90$$ 0.491597 + 2.18136i 0.0518189 + 0.229936i
$$91$$ −3.33410 + 1.92495i −0.349509 + 0.201789i
$$92$$ −1.11991 + 1.93975i −0.116759 + 0.202232i
$$93$$ −3.13838 + 5.43583i −0.325435 + 0.563669i
$$94$$ 10.1872 5.88160i 1.05073 0.606641i
$$95$$ 11.9842 2.70078i 1.22955 0.277094i
$$96$$ 0.866025 0.500000i 0.0883883 0.0510310i
$$97$$ −5.18358 −0.526313 −0.263157 0.964753i $$-0.584764\pi$$
−0.263157 + 0.964753i $$0.584764\pi$$
$$98$$ 2.93984 5.09196i 0.296969 0.514365i
$$99$$ −0.412800 0.714991i −0.0414880 0.0718593i
$$100$$ 4.11570 + 2.83920i 0.411570 + 0.283920i
$$101$$ −10.5205 −1.04682 −0.523412 0.852080i $$-0.675341\pi$$
−0.523412 + 0.852080i $$0.675341\pi$$
$$102$$ −1.28542 + 0.742138i −0.127276 + 0.0734826i
$$103$$ −16.1758 −1.59385 −0.796923 0.604081i $$-0.793540\pi$$
−0.796923 + 0.604081i $$0.793540\pi$$
$$104$$ 1.81865 3.14999i 0.178333 0.308882i
$$105$$ 2.25970 + 0.703810i 0.220524 + 0.0686849i
$$106$$ 8.00978 + 4.62445i 0.777979 + 0.449166i
$$107$$ −12.2112 7.05015i −1.18050 0.681563i −0.224372 0.974504i $$-0.572033\pi$$
−0.956131 + 0.292940i $$0.905366\pi$$
$$108$$ −0.866025 0.500000i −0.0833333 0.0481125i
$$109$$ −4.54656 + 2.62496i −0.435481 + 0.251425i −0.701679 0.712493i $$-0.747566\pi$$
0.266198 + 0.963918i $$0.414233\pi$$
$$110$$ −1.76258 0.548978i −0.168056 0.0523430i
$$111$$ 4.53587 + 4.05289i 0.430525 + 0.384683i
$$112$$ 1.05845i 0.100014i
$$113$$ 1.67721 + 2.90502i 0.157779 + 0.273281i 0.934067 0.357097i $$-0.116233\pi$$
−0.776288 + 0.630378i $$0.782900\pi$$
$$114$$ −2.74695 + 4.75785i −0.257275 + 0.445613i
$$115$$ 3.68074 3.39651i 0.343231 0.316726i
$$116$$ −1.75402 1.01268i −0.162856 0.0940252i
$$117$$ −3.63729 −0.336268
$$118$$ −6.33426 3.65709i −0.583116 0.336662i
$$119$$ 1.57103i 0.144016i
$$120$$ −2.18136 + 0.491597i −0.199130 + 0.0448765i
$$121$$ −10.3184 −0.938035
$$122$$ 6.47775i 0.586468i
$$123$$ −2.47438 + 1.42858i −0.223107 + 0.128811i
$$124$$ −5.43583 3.13838i −0.488152 0.281835i
$$125$$ −6.89874 8.79815i −0.617042 0.786930i
$$126$$ −0.916644 + 0.529225i −0.0816612 + 0.0471471i
$$127$$ 5.43873 3.14005i 0.482609 0.278634i −0.238894 0.971046i $$-0.576785\pi$$
0.721503 + 0.692411i $$0.243452\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ 9.23999 + 5.33471i 0.813536 + 0.469695i
$$130$$ −5.97722 + 5.51565i −0.524237 + 0.483754i
$$131$$ 11.2829 6.51420i 0.985794 0.569148i 0.0817796 0.996650i $$-0.473940\pi$$
0.904014 + 0.427502i $$0.140606\pi$$
$$132$$ 0.714991 0.412800i 0.0622319 0.0359296i
$$133$$ 2.90750 + 5.03594i 0.252113 + 0.436672i
$$134$$ 12.9861i 1.12183i
$$135$$ 1.51642 + 1.64331i 0.130512 + 0.141434i
$$136$$ −0.742138 1.28542i −0.0636378 0.110224i
$$137$$ 7.15737i 0.611496i −0.952113 0.305748i $$-0.901094\pi$$
0.952113 0.305748i $$-0.0989064\pi$$
$$138$$ 2.23982i 0.190667i
$$139$$ −5.76530 9.98579i −0.489006 0.846983i 0.510914 0.859632i $$-0.329307\pi$$
−0.999920 + 0.0126486i $$0.995974\pi$$
$$140$$ −0.703810 + 2.25970i −0.0594828 + 0.190979i
$$141$$ 5.88160 10.1872i 0.495320 0.857920i
$$142$$ −1.40226 −0.117675
$$143$$ 1.50147 2.60063i 0.125560 0.217476i
$$144$$ 0.500000 0.866025i 0.0416667 0.0721688i
$$145$$ 3.07130 + 3.32831i 0.255057 + 0.276401i
$$146$$ −7.64277 + 4.41256i −0.632520 + 0.365186i
$$147$$ 5.87968i 0.484948i
$$148$$ −4.05289 + 4.53587i −0.333145 + 0.372846i
$$149$$ −3.03860 −0.248932 −0.124466 0.992224i $$-0.539722\pi$$
−0.124466 + 0.992224i $$0.539722\pi$$
$$150$$ 4.98390 + 0.400968i 0.406933 + 0.0327389i
$$151$$ −4.20011 + 7.27481i −0.341800 + 0.592015i −0.984767 0.173879i $$-0.944370\pi$$
0.642967 + 0.765894i $$0.277703\pi$$
$$152$$ −4.75785 2.74695i −0.385913 0.222807i
$$153$$ −0.742138 + 1.28542i −0.0599983 + 0.103920i
$$154$$ 0.873856i 0.0704173i
$$155$$ 9.51817 + 10.3147i 0.764518 + 0.828496i
$$156$$ 3.63729i 0.291216i
$$157$$ −12.7985 + 7.38920i −1.02143 + 0.589722i −0.914517 0.404546i $$-0.867429\pi$$
−0.106911 + 0.994269i $$0.534096\pi$$
$$158$$ 3.58480i 0.285191i
$$159$$ 9.24890 0.733485
$$160$$ −0.491597 2.18136i −0.0388641 0.172452i
$$161$$ 2.05312 + 1.18537i 0.161809 + 0.0934203i
$$162$$ −1.00000 −0.0785674
$$163$$ −1.76345 3.05439i −0.138124 0.239238i 0.788662 0.614827i $$-0.210774\pi$$
−0.926787 + 0.375588i $$0.877441\pi$$
$$164$$ −1.42858 2.47438i −0.111554 0.193216i
$$165$$ −1.80093 + 0.405862i −0.140202 + 0.0315963i
$$166$$ 13.4101 + 7.74230i 1.04082 + 0.600919i
$$167$$ 10.7385 18.5996i 0.830969 1.43928i −0.0663009 0.997800i $$-0.521120\pi$$
0.897270 0.441482i $$-0.145547\pi$$
$$168$$ −0.529225 0.916644i −0.0408306 0.0707206i
$$169$$ −0.114948 0.199096i −0.00884218 0.0153151i
$$170$$ 0.729666 + 3.23774i 0.0559628 + 0.248323i
$$171$$ 5.49389i 0.420128i
$$172$$ −5.33471 + 9.23999i −0.406768 + 0.704543i
$$173$$ 2.69931 1.55845i 0.205225 0.118487i −0.393865 0.919168i $$-0.628862\pi$$
0.599090 + 0.800681i $$0.295529\pi$$
$$174$$ −2.02537 −0.153543
$$175$$ 3.00515 4.35626i 0.227168 0.329302i
$$176$$ 0.412800 + 0.714991i 0.0311160 + 0.0538944i
$$177$$ −7.31417 −0.549767
$$178$$ −2.86558 1.65444i −0.214784 0.124006i
$$179$$ 10.0254i 0.749333i 0.927160 + 0.374666i $$0.122243\pi$$
−0.927160 + 0.374666i $$0.877757\pi$$
$$180$$ −1.64331 + 1.51642i −0.122485 + 0.113027i
$$181$$ 0.887705 1.53755i 0.0659826 0.114285i −0.831147 0.556053i $$-0.812315\pi$$
0.897129 + 0.441768i $$0.145648\pi$$
$$182$$ −3.33410 1.92495i −0.247140 0.142686i
$$183$$ −3.23888 5.60990i −0.239425 0.414696i
$$184$$ −2.23982 −0.165122
$$185$$ 11.6687 6.98873i 0.857897 0.513822i
$$186$$ −6.27676 −0.460234
$$187$$ −0.612709 1.06124i −0.0448058 0.0776058i
$$188$$ 10.1872 + 5.88160i 0.742981 + 0.428960i
$$189$$ −0.529225 + 0.916644i −0.0384954 + 0.0666761i
$$190$$ 8.33102 + 9.02819i 0.604396 + 0.654974i
$$191$$ 19.2656i 1.39401i −0.717066 0.697006i $$-0.754515\pi$$
0.717066 0.697006i $$-0.245485\pi$$
$$192$$ 0.866025 + 0.500000i 0.0625000 + 0.0360844i
$$193$$ 18.5203 1.33312 0.666561 0.745451i $$-0.267766\pi$$
0.666561 + 0.745451i $$0.267766\pi$$
$$194$$ −2.59179 4.48912i −0.186080 0.322300i
$$195$$ −2.41860 + 7.76530i −0.173199 + 0.556085i
$$196$$ 5.87968 0.419977
$$197$$ 4.21694 2.43465i 0.300444 0.173462i −0.342198 0.939628i $$-0.611171\pi$$
0.642642 + 0.766166i $$0.277838\pi$$
$$198$$ 0.412800 0.714991i 0.0293364 0.0508122i
$$199$$ 17.8813i 1.26757i −0.773509 0.633785i $$-0.781500\pi$$
0.773509 0.633785i $$-0.218500\pi$$
$$200$$ −0.400968 + 4.98390i −0.0283527 + 0.352415i
$$201$$ −6.49307 11.2463i −0.457986 0.793255i
$$202$$ −5.26023 9.11098i −0.370108 0.641046i
$$203$$ −1.07187 + 1.85654i −0.0752308 + 0.130304i
$$204$$ −1.28542 0.742138i −0.0899975 0.0519601i
$$205$$ 1.40457 + 6.23251i 0.0980997 + 0.435297i
$$206$$ −8.08789 14.0086i −0.563510 0.976028i
$$207$$ 1.11991 + 1.93975i 0.0778393 + 0.134822i
$$208$$ 3.63729 0.252201
$$209$$ −3.92808 2.26788i −0.271711 0.156872i
$$210$$ 0.520331 + 2.30886i 0.0359062 + 0.159326i
$$211$$ −0.395745 −0.0272442 −0.0136221 0.999907i $$-0.504336\pi$$
−0.0136221 + 0.999907i $$0.504336\pi$$
$$212$$ 9.24890i 0.635217i
$$213$$ −1.21439 + 0.701131i −0.0832089 + 0.0480407i
$$214$$ 14.1003i 0.963876i
$$215$$ 17.5332 16.1793i 1.19576 1.10342i
$$216$$ 1.00000i 0.0680414i
$$217$$ −3.32182 + 5.75355i −0.225500 + 0.390577i
$$218$$ −4.54656 2.62496i −0.307932 0.177785i
$$219$$ −4.41256 + 7.64277i −0.298173 + 0.516451i
$$220$$ −0.405862 1.80093i −0.0273632 0.121419i
$$221$$ −5.39875 −0.363159
$$222$$ −1.24197 + 5.95462i −0.0833557 + 0.399648i
$$223$$ 25.5883i 1.71352i 0.515713 + 0.856761i $$0.327527\pi$$
−0.515713 + 0.856761i $$0.672473\pi$$
$$224$$ 0.916644 0.529225i 0.0612459 0.0353603i
$$225$$ 4.51666 2.14470i 0.301111 0.142980i
$$226$$ −1.67721 + 2.90502i −0.111567 + 0.193239i
$$227$$ 11.6633 20.2013i 0.774117 1.34081i −0.161172 0.986926i $$-0.551527\pi$$
0.935289 0.353884i $$-0.115139\pi$$
$$228$$ −5.49389 −0.363842
$$229$$ −11.6531 + 20.1837i −0.770055 + 1.33377i 0.167477 + 0.985876i $$0.446438\pi$$
−0.937532 + 0.347899i $$0.886895\pi$$
$$230$$ 4.78183 + 1.48936i 0.315304 + 0.0982055i
$$231$$ −0.436928 0.756782i −0.0287478 0.0497926i
$$232$$ 2.02537i 0.132972i
$$233$$ 0.508726i 0.0333277i 0.999861 + 0.0166639i $$0.00530452\pi$$
−0.999861 + 0.0166639i $$0.994695\pi$$
$$234$$ −1.81865 3.14999i −0.118889 0.205921i
$$235$$ −17.8379 19.3307i −1.16362 1.26099i
$$236$$ 7.31417i 0.476112i
$$237$$ −1.79240 3.10453i −0.116429 0.201661i
$$238$$ −1.36055 + 0.785516i −0.0881916 + 0.0509174i
$$239$$ 5.12135 2.95681i 0.331273 0.191260i −0.325133 0.945668i $$-0.605409\pi$$
0.656406 + 0.754408i $$0.272076\pi$$
$$240$$ −1.51642 1.64331i −0.0978842 0.106076i
$$241$$ 1.48624 + 0.858078i 0.0957368 + 0.0552737i 0.547104 0.837065i $$-0.315730\pi$$
−0.451367 + 0.892338i $$0.649064\pi$$
$$242$$ −5.15919 8.93598i −0.331645 0.574427i
$$243$$ −0.866025 + 0.500000i −0.0555556 + 0.0320750i
$$244$$ 5.60990 3.23888i 0.359137 0.207348i
$$245$$ −12.5526 3.90966i −0.801957 0.249779i
$$246$$ −2.47438 1.42858i −0.157761 0.0910831i
$$247$$ −17.3057 + 9.99145i −1.10113 + 0.635740i
$$248$$ 6.27676i 0.398574i
$$249$$ 15.4846 0.981297
$$250$$ 4.17005 10.3736i 0.263737 0.656081i
$$251$$ 16.7132i 1.05493i −0.849576 0.527465i $$-0.823142\pi$$
0.849576 0.527465i $$-0.176858\pi$$
$$252$$ −0.916644 0.529225i −0.0577432 0.0333380i
$$253$$ −1.84920 −0.116258
$$254$$ 5.43873 + 3.14005i 0.341256 + 0.197024i
$$255$$ 2.25078 + 2.43913i 0.140949 + 0.152744i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ 1.47817 + 2.56026i 0.0922055 + 0.159705i 0.908439 0.418018i $$-0.137275\pi$$
−0.816233 + 0.577722i $$0.803942\pi$$
$$258$$ 10.6694i 0.664249i
$$259$$ 4.80099 + 4.28978i 0.298319 + 0.266554i
$$260$$ −7.76530 2.41860i −0.481583 0.149995i
$$261$$ −1.75402 + 1.01268i −0.108571 + 0.0626835i
$$262$$ 11.2829 + 6.51420i 0.697062 + 0.402449i
$$263$$ 15.9056 + 9.18313i 0.980784 + 0.566256i 0.902507 0.430676i $$-0.141725\pi$$
0.0782774 + 0.996932i $$0.475058\pi$$
$$264$$ 0.714991 + 0.412800i 0.0440046 + 0.0254061i
$$265$$ 6.15001 19.7456i 0.377792 1.21296i
$$266$$ −2.90750 + 5.03594i −0.178271 + 0.308774i
$$267$$ −3.30888 −0.202500
$$268$$ 11.2463 6.49307i 0.686979 0.396628i
$$269$$ 23.1442 1.41113 0.705563 0.708648i $$-0.250694\pi$$
0.705563 + 0.708648i $$0.250694\pi$$
$$270$$ −0.664945 + 2.13491i −0.0404672 + 0.129927i
$$271$$ 8.12733 + 14.0769i 0.493700 + 0.855113i 0.999974 0.00725939i $$-0.00231076\pi$$
−0.506274 + 0.862373i $$0.668977\pi$$
$$272$$ 0.742138 1.28542i 0.0449987 0.0779401i
$$273$$ −3.84989 −0.233006
$$274$$ 6.19847 3.57869i 0.374463 0.216196i
$$275$$ −0.331039 + 4.11471i −0.0199624 + 0.248126i
$$276$$ −1.93975 + 1.11991i −0.116759 + 0.0674108i
$$277$$ 2.33406 4.04271i 0.140240 0.242903i −0.787347 0.616510i $$-0.788546\pi$$
0.927587 + 0.373607i $$0.121879\pi$$
$$278$$ 5.76530 9.98579i 0.345779 0.598908i
$$279$$ −5.43583 + 3.13838i −0.325435 + 0.187890i
$$280$$ −2.30886 + 0.520331i −0.137981 + 0.0310957i
$$281$$ 12.2372 7.06515i 0.730010 0.421471i −0.0884158 0.996084i $$-0.528180\pi$$
0.818426 + 0.574612i $$0.194847\pi$$
$$282$$ 11.7632 0.700489
$$283$$ 5.01437 8.68515i 0.298073 0.516278i −0.677622 0.735411i $$-0.736989\pi$$
0.975695 + 0.219132i $$0.0703226\pi$$
$$284$$ −0.701131 1.21439i −0.0416045 0.0720611i
$$285$$ 11.7290 + 3.65313i 0.694765 + 0.216393i
$$286$$ 3.00295 0.177568
$$287$$ −2.61900 + 1.51208i −0.154595 + 0.0892554i
$$288$$ 1.00000 0.0589256
$$289$$ 7.39846 12.8145i 0.435204 0.753795i
$$290$$ −1.34676 + 4.32398i −0.0790842 + 0.253913i
$$291$$ −4.48912 2.59179i −0.263157 0.151934i
$$292$$ −7.64277 4.41256i −0.447260 0.258225i
$$293$$ 0.821707 + 0.474413i 0.0480046 + 0.0277155i 0.523810 0.851835i $$-0.324510\pi$$
−0.475806 + 0.879550i $$0.657843\pi$$
$$294$$ 5.09196 2.93984i 0.296969 0.171455i
$$295$$ −4.86352 + 15.6151i −0.283165 + 0.909147i
$$296$$ −5.95462 1.24197i −0.346105 0.0721881i
$$297$$ 0.825600i 0.0479062i
$$298$$ −1.51930 2.63151i −0.0880107 0.152439i
$$299$$ −4.07345 + 7.05542i −0.235574 + 0.408026i
$$300$$ 2.14470 + 4.51666i 0.123824 + 0.260770i
$$301$$ 9.78007 + 5.64652i 0.563714 + 0.325460i
$$302$$ −8.40022 −0.483379
$$303$$ −9.11098 5.26023i −0.523412 0.302192i
$$304$$ 5.49389i 0.315096i
$$305$$ −14.1303 + 3.18444i −0.809099 + 0.182341i
$$306$$ −1.48428 −0.0848504
$$307$$ 12.8973i 0.736088i −0.929808 0.368044i $$-0.880028\pi$$
0.929808 0.368044i $$-0.119972\pi$$
$$308$$ 0.756782 0.436928i 0.0431216 0.0248963i
$$309$$ −14.0086 8.08789i −0.796923 0.460104i
$$310$$ −4.17370 + 13.4003i −0.237050 + 0.761087i
$$311$$ −22.1356 + 12.7800i −1.25520 + 0.724688i −0.972137 0.234414i $$-0.924683\pi$$
−0.283060 + 0.959102i $$0.591349\pi$$
$$312$$ 3.14999 1.81865i 0.178333 0.102961i
$$313$$ −2.35334 4.07611i −0.133019 0.230395i 0.791820 0.610754i $$-0.209134\pi$$
−0.924839 + 0.380359i $$0.875800\pi$$
$$314$$ −12.7985 7.38920i −0.722259 0.416997i
$$315$$ 1.60505 + 1.73937i 0.0904343 + 0.0980022i
$$316$$ 3.10453 1.79240i 0.174643 0.100830i
$$317$$ −21.7227 + 12.5416i −1.22007 + 0.704407i −0.964933 0.262498i $$-0.915454\pi$$
−0.255137 + 0.966905i $$0.582120\pi$$
$$318$$ 4.62445 + 8.00978i 0.259326 + 0.449166i
$$319$$ 1.67214i 0.0936219i
$$320$$ 1.64331 1.51642i 0.0918641 0.0847702i
$$321$$ −7.05015 12.2112i −0.393501 0.681563i
$$322$$ 2.37074i 0.132116i
$$323$$ 8.15446i 0.453726i
$$324$$ −0.500000 0.866025i −0.0277778 0.0481125i
$$325$$ 14.9700 + 10.3270i 0.830386 + 0.572838i
$$326$$ 1.76345 3.05439i 0.0976686 0.169167i
$$327$$ −5.24991 −0.290321
$$328$$ 1.42858 2.47438i 0.0788803 0.136625i
$$329$$ 6.22538 10.7827i 0.343216 0.594468i
$$330$$ −1.25195 1.35672i −0.0689177 0.0746850i
$$331$$ 7.92971 4.57822i 0.435856 0.251642i −0.265982 0.963978i $$-0.585696\pi$$
0.701838 + 0.712336i $$0.252363\pi$$
$$332$$ 15.4846i 0.849828i
$$333$$ 1.90173 + 5.77784i 0.104214 + 0.316624i
$$334$$ 21.4770 1.17517
$$335$$ −28.3275 + 6.38395i −1.54770 + 0.348793i
$$336$$ 0.529225 0.916644i 0.0288716 0.0500070i
$$337$$ −8.94213 5.16274i −0.487109 0.281232i 0.236266 0.971689i $$-0.424076\pi$$
−0.723374 + 0.690456i $$0.757410\pi$$
$$338$$ 0.114948 0.199096i 0.00625236 0.0108294i
$$339$$ 3.35443i 0.182188i
$$340$$ −2.43913 + 2.25078i −0.132281 + 0.122066i
$$341$$ 5.18209i 0.280626i
$$342$$ −4.75785 + 2.74695i −0.257275 + 0.148538i
$$343$$ 13.6325i 0.736086i
$$344$$ −10.6694 −0.575257
$$345$$ 4.88587 1.10109i 0.263046 0.0592808i
$$346$$ 2.69931 + 1.55845i 0.145116 + 0.0837827i
$$347$$ −25.3284 −1.35970 −0.679850 0.733351i $$-0.737955\pi$$
−0.679850 + 0.733351i $$0.737955\pi$$
$$348$$ −1.01268 1.75402i −0.0542855 0.0940252i
$$349$$ 11.2916 + 19.5576i 0.604426 + 1.04690i 0.992142 + 0.125117i $$0.0399308\pi$$
−0.387716 + 0.921779i $$0.626736\pi$$
$$350$$ 5.27520 + 0.424404i 0.281971 + 0.0226854i
$$351$$ −3.14999 1.81865i −0.168134 0.0970722i
$$352$$ −0.412800 + 0.714991i −0.0220023 + 0.0381091i
$$353$$ 11.5240 + 19.9601i 0.613360 + 1.06237i 0.990670 + 0.136283i $$0.0435156\pi$$
−0.377310 + 0.926087i $$0.623151\pi$$
$$354$$ −3.65709 6.33426i −0.194372 0.336662i
$$355$$ 0.689348 + 3.05884i 0.0365868 + 0.162346i
$$356$$ 3.30888i 0.175371i
$$357$$ −0.785516 + 1.36055i −0.0415739 + 0.0720081i
$$358$$ −8.68224 + 5.01269i −0.458871 + 0.264929i
$$359$$ −15.2488 −0.804799 −0.402400 0.915464i $$-0.631824\pi$$
−0.402400 + 0.915464i $$0.631824\pi$$
$$360$$ −2.13491 0.664945i −0.112520 0.0350457i
$$361$$ 5.59142 + 9.68463i 0.294285 + 0.509717i
$$362$$ 1.77541 0.0933135
$$363$$ −8.93598 5.15919i −0.469017 0.270787i
$$364$$ 3.84989i 0.201789i
$$365$$ 13.3825 + 14.5024i 0.700474 + 0.759093i
$$366$$ 3.23888 5.60990i 0.169299 0.293234i
$$367$$ −5.59808 3.23205i −0.292217 0.168712i 0.346724 0.937967i $$-0.387294\pi$$
−0.638941 + 0.769255i $$0.720627\pi$$
$$368$$ −1.11991 1.93975i −0.0583795 0.101116i
$$369$$ −2.85716 −0.148738
$$370$$ 11.8867 + 6.61099i 0.617963 + 0.343689i
$$371$$ 9.78949 0.508245
$$372$$ −3.13838 5.43583i −0.162717 0.281835i
$$373$$ −22.1461 12.7860i −1.14668 0.662036i −0.198604 0.980080i $$-0.563641\pi$$
−0.948076 + 0.318044i $$0.896974\pi$$
$$374$$ 0.612709 1.06124i 0.0316824 0.0548756i
$$375$$ −1.57541 11.0688i −0.0813540 0.571590i
$$376$$ 11.7632i 0.606641i
$$377$$ −6.37988 3.68342i −0.328580 0.189706i
$$378$$ −1.05845 −0.0544408
$$379$$ 0.395361 + 0.684786i 0.0203084 + 0.0351751i 0.876001 0.482309i $$-0.160202\pi$$
−0.855693 + 0.517484i $$0.826869\pi$$
$$380$$ −3.65313 + 11.7290i −0.187402 + 0.601684i
$$381$$ 6.28010 0.321739
$$382$$ 16.6845 9.63281i 0.853654 0.492857i
$$383$$ 7.08892 12.2784i 0.362227 0.627396i −0.626100 0.779743i $$-0.715350\pi$$
0.988327 + 0.152347i $$0.0486831\pi$$
$$384$$ 1.00000i 0.0510310i
$$385$$ −1.90619 + 0.429585i −0.0971487 + 0.0218937i
$$386$$ 9.26016 + 16.0391i 0.471330 + 0.816367i
$$387$$ 5.33471 + 9.23999i 0.271179 + 0.469695i
$$388$$ 2.59179 4.48912i 0.131578 0.227900i
$$389$$ 14.9727 + 8.64452i 0.759149 + 0.438295i 0.828990 0.559264i $$-0.188916\pi$$
−0.0698414 + 0.997558i $$0.522249\pi$$
$$390$$ −7.93425 + 1.78808i −0.401766 + 0.0905430i
$$391$$ 1.66226 + 2.87912i 0.0840641 + 0.145603i
$$392$$ 2.93984 + 5.09196i 0.148484 + 0.257183i
$$393$$ 13.0284 0.657196
$$394$$ 4.21694 + 2.43465i 0.212446 + 0.122656i
$$395$$ −7.81974 + 1.76228i −0.393454 + 0.0886697i
$$396$$ 0.825600 0.0414880
$$397$$ 5.32580i 0.267294i −0.991029 0.133647i $$-0.957331\pi$$
0.991029 0.133647i $$-0.0426689\pi$$
$$398$$ 15.4856 8.94064i 0.776225 0.448154i
$$399$$ 5.81501i 0.291115i
$$400$$ −4.51666 + 2.14470i −0.225833 + 0.107235i
$$401$$ 29.8380i 1.49004i −0.667043 0.745019i $$-0.732440\pi$$
0.667043 0.745019i $$-0.267560\pi$$
$$402$$ 6.49307 11.2463i 0.323845 0.560916i
$$403$$ −19.7717 11.4152i −0.984899 0.568632i
$$404$$ 5.26023 9.11098i 0.261706 0.453288i
$$405$$ 0.491597 + 2.18136i 0.0244276 + 0.108393i
$$406$$ −2.14375 −0.106392
$$407$$ −4.91613 1.02537i −0.243684 0.0508258i
$$408$$ 1.48428i 0.0734826i
$$409$$ −6.17878 + 3.56732i −0.305521 + 0.176393i −0.644921 0.764250i $$-0.723110\pi$$
0.339399 + 0.940642i $$0.389776\pi$$
$$410$$ −4.69522 + 4.33265i −0.231880 + 0.213974i
$$411$$ 3.57869 6.19847i 0.176524 0.305748i
$$412$$ 8.08789 14.0086i 0.398462 0.690156i
$$413$$ −7.74169 −0.380943
$$414$$ −1.11991 + 1.93975i −0.0550407 + 0.0953333i
$$415$$ 10.2964 33.0583i 0.505431 1.62277i
$$416$$ 1.81865 + 3.14999i 0.0891665 + 0.154441i
$$417$$ 11.5306i 0.564655i
$$418$$ 4.53576i 0.221851i
$$419$$ 3.74432 + 6.48535i 0.182922 + 0.316830i 0.942874 0.333149i $$-0.108111\pi$$
−0.759952 + 0.649979i $$0.774778\pi$$
$$420$$ −1.73937 + 1.60505i −0.0848724 + 0.0783184i
$$421$$ 11.6772i 0.569114i 0.958659 + 0.284557i $$0.0918465\pi$$
−0.958659 + 0.284557i $$0.908153\pi$$
$$422$$ −0.197873 0.342726i −0.00963229 0.0166836i
$$423$$ 10.1872 5.88160i 0.495320 0.285973i
$$424$$ −8.00978 + 4.62445i −0.388989 + 0.224583i
$$425$$ 6.70398 3.18333i 0.325191 0.154414i
$$426$$ −1.21439 0.701131i −0.0588376 0.0339699i
$$427$$ −3.42819 5.93779i −0.165902 0.287350i
$$428$$ 12.2112 7.05015i 0.590251 0.340782i
$$429$$ 2.60063 1.50147i 0.125560 0.0724919i
$$430$$ 22.7783 + 7.09458i 1.09847 + 0.342131i
$$431$$ −12.6642 7.31168i −0.610013 0.352191i 0.162957 0.986633i $$-0.447897\pi$$
−0.772971 + 0.634442i $$0.781230\pi$$
$$432$$ 0.866025 0.500000i 0.0416667 0.0240563i
$$433$$ 39.9241i 1.91863i 0.282341 + 0.959314i $$0.408889\pi$$
−0.282341 + 0.959314i $$0.591111\pi$$
$$434$$ −6.64363 −0.318905
$$435$$ 0.995663 + 4.41805i 0.0477384 + 0.211829i
$$436$$ 5.24991i 0.251425i
$$437$$ 10.6568 + 6.15268i 0.509782 + 0.294323i
$$438$$ −8.82512 −0.421680
$$439$$ 1.05841 + 0.611072i 0.0505151 + 0.0291649i 0.525045 0.851075i $$-0.324049\pi$$
−0.474530 + 0.880239i $$0.657382\pi$$
$$440$$ 1.35672 1.25195i 0.0646791 0.0596845i
$$441$$ 2.93984 5.09196i 0.139992 0.242474i
$$442$$ −2.69937 4.67545i −0.128396 0.222389i
$$443$$ 7.35235i 0.349321i 0.984629 + 0.174660i $$0.0558828\pi$$
−0.984629 + 0.174660i $$0.944117\pi$$
$$444$$ −5.77784 + 1.90173i −0.274204 + 0.0902522i
$$445$$ −2.20022 + 7.06418i −0.104301 + 0.334874i
$$446$$ −22.1602 + 12.7942i −1.04931 + 0.605822i
$$447$$ −2.63151 1.51930i −0.124466 0.0718605i
$$448$$ 0.916644 + 0.529225i 0.0433074 + 0.0250035i
$$449$$ 10.2005 + 5.88927i 0.481392 + 0.277932i 0.720997 0.692939i $$-0.243684\pi$$
−0.239604 + 0.970871i $$0.577018\pi$$
$$450$$ 4.11570 + 2.83920i 0.194016 + 0.133841i
$$451$$ 1.17944 2.04285i 0.0555375 0.0961939i
$$452$$ −3.35443 −0.157779
$$453$$ −7.27481 + 4.20011i −0.341800 + 0.197338i
$$454$$ 23.3265 1.09477
$$455$$ −2.55996 + 8.21918i −0.120013 + 0.385321i
$$456$$ −2.74695 4.75785i −0.128638 0.222807i
$$457$$ −7.85584 + 13.6067i −0.367481 + 0.636496i −0.989171 0.146768i $$-0.953113\pi$$
0.621690 + 0.783263i $$0.286446\pi$$
$$458$$ −23.3061 −1.08902
$$459$$ −1.28542 + 0.742138i −0.0599983 + 0.0346401i
$$460$$ 1.10109 + 4.88587i 0.0513386 + 0.227805i
$$461$$ −21.3746 + 12.3407i −0.995517 + 0.574762i −0.906919 0.421306i $$-0.861572\pi$$
−0.0885978 + 0.996067i $$0.528239\pi$$
$$462$$ 0.436928 0.756782i 0.0203277 0.0352087i
$$463$$ 18.6610 32.3218i 0.867249 1.50212i 0.00245324 0.999997i $$-0.499219\pi$$
0.864796 0.502123i $$-0.167448\pi$$
$$464$$ 1.75402 1.01268i 0.0814282 0.0470126i
$$465$$ 3.08563 + 13.6919i 0.143093 + 0.634945i
$$466$$ −0.440570 + 0.254363i −0.0204090 + 0.0117831i
$$467$$ −9.17134 −0.424399 −0.212200 0.977226i $$-0.568063\pi$$
−0.212200 + 0.977226i $$0.568063\pi$$
$$468$$ 1.81865 3.14999i 0.0840670 0.145608i
$$469$$ −6.87259 11.9037i −0.317347 0.549661i
$$470$$ 7.82188 25.1134i 0.360797 1.15840i
$$471$$ −14.7784 −0.680953
$$472$$ 6.33426 3.65709i 0.291558 0.168331i
$$473$$ −8.80868 −0.405023
$$474$$ 1.79240 3.10453i 0.0823276 0.142596i
$$475$$ 15.5982 22.6112i 0.715696 1.03747i
$$476$$ −1.36055 0.785516i −0.0623609 0.0360041i
$$477$$ 8.00978 + 4.62445i 0.366743 + 0.211739i
$$478$$ 5.12135 + 2.95681i 0.234245 + 0.135242i
$$479$$ −3.81113 + 2.20036i −0.174135 + 0.100537i −0.584534 0.811369i $$-0.698723\pi$$
0.410399 + 0.911906i $$0.365389\pi$$
$$480$$ 0.664945 2.13491i 0.0303504 0.0974449i
$$481$$ −14.7415 + 16.4983i −0.672157 + 0.752257i
$$482$$ 1.71616i 0.0781688i
$$483$$ 1.18537 + 2.05312i 0.0539362 + 0.0934203i
$$484$$ 5.15919 8.93598i 0.234509 0.406181i
$$485$$ −8.51826 + 7.86047i −0.386794 + 0.356926i
$$486$$ −0.866025 0.500000i −0.0392837 0.0226805i
$$487$$ −21.3719 −0.968451 −0.484226 0.874943i $$-0.660899\pi$$
−0.484226 + 0.874943i $$0.660899\pi$$
$$488$$ 5.60990 + 3.23888i 0.253948 + 0.146617i
$$489$$ 3.52691i 0.159492i
$$490$$ −2.89043 12.8257i −0.130577 0.579406i
$$491$$ 17.2381 0.777944 0.388972 0.921250i $$-0.372830\pi$$
0.388972 + 0.921250i $$0.372830\pi$$
$$492$$ 2.85716i 0.128811i
$$493$$ −2.60345 + 1.50310i −0.117253 + 0.0676963i
$$494$$ −17.3057 9.99145i −0.778620 0.449536i
$$495$$ −1.76258 0.548978i −0.0792222 0.0246747i
$$496$$ 5.43583 3.13838i 0.244076 0.140917i
$$497$$ −1.28538 + 0.742112i −0.0576570 + 0.0332883i
$$498$$ 7.74230 + 13.4101i 0.346941 + 0.600919i
$$499$$ 27.1360 + 15.6670i 1.21478 + 0.701351i 0.963796 0.266642i $$-0.0859140\pi$$
0.250979 + 0.967992i $$0.419247\pi$$
$$500$$ 11.0688 1.57541i 0.495011 0.0704546i
$$501$$ 18.5996 10.7385i 0.830969 0.479760i
$$502$$ 14.4741 8.35662i 0.646011 0.372974i
$$503$$ 7.38550 + 12.7921i 0.329303 + 0.570370i 0.982374 0.186927i $$-0.0598528\pi$$
−0.653070 + 0.757297i $$0.726519\pi$$
$$504$$ 1.05845i 0.0471471i
$$505$$ −17.2884 + 15.9534i −0.769324 + 0.709916i
$$506$$ −0.924600 1.60145i −0.0411035 0.0711933i
$$507$$ 0.229897i 0.0102101i
$$508$$ 6.28010i 0.278634i
$$509$$ 10.6815 + 18.5009i 0.473449 + 0.820039i 0.999538 0.0303912i $$-0.00967531\pi$$
−0.526089 + 0.850430i $$0.676342\pi$$
$$510$$ −0.986962 + 3.16880i −0.0437034 + 0.140317i
$$511$$ −4.67047 + 8.08949i −0.206609 + 0.357858i
$$512$$ −1.00000 −0.0441942
$$513$$ −2.74695 + 4.75785i −0.121281 + 0.210064i
$$514$$ −1.47817 + 2.56026i −0.0651991 + 0.112928i
$$515$$ −26.5819 + 24.5292i −1.17134 + 1.08089i
$$516$$ −9.23999 + 5.33471i −0.406768 + 0.234848i
$$517$$ 9.71171i 0.427120i
$$518$$ −1.31456 + 6.30267i −0.0577586 + 0.276923i
$$519$$ 3.11690 0.136817
$$520$$ −1.78808 7.93425i −0.0784126 0.347940i
$$521$$ 16.6844 28.8982i 0.730957 1.26606i −0.225517 0.974239i $$-0.572407\pi$$
0.956474 0.291816i $$-0.0942595\pi$$
$$522$$ −1.75402 1.01268i −0.0767713 0.0443239i
$$523$$ 6.52639 11.3040i 0.285379 0.494291i −0.687322 0.726353i $$-0.741214\pi$$
0.972701 + 0.232062i $$0.0745472\pi$$
$$524$$ 13.0284i 0.569148i
$$525$$ 4.78066 2.27006i 0.208645 0.0990734i
$$526$$ 18.3663i 0.800807i
$$527$$ −8.06828 + 4.65822i −0.351460 + 0.202915i
$$528$$ 0.825600i 0.0359296i
$$529$$ −17.9832 −0.781878
$$530$$ 20.1752 4.54673i 0.876354 0.197497i
$$531$$ −6.33426 3.65709i −0.274884 0.158704i
$$532$$ −5.81501 −0.252113
$$533$$ −5.19617 9.00003i −0.225071 0.389835i
$$534$$ −1.65444 2.86558i −0.0715947 0.124006i
$$535$$ −30.7578 + 6.93166i −1.32978 + 0.299682i
$$536$$ 11.2463 + 6.49307i 0.485768 + 0.280458i
$$537$$ −5.01269 + 8.68224i −0.216314 + 0.374666i
$$538$$ 11.5721 + 20.0434i 0.498908 + 0.864134i
$$539$$ 2.42713 + 4.20392i 0.104544 + 0.181076i
$$540$$ −2.18136 + 0.491597i −0.0938708 + 0.0211550i
$$541$$ 21.6228i 0.929635i 0.885406 + 0.464818i $$0.153880\pi$$
−0.885406 + 0.464818i $$0.846120\pi$$
$$542$$ −8.12733 + 14.0769i −0.349099 + 0.604657i
$$543$$ 1.53755 0.887705i 0.0659826 0.0380951i
$$544$$ 1.48428 0.0636378
$$545$$ −3.49090 + 11.2081i −0.149534 + 0.480102i
$$546$$ −1.92495 3.33410i −0.0823801 0.142686i
$$547$$ 19.0025 0.812488 0.406244 0.913765i $$-0.366838\pi$$
0.406244 + 0.913765i $$0.366838\pi$$
$$548$$ 6.19847 + 3.57869i 0.264785 + 0.152874i
$$549$$ 6.47775i 0.276464i
$$550$$ −3.72896 + 1.77066i −0.159003 + 0.0755014i
$$551$$ −5.56357 + 9.63638i −0.237016 + 0.410524i
$$552$$ −1.93975 1.11991i −0.0825610 0.0476666i
$$553$$ −1.89716 3.28599i −0.0806757 0.139734i
$$554$$ 4.66812 0.198329
$$555$$ 13.5997 0.218086i 0.577276 0.00925722i
$$556$$ 11.5306 0.489006
$$557$$ −18.9136 32.7593i −0.801395 1.38806i −0.918698 0.394960i $$-0.870758\pi$$
0.117304 0.993096i $$-0.462575\pi$$
$$558$$ −5.43583 3.13838i −0.230117 0.132858i
$$559$$ −19.4039 + 33.6086i −0.820698 + 1.42149i
$$560$$ −1.60505 1.73937i −0.0678257 0.0735016i
$$561$$ 1.22542i 0.0517372i
$$562$$ 12.2372 + 7.06515i 0.516195 + 0.298025i
$$563$$ −2.80373 −0.118163 −0.0590815 0.998253i $$-0.518817\pi$$
−0.0590815 + 0.998253i $$0.518817\pi$$
$$564$$ 5.88160 + 10.1872i 0.247660 + 0.428960i
$$565$$ 7.16141 + 2.23051i 0.301283 + 0.0938383i
$$566$$ 10.0287 0.421539
$$567$$ −0.916644 + 0.529225i −0.0384954 + 0.0222254i
$$568$$ 0.701131 1.21439i 0.0294188 0.0509549i
$$569$$ 39.6236i 1.66111i 0.556937 + 0.830555i $$0.311976\pi$$
−0.556937 + 0.830555i $$0.688024\pi$$
$$570$$ 2.70078 + 11.9842i 0.113123 + 0.501961i
$$571$$ −3.77916 6.54570i −0.158153 0.273929i 0.776050 0.630672i $$-0.217221\pi$$
−0.934203 + 0.356743i $$0.883887\pi$$
$$572$$ 1.50147 + 2.60063i 0.0627798 + 0.108738i
$$573$$ 9.63281 16.6845i 0.402416 0.697006i
$$574$$ −2.61900 1.51208i −0.109315 0.0631131i
$$575$$ 0.898098 11.1631i 0.0374533 0.465532i
$$576$$ 0.500000 + 0.866025i 0.0208333 + 0.0360844i
$$577$$ 14.7782 + 25.5966i 0.615224 + 1.06560i 0.990345 + 0.138624i $$0.0442680\pi$$
−0.375121 + 0.926976i $$0.622399\pi$$
$$578$$ 14.7969 0.615471
$$579$$ 16.0391 + 9.26016i 0.666561 + 0.384839i
$$580$$ −4.41805 + 0.995663i −0.183450 + 0.0413427i
$$581$$ 16.3897 0.679958
$$582$$ 5.18358i 0.214867i
$$583$$ −6.61288 + 3.81795i −0.273877 + 0.158123i
$$584$$ 8.82512i 0.365186i
$$585$$ −5.97722 + 5.51565i −0.247128 + 0.228044i
$$586$$ 0.948825i 0.0391956i
$$587$$ −16.1870 + 28.0366i −0.668108 + 1.15720i 0.310325 + 0.950631i $$0.399562\pi$$
−0.978433 + 0.206566i $$0.933771\pi$$
$$588$$ 5.09196 + 2.93984i 0.209989 + 0.121237i
$$589$$ −17.2419 + 29.8639i −0.710441 + 1.23052i
$$590$$ −15.9549 + 3.59563i −0.656851 + 0.148030i
$$591$$ 4.86930 0.200296
$$592$$ −1.90173 5.77784i −0.0781607 0.237468i
$$593$$ 8.03864i 0.330107i 0.986285 + 0.165054i $$0.0527797\pi$$
−0.986285 + 0.165054i $$0.947220\pi$$
$$594$$ 0.714991 0.412800i 0.0293364 0.0169374i
$$595$$ 2.38234 + 2.58170i 0.0976663 + 0.105839i
$$596$$ 1.51930 2.63151i 0.0622330 0.107791i
$$597$$ 8.94064 15.4856i 0.365916 0.633785i
$$598$$ −8.14690 −0.333151
$$599$$ −1.25133 + 2.16737i −0.0511279 + 0.0885562i −0.890457 0.455068i $$-0.849615\pi$$
0.839329 + 0.543624i $$0.182948\pi$$
$$600$$ −2.83920 + 4.11570i −0.115910 + 0.168023i
$$601$$ 8.38293 + 14.5197i 0.341947 + 0.592269i 0.984794 0.173725i $$-0.0555804\pi$$
−0.642847 + 0.765994i $$0.722247\pi$$
$$602$$ 11.2930i 0.460270i
$$603$$ 12.9861i 0.528837i
$$604$$ −4.20011 7.27481i −0.170900 0.296008i
$$605$$ −16.9564 + 15.6470i −0.689374 + 0.636139i
$$606$$ 10.5205i 0.427364i
$$607$$ 5.24017 + 9.07623i 0.212692 + 0.368393i 0.952556 0.304363i $$-0.0984436\pi$$
−0.739864 + 0.672756i $$0.765110\pi$$
$$608$$ 4.75785 2.74695i 0.192956 0.111403i
$$609$$ −1.85654 + 1.07187i −0.0752308 + 0.0434345i
$$610$$ −9.82296 10.6450i −0.397720 0.431003i
$$611$$ 37.0540 + 21.3931i 1.49904 + 0.865473i
$$612$$ −0.742138 1.28542i −0.0299992 0.0519601i
$$613$$ −5.61834 + 3.24375i −0.226923 + 0.131014i −0.609152 0.793054i $$-0.708490\pi$$
0.382229 + 0.924068i $$0.375157\pi$$
$$614$$ 11.1694 6.44866i 0.450760 0.260247i
$$615$$ −1.89986 + 6.09979i −0.0766096 + 0.245967i
$$616$$ 0.756782 + 0.436928i 0.0304916 + 0.0176043i
$$617$$ 20.5224 11.8486i 0.826200 0.477007i −0.0263501 0.999653i $$-0.508388\pi$$
0.852550 + 0.522646i $$0.175055\pi$$
$$618$$ 16.1758i 0.650685i
$$619$$ −31.0146 −1.24658 −0.623291 0.781990i $$-0.714205\pi$$
−0.623291 + 0.781990i $$0.714205\pi$$
$$620$$ −13.6919 + 3.08563i −0.549879 + 0.123922i
$$621$$ 2.23982i 0.0898811i
$$622$$ −22.1356 12.7800i −0.887558 0.512432i
$$623$$ −3.50229 −0.140316
$$624$$ 3.14999 + 1.81865i 0.126100 + 0.0728041i
$$625$$ −24.6784 3.99676i −0.987138 0.159871i
$$626$$ 2.35334 4.07611i 0.0940585 0.162914i
$$627$$ −2.26788 3.92808i −0.0905703 0.156872i
$$628$$ 14.7784i 0.589722i
$$629$$ 2.82270 + 8.57591i 0.112548 + 0.341944i
$$630$$ −0.703810 + 2.25970i −0.0280405 + 0.0900285i
$$631$$ 9.21344 5.31938i 0.366781 0.211761i −0.305270 0.952266i $$-0.598747\pi$$
0.672051 + 0.740504i $$0.265413\pi$$
$$632$$ 3.10453 + 1.79240i 0.123491 + 0.0712978i
$$633$$ −0.342726 0.197873i −0.0136221 0.00786473i
$$634$$ −21.7227 12.5416i −0.862719 0.498091i
$$635$$ 4.17592 13.4075i 0.165716 0.532059i
$$636$$ −4.62445 + 8.00978i −0.183371 + 0.317609i
$$637$$ 21.3861 0.847349
$$638$$ 1.44812 0.836071i 0.0573315 0.0331004i
$$639$$ −1.40226 −0.0554726
$$640$$ 2.13491 + 0.664945i 0.0843898 + 0.0262842i
$$641$$ 4.38870 + 7.60145i 0.173343 + 0.300239i 0.939587 0.342311i $$-0.111210\pi$$
−0.766243 + 0.642550i $$0.777876\pi$$
$$642$$ 7.05015 12.2112i 0.278247 0.481938i
$$643$$ −26.7207 −1.05376 −0.526882 0.849939i $$-0.676639\pi$$
−0.526882 + 0.849939i $$0.676639\pi$$
$$644$$ −2.05312 + 1.18537i −0.0809044 + 0.0467102i
$$645$$ 23.2739 5.24506i 0.916407 0.206524i
$$646$$ −7.06197 + 4.07723i −0.277849 + 0.160416i
$$647$$ 9.72305 16.8408i 0.382252 0.662081i −0.609131 0.793069i $$-0.708482\pi$$
0.991384 + 0.130989i $$0.0418151\pi$$
$$648$$ 0.500000 0.866025i 0.0196419 0.0340207i
$$649$$ 5.22957 3.01929i 0.205278 0.118518i
$$650$$ −1.45844 + 18.1279i −0.0572046 + 0.711034i
$$651$$ −5.75355 + 3.32182i −0.225500 + 0.130192i
$$652$$ 3.52691 0.138124
$$653$$ −12.7773 + 22.1309i −0.500014 + 0.866049i 0.499986 + 0.866033i $$0.333338\pi$$
−1.00000 1.60106e-5i $$0.999995\pi$$
$$654$$ −2.62496 4.54656i −0.102644 0.177785i
$$655$$ 8.66317 27.8145i 0.338498 1.08680i
$$656$$ 2.85716 0.111554
$$657$$ −7.64277 + 4.41256i −0.298173 + 0.172150i
$$658$$ 12.4508 0.485381
$$659$$ 1.11439 1.93019i 0.0434106 0.0751893i −0.843504 0.537123i $$-0.819511\pi$$
0.886914 + 0.461934i $$0.152844\pi$$
$$660$$ 0.548978 1.76258i 0.0213690 0.0686085i
$$661$$ 10.9781 + 6.33818i 0.426997 + 0.246527i 0.698066 0.716033i $$-0.254044\pi$$
−0.271070 + 0.962560i $$0.587377\pi$$
$$662$$ 7.92971 + 4.57822i 0.308197 + 0.177938i
$$663$$ −4.67545 2.69937i −0.181580 0.104835i
$$664$$ −13.4101 + 7.74230i −0.520411 + 0.300460i
$$665$$ 12.4145 + 3.86666i 0.481415 + 0.149943i
$$666$$ −4.05289 + 4.53587i −0.157046 + 0.175761i
$$667$$ 4.53646i 0.175653i
$$668$$ 10.7385 + 18.5996i 0.415485 + 0.719641i
$$669$$ −12.7942 + 22.1602i −0.494651 + 0.856761i
$$670$$ −19.6924 21.3403i −0.760784 0.824449i
$$671$$ 4.63153 + 2.67402i 0.178798 + 0.103229i
$$672$$ 1.05845 0.0408306
$$673$$ 34.8308 + 20.1096i 1.34263 + 0.775168i 0.987193 0.159532i $$-0.0509985\pi$$
0.355438 + 0.934700i $$0.384332\pi$$
$$674$$ 10.3255i 0.397723i
$$675$$ 4.98390 + 0.400968i 0.191830 + 0.0154333i
$$676$$ 0.229897 0.00884218
$$677$$ 29.7892i 1.14489i 0.819942 + 0.572446i $$0.194005\pi$$
−0.819942 + 0.572446i $$0.805995\pi$$
$$678$$ −2.90502 + 1.67721i −0.111567 + 0.0644130i
$$679$$ −4.75150 2.74328i −0.182346 0.105277i
$$680$$ −3.16880 0.986962i −0.121518 0.0378483i
$$681$$ 20.2013 11.6633i 0.774117 0.446937i
$$682$$ 4.48782 2.59105i 0.171848 0.0992163i
$$683$$ 10.7369 + 18.5968i 0.410835 + 0.711587i 0.994981 0.100061i $$-0.0319038\pi$$
−0.584146 + 0.811649i $$0.698571\pi$$
$$684$$ −4.75785 2.74695i −0.181921 0.105032i
$$685$$ −10.8536 11.7618i −0.414693 0.449396i
$$686$$ 11.8061 6.81625i 0.450759 0.260246i
$$687$$ −20.1837 + 11.6531i −0.770055 + 0.444592i
$$688$$ −5.33471 9.23999i −0.203384 0.352271i
$$689$$ 33.6410i 1.28162i
$$690$$ 3.39651 + 3.68074i 0.129303 + 0.140123i
$$691$$ 7.87430 + 13.6387i 0.299553 + 0.518840i 0.976034 0.217620i $$-0.0698293\pi$$
−0.676481 + 0.736460i $$0.736496\pi$$
$$692$$ 3.11690i 0.118487i
$$693$$ 0.873856i 0.0331950i
$$694$$ −12.6642 21.9350i −0.480727 0.832643i
$$695$$ −24.6168 7.66721i −0.933768 0.290834i
$$696$$ 1.01268 1.75402i 0.0383856 0.0664859i
$$697$$ −4.24082 −0.160633
$$698$$ −11.2916 + 19.5576i −0.427394 + 0.740268i
$$699$$ −0.254363 + 0.440570i −0.00962089 + 0.0166639i
$$700$$ 2.27006 + 4.78066i 0.0858001 + 0.180692i
$$701$$ −32.3179 + 18.6588i −1.22063 + 0.704732i −0.965053 0.262056i $$-0.915600\pi$$
−0.255579 + 0.966788i $$0.582266\pi$$
$$702$$ 3.63729i 0.137281i
$$703$$ 24.9196 + 22.2661i 0.939859 + 0.839783i
$$704$$ −0.825600 −0.0311160
$$705$$ −5.78276 25.6598i −0.217791 0.966404i
$$706$$ −11.5240 + 19.9601i −0.433711 + 0.751209i
$$707$$ −9.64351 5.56768i −0.362682 0.209394i
$$708$$ 3.65709 6.33426i 0.137442 0.238056i
$$709$$ 27.0809i 1.01705i −0.861048 0.508523i $$-0.830192\pi$$
0.861048 0.508523i $$-0.169808\pi$$
$$710$$ −2.30436 + 2.12641i −0.0864810 + 0.0798028i
$$711$$ 3.58480i 0.134440i
$$712$$ 2.86558 1.65444i 0.107392 0.0620028i
$$713$$ 14.0588i 0.526508i
$$714$$ −1.57103 −0.0587944
$$715$$ −1.47624 6.55051i −0.0552083 0.244975i
$$716$$ −8.68224 5.01269i −0.324471 0.187333i
$$717$$ 5.91363 0.220849
$$718$$ −7.62438 13.2058i −0.284539 0.492837i
$$719$$ −0.353769 0.612746i −0.0131934 0.0228516i 0.859353 0.511382i $$-0.170866\pi$$
−0.872547 + 0.488531i $$0.837533\pi$$
$$720$$ −0.491597 2.18136i −0.0183207 0.0812945i
$$721$$ −14.8274 8.56062i −0.552202 0.318814i
$$722$$ −5.59142 + 9.68463i −0.208091 + 0.360425i
$$723$$ 0.858078 + 1.48624i 0.0319123 + 0.0552737i
$$724$$ 0.887705 + 1.53755i 0.0329913 + 0.0571426i
$$725$$ 10.0942 + 0.812106i 0.374890 + 0.0301609i
$$726$$ 10.3184i 0.382951i
$$727$$ 25.3278 43.8690i 0.939356 1.62701i 0.172680 0.984978i $$-0.444757\pi$$
0.766676 0.642034i $$-0.221909\pi$$
$$728$$ 3.33410 1.92495i 0.123570 0.0713432i
$$729$$ −1.00000 −0.0370370
$$730$$ −5.86821 + 18.8408i −0.217192 + 0.697331i
$$731$$ 7.91819 + 13.7147i 0.292865 + 0.507257i
$$732$$ 6.47775 0.239425
$$733$$ −29.3112 16.9228i −1.08263 0.625058i −0.151027 0.988530i $$-0.548258\pi$$
−0.931605 + 0.363471i $$0.881592\pi$$
$$734$$ 6.46411i 0.238595i
$$735$$ −8.91604 9.66217i −0.328873 0.356395i
$$736$$ 1.11991 1.93975i 0.0412805 0.0715000i
$$737$$ 9.28497 + 5.36068i 0.342016 + 0.197463i
$$738$$ −1.42858 2.47438i −0.0525868 0.0910831i
$$739$$ −13.7161 −0.504555 −0.252277 0.967655i $$-0.581180\pi$$
−0.252277 + 0.967655i $$0.581180\pi$$
$$740$$ 0.218086 + 13.5997i 0.00801698 + 0.499936i
$$741$$ −19.9829 −0.734090
$$742$$ 4.89475 + 8.47795i 0.179692 + 0.311235i
$$743$$ −13.8765 8.01159i −0.509079 0.293917i 0.223376 0.974732i $$-0.428292\pi$$
−0.732455 + 0.680816i $$0.761625\pi$$
$$744$$ 3.13838 5.43583i 0.115059 0.199287i
$$745$$ −4.99338 + 4.60778i −0.182943 + 0.168816i
$$746$$ 25.5721i 0.936260i
$$747$$ 13.4101 + 7.74230i 0.490649 + 0.283276i
$$748$$ 1.22542 0.0448058
$$749$$ −7.46223 12.9250i −0.272664 0.472268i
$$750$$ 8.79815 6.89874i 0.321263 0.251906i
$$751$$ 33.4440 1.22039 0.610195 0.792251i $$-0.291091\pi$$
0.610195 + 0.792251i $$0.291091\pi$$
$$752$$ −10.1872 + 5.88160i −0.371490 + 0.214480i
$$753$$ 8.35662 14.4741i 0.304532 0.527465i
$$754$$ 7.36685i 0.268285i
$$755$$ 4.12952 + 18.3239i 0.150289 + 0.666875i
$$756$$ −0.529225 0.916644i −0.0192477 0.0333380i
$$757$$ −25.2767 43.7805i −0.918697 1.59123i −0.801396 0.598134i $$-0.795909\pi$$
−0.117301 0.993096i $$-0.537424\pi$$
$$758$$ −0.395361 + 0.684786i −0.0143602 + 0.0248726i
$$759$$ −1.60145 0.924600i −0.0581291 0.0335608i
$$760$$ −11.9842 + 2.70078i −0.434711 + 0.0979676i
$$761$$ −19.6784 34.0840i −0.713341 1.23554i −0.963596 0.267362i $$-0.913848\pi$$
0.250255 0.968180i $$-0.419485\pi$$
$$762$$ 3.14005 + 5.43873i 0.113752 + 0.197024i
$$763$$ −5.55677 −0.201169
$$764$$ 16.6845 + 9.63281i 0.603625 + 0.348503i
$$765$$ 0.729666 + 3.23774i 0.0263811 + 0.117061i
$$766$$ 14.1778 0.512267
$$767$$ 26.6038i 0.960607i
$$768$$ −0.866025 + 0.500000i −0.0312500 + 0.0180422i
$$769$$ 4.77703i 0.172264i 0.996284 + 0.0861320i $$0.0274507\pi$$
−0.996284 + 0.0861320i $$0.972549\pi$$
$$770$$ −1.32513 1.43602i −0.0477543 0.0517506i
$$771$$ 2.95633i 0.106470i
$$772$$ −9.26016 + 16.0391i −0.333280 + 0.577259i
$$773$$ −11.8192 6.82383i −0.425108 0.245436i 0.272153 0.962254i $$-0.412264\pi$$
−0.697260 + 0.716818i $$0.745598\pi$$
$$774$$ −5.33471 + 9.23999i −0.191752 + 0.332125i
$$775$$ 31.2827 + 2.51678i 1.12371 + 0.0904053i
$$776$$ 5.18358 0.186080