Properties

Label 1110.2.ba.b.529.15
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.15
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.b.619.15

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.50247 + 1.65608i) q^{5} +1.00000i q^{6} +(-0.827955 - 0.478020i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.50247 + 1.65608i) q^{5} +1.00000i q^{6} +(-0.827955 - 0.478020i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.682971 + 2.12921i) q^{10} +0.252998 q^{11} +(-0.866025 + 0.500000i) q^{12} +(0.858827 - 1.48753i) q^{13} -0.956040i q^{14} +(0.473136 + 2.18544i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.88164 + 4.99114i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(3.89488 + 2.24871i) q^{19} +(-2.18544 + 0.473136i) q^{20} +(-0.478020 - 0.827955i) q^{21} +(0.126499 + 0.219103i) q^{22} -4.71996 q^{23} +(-0.866025 - 0.500000i) q^{24} +(-0.485183 + 4.97640i) q^{25} +1.71765 q^{26} +1.00000i q^{27} +(0.827955 - 0.478020i) q^{28} +6.74876i q^{29} +(-1.65608 + 1.50247i) q^{30} -0.279008i q^{31} +(0.500000 - 0.866025i) q^{32} +(0.219103 + 0.126499i) q^{33} +(-2.88164 + 4.99114i) q^{34} +(-0.452337 - 2.08937i) q^{35} -1.00000 q^{36} +(-3.20888 - 5.16750i) q^{37} +4.49741i q^{38} +(1.48753 - 0.858827i) q^{39} +(-1.50247 - 1.65608i) q^{40} +(-2.96243 + 5.13107i) q^{41} +(0.478020 - 0.827955i) q^{42} +1.27403 q^{43} +(-0.126499 + 0.219103i) q^{44} +(-0.682971 + 2.12921i) q^{45} +(-2.35998 - 4.08761i) q^{46} -6.17905i q^{47} -1.00000i q^{48} +(-3.04299 - 5.27062i) q^{49} +(-4.55228 + 2.06802i) q^{50} +5.76327i q^{51} +(0.858827 + 1.48753i) q^{52} +(-7.10229 + 4.10051i) q^{53} +(-0.866025 + 0.500000i) q^{54} +(0.380122 + 0.418985i) q^{55} +(0.827955 + 0.478020i) q^{56} +(2.24871 + 3.89488i) q^{57} +(-5.84460 + 3.37438i) q^{58} +(13.0282 - 7.52184i) q^{59} +(-2.12921 - 0.682971i) q^{60} +(3.43889 + 1.98545i) q^{61} +(0.241628 - 0.139504i) q^{62} -0.956040i q^{63} +1.00000 q^{64} +(3.75383 - 0.812685i) q^{65} +0.252998i q^{66} +(-0.518394 - 0.299295i) q^{67} -5.76327 q^{68} +(-4.08761 - 2.35998i) q^{69} +(1.58328 - 1.43642i) q^{70} +(6.17507 - 10.6955i) q^{71} +(-0.500000 - 0.866025i) q^{72} -10.7356i q^{73} +(2.87075 - 5.36272i) q^{74} +(-2.90838 + 4.06710i) q^{75} +(-3.89488 + 2.24871i) q^{76} +(-0.209471 - 0.120938i) q^{77} +(1.48753 + 0.858827i) q^{78} +(-2.20916 - 1.27546i) q^{79} +(0.682971 - 2.12921i) q^{80} +(-0.500000 + 0.866025i) q^{81} -5.92485 q^{82} +(-12.5267 + 7.23229i) q^{83} +0.956040 q^{84} +(-3.93615 + 12.2712i) q^{85} +(0.637017 + 1.10335i) q^{86} +(-3.37438 + 5.84460i) q^{87} -0.252998 q^{88} +(6.84497 - 3.95194i) q^{89} +(-2.18544 + 0.473136i) q^{90} +(-1.42214 + 0.821073i) q^{91} +(2.35998 - 4.08761i) q^{92} +(0.139504 - 0.241628i) q^{93} +(5.35121 - 3.08952i) q^{94} +(2.12789 + 9.82882i) q^{95} +(0.866025 - 0.500000i) q^{96} +17.8296 q^{97} +(3.04299 - 5.27062i) q^{98} +(0.126499 + 0.219103i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} + 14q^{13} + 2q^{15} - 18q^{16} - 18q^{18} + 6q^{19} - 2q^{20} + 2q^{22} + 20q^{23} - 2q^{25} + 28q^{26} - 2q^{30} + 18q^{32} + 6q^{33} - 20q^{35} - 36q^{36} - 20q^{37} + 6q^{39} - 4q^{40} + 10q^{41} - 2q^{44} + 2q^{45} + 10q^{46} + 10q^{49} - 4q^{50} + 14q^{52} + 12q^{53} + 40q^{55} - 8q^{57} - 30q^{58} + 18q^{59} - 4q^{60} - 6q^{61} + 12q^{62} + 36q^{64} - 32q^{65} - 36q^{67} + 12q^{69} - 40q^{70} - 24q^{71} - 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} + 24q^{77} + 6q^{78} - 2q^{80} - 18q^{81} + 20q^{82} - 36q^{83} + 26q^{85} + 10q^{87} - 4q^{88} - 2q^{90} - 36q^{91} - 10q^{92} - 12q^{93} + 12q^{94} + 18q^{95} - 52q^{97} - 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.50247 + 1.65608i 0.671924 + 0.740620i
\(6\) 1.00000i 0.408248i
\(7\) −0.827955 0.478020i −0.312937 0.180675i 0.335303 0.942110i \(-0.391161\pi\)
−0.648240 + 0.761436i \(0.724495\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −0.682971 + 2.12921i −0.215974 + 0.673316i
\(11\) 0.252998 0.0762818 0.0381409 0.999272i \(-0.487856\pi\)
0.0381409 + 0.999272i \(0.487856\pi\)
\(12\) −0.866025 + 0.500000i −0.250000 + 0.144338i
\(13\) 0.858827 1.48753i 0.238196 0.412567i −0.722001 0.691892i \(-0.756777\pi\)
0.960197 + 0.279325i \(0.0901107\pi\)
\(14\) 0.956040i 0.255512i
\(15\) 0.473136 + 2.18544i 0.122163 + 0.564278i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.88164 + 4.99114i 0.698900 + 1.21053i 0.968848 + 0.247655i \(0.0796599\pi\)
−0.269949 + 0.962875i \(0.587007\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 3.89488 + 2.24871i 0.893546 + 0.515889i 0.875101 0.483941i \(-0.160795\pi\)
0.0184451 + 0.999830i \(0.494128\pi\)
\(20\) −2.18544 + 0.473136i −0.488679 + 0.105797i
\(21\) −0.478020 0.827955i −0.104312 0.180675i
\(22\) 0.126499 + 0.219103i 0.0269697 + 0.0467129i
\(23\) −4.71996 −0.984180 −0.492090 0.870544i \(-0.663767\pi\)
−0.492090 + 0.870544i \(0.663767\pi\)
\(24\) −0.866025 0.500000i −0.176777 0.102062i
\(25\) −0.485183 + 4.97640i −0.0970365 + 0.995281i
\(26\) 1.71765 0.336860
\(27\) 1.00000i 0.192450i
\(28\) 0.827955 0.478020i 0.156469 0.0903373i
\(29\) 6.74876i 1.25321i 0.779336 + 0.626606i \(0.215557\pi\)
−0.779336 + 0.626606i \(0.784443\pi\)
\(30\) −1.65608 + 1.50247i −0.302357 + 0.274312i
\(31\) 0.279008i 0.0501114i −0.999686 0.0250557i \(-0.992024\pi\)
0.999686 0.0250557i \(-0.00797630\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0.219103 + 0.126499i 0.0381409 + 0.0220207i
\(34\) −2.88164 + 4.99114i −0.494197 + 0.855974i
\(35\) −0.452337 2.08937i −0.0764589 0.353167i
\(36\) −1.00000 −0.166667
\(37\) −3.20888 5.16750i −0.527536 0.849532i
\(38\) 4.49741i 0.729577i
\(39\) 1.48753 0.858827i 0.238196 0.137522i
\(40\) −1.50247 1.65608i −0.237561 0.261849i
\(41\) −2.96243 + 5.13107i −0.462653 + 0.801339i −0.999092 0.0426000i \(-0.986436\pi\)
0.536439 + 0.843939i \(0.319769\pi\)
\(42\) 0.478020 0.827955i 0.0737601 0.127756i
\(43\) 1.27403 0.194288 0.0971442 0.995270i \(-0.469029\pi\)
0.0971442 + 0.995270i \(0.469029\pi\)
\(44\) −0.126499 + 0.219103i −0.0190705 + 0.0330310i
\(45\) −0.682971 + 2.12921i −0.101811 + 0.317404i
\(46\) −2.35998 4.08761i −0.347960 0.602685i
\(47\) 6.17905i 0.901307i −0.892699 0.450654i \(-0.851191\pi\)
0.892699 0.450654i \(-0.148809\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −3.04299 5.27062i −0.434713 0.752946i
\(50\) −4.55228 + 2.06802i −0.643790 + 0.292462i
\(51\) 5.76327i 0.807020i
\(52\) 0.858827 + 1.48753i 0.119098 + 0.206284i
\(53\) −7.10229 + 4.10051i −0.975575 + 0.563248i −0.900931 0.433962i \(-0.857115\pi\)
−0.0746437 + 0.997210i \(0.523782\pi\)
\(54\) −0.866025 + 0.500000i −0.117851 + 0.0680414i
\(55\) 0.380122 + 0.418985i 0.0512556 + 0.0564959i
\(56\) 0.827955 + 0.478020i 0.110640 + 0.0638781i
\(57\) 2.24871 + 3.89488i 0.297849 + 0.515889i
\(58\) −5.84460 + 3.37438i −0.767433 + 0.443078i
\(59\) 13.0282 7.52184i 1.69613 0.979260i 0.746759 0.665094i \(-0.231609\pi\)
0.949368 0.314165i \(-0.101725\pi\)
\(60\) −2.12921 0.682971i −0.274880 0.0881712i
\(61\) 3.43889 + 1.98545i 0.440305 + 0.254210i 0.703727 0.710470i \(-0.251518\pi\)
−0.263422 + 0.964681i \(0.584851\pi\)
\(62\) 0.241628 0.139504i 0.0306868 0.0177170i
\(63\) 0.956040i 0.120450i
\(64\) 1.00000 0.125000
\(65\) 3.75383 0.812685i 0.465605 0.100801i
\(66\) 0.252998i 0.0311419i
\(67\) −0.518394 0.299295i −0.0633319 0.0365647i 0.468000 0.883729i \(-0.344975\pi\)
−0.531332 + 0.847164i \(0.678308\pi\)
\(68\) −5.76327 −0.698900
\(69\) −4.08761 2.35998i −0.492090 0.284108i
\(70\) 1.58328 1.43642i 0.189238 0.171685i
\(71\) 6.17507 10.6955i 0.732846 1.26933i −0.222816 0.974861i \(-0.571525\pi\)
0.955662 0.294466i \(-0.0951417\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 10.7356i 1.25650i −0.778011 0.628251i \(-0.783771\pi\)
0.778011 0.628251i \(-0.216229\pi\)
\(74\) 2.87075 5.36272i 0.333718 0.623404i
\(75\) −2.90838 + 4.06710i −0.335831 + 0.469628i
\(76\) −3.89488 + 2.24871i −0.446773 + 0.257944i
\(77\) −0.209471 0.120938i −0.0238714 0.0137822i
\(78\) 1.48753 + 0.858827i 0.168430 + 0.0972430i
\(79\) −2.20916 1.27546i −0.248550 0.143500i 0.370550 0.928813i \(-0.379169\pi\)
−0.619100 + 0.785312i \(0.712503\pi\)
\(80\) 0.682971 2.12921i 0.0763585 0.238053i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −5.92485 −0.654291
\(83\) −12.5267 + 7.23229i −1.37498 + 0.793847i −0.991550 0.129722i \(-0.958592\pi\)
−0.383433 + 0.923569i \(0.625258\pi\)
\(84\) 0.956040 0.104312
\(85\) −3.93615 + 12.2712i −0.426935 + 1.33100i
\(86\) 0.637017 + 1.10335i 0.0686913 + 0.118977i
\(87\) −3.37438 + 5.84460i −0.361771 + 0.626606i
\(88\) −0.252998 −0.0269697
\(89\) 6.84497 3.95194i 0.725565 0.418905i −0.0912324 0.995830i \(-0.529081\pi\)
0.816798 + 0.576924i \(0.195747\pi\)
\(90\) −2.18544 + 0.473136i −0.230365 + 0.0498730i
\(91\) −1.42214 + 0.821073i −0.149081 + 0.0860718i
\(92\) 2.35998 4.08761i 0.246045 0.426163i
\(93\) 0.139504 0.241628i 0.0144659 0.0250557i
\(94\) 5.35121 3.08952i 0.551936 0.318660i
\(95\) 2.12789 + 9.82882i 0.218317 + 1.00842i
\(96\) 0.866025 0.500000i 0.0883883 0.0510310i
\(97\) 17.8296 1.81032 0.905158 0.425075i \(-0.139752\pi\)
0.905158 + 0.425075i \(0.139752\pi\)
\(98\) 3.04299 5.27062i 0.307389 0.532413i
\(99\) 0.126499 + 0.219103i 0.0127136 + 0.0220207i
\(100\) −4.06710 2.90838i −0.406710 0.290838i
\(101\) 13.2413 1.31756 0.658781 0.752335i \(-0.271072\pi\)
0.658781 + 0.752335i \(0.271072\pi\)
\(102\) −4.99114 + 2.88164i −0.494197 + 0.285325i
\(103\) −10.6557 −1.04993 −0.524966 0.851123i \(-0.675922\pi\)
−0.524966 + 0.851123i \(0.675922\pi\)
\(104\) −0.858827 + 1.48753i −0.0842149 + 0.145865i
\(105\) 0.652947 2.03561i 0.0637211 0.198655i
\(106\) −7.10229 4.10051i −0.689836 0.398277i
\(107\) 13.0826 + 7.55326i 1.26475 + 0.730201i 0.973989 0.226596i \(-0.0727597\pi\)
0.290757 + 0.956797i \(0.406093\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) −10.6230 + 6.13320i −1.01750 + 0.587454i −0.913379 0.407111i \(-0.866536\pi\)
−0.104121 + 0.994565i \(0.533203\pi\)
\(110\) −0.172790 + 0.538687i −0.0164749 + 0.0513618i
\(111\) −0.195218 6.07963i −0.0185293 0.577053i
\(112\) 0.956040i 0.0903373i
\(113\) −1.13408 1.96429i −0.106685 0.184785i 0.807740 0.589539i \(-0.200690\pi\)
−0.914426 + 0.404754i \(0.867357\pi\)
\(114\) −2.24871 + 3.89488i −0.210611 + 0.364789i
\(115\) −7.09159 7.81662i −0.661294 0.728904i
\(116\) −5.84460 3.37438i −0.542657 0.313303i
\(117\) 1.71765 0.158797
\(118\) 13.0282 + 7.52184i 1.19934 + 0.692441i
\(119\) 5.50992i 0.505093i
\(120\) −0.473136 2.18544i −0.0431913 0.199502i
\(121\) −10.9360 −0.994181
\(122\) 3.97089i 0.359508i
\(123\) −5.13107 + 2.96243i −0.462653 + 0.267113i
\(124\) 0.241628 + 0.139504i 0.0216989 + 0.0125278i
\(125\) −8.97028 + 6.67339i −0.802326 + 0.596886i
\(126\) 0.827955 0.478020i 0.0737601 0.0425854i
\(127\) 2.12642 1.22769i 0.188690 0.108940i −0.402679 0.915341i \(-0.631921\pi\)
0.591369 + 0.806401i \(0.298588\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 1.10335 + 0.637017i 0.0971442 + 0.0560862i
\(130\) 2.58072 + 2.84457i 0.226344 + 0.249485i
\(131\) 15.2442 8.80126i 1.33189 0.768969i 0.346304 0.938122i \(-0.387436\pi\)
0.985590 + 0.169153i \(0.0541032\pi\)
\(132\) −0.219103 + 0.126499i −0.0190705 + 0.0110103i
\(133\) −2.14985 3.72366i −0.186416 0.322882i
\(134\) 0.598590i 0.0517103i
\(135\) −1.65608 + 1.50247i −0.142532 + 0.129312i
\(136\) −2.88164 4.99114i −0.247098 0.427987i
\(137\) 1.17190i 0.100123i 0.998746 + 0.0500613i \(0.0159417\pi\)
−0.998746 + 0.0500613i \(0.984058\pi\)
\(138\) 4.71996i 0.401790i
\(139\) 1.65873 + 2.87300i 0.140691 + 0.243684i 0.927757 0.373185i \(-0.121734\pi\)
−0.787066 + 0.616869i \(0.788401\pi\)
\(140\) 2.03561 + 0.652947i 0.172041 + 0.0551841i
\(141\) 3.08952 5.35121i 0.260185 0.450654i
\(142\) 12.3501 1.03640
\(143\) 0.217282 0.376343i 0.0181700 0.0314714i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −11.1765 + 10.1398i −0.928155 + 0.842064i
\(146\) 9.29726 5.36778i 0.769447 0.444240i
\(147\) 6.08599i 0.501964i
\(148\) 6.07963 0.195218i 0.499742 0.0160468i
\(149\) −5.82788 −0.477439 −0.238719 0.971089i \(-0.576728\pi\)
−0.238719 + 0.971089i \(0.576728\pi\)
\(150\) −4.97640 0.485183i −0.406322 0.0396150i
\(151\) 9.73722 16.8654i 0.792404 1.37248i −0.132071 0.991240i \(-0.542163\pi\)
0.924475 0.381244i \(-0.124504\pi\)
\(152\) −3.89488 2.24871i −0.315916 0.182394i
\(153\) −2.88164 + 4.99114i −0.232967 + 0.403510i
\(154\) 0.241876i 0.0194910i
\(155\) 0.462059 0.419201i 0.0371135 0.0336710i
\(156\) 1.71765i 0.137522i
\(157\) 1.24648 0.719657i 0.0994801 0.0574348i −0.449435 0.893313i \(-0.648375\pi\)
0.548915 + 0.835878i \(0.315041\pi\)
\(158\) 2.55092i 0.202940i
\(159\) −8.20102 −0.650383
\(160\) 2.18544 0.473136i 0.172774 0.0374047i
\(161\) 3.90791 + 2.25624i 0.307987 + 0.177816i
\(162\) −1.00000 −0.0785674
\(163\) 4.06999 + 7.04943i 0.318786 + 0.552154i 0.980235 0.197836i \(-0.0633914\pi\)
−0.661449 + 0.749990i \(0.730058\pi\)
\(164\) −2.96243 5.13107i −0.231327 0.400670i
\(165\) 0.119703 + 0.552912i 0.00931884 + 0.0430441i
\(166\) −12.5267 7.23229i −0.972260 0.561335i
\(167\) 8.98184 15.5570i 0.695036 1.20384i −0.275133 0.961406i \(-0.588722\pi\)
0.970169 0.242431i \(-0.0779449\pi\)
\(168\) 0.478020 + 0.827955i 0.0368800 + 0.0638781i
\(169\) 5.02483 + 8.70326i 0.386526 + 0.669482i
\(170\) −12.5953 + 2.72681i −0.966014 + 0.209137i
\(171\) 4.49741i 0.343926i
\(172\) −0.637017 + 1.10335i −0.0485721 + 0.0841294i
\(173\) 11.7107 6.76116i 0.890346 0.514042i 0.0162904 0.999867i \(-0.494814\pi\)
0.874056 + 0.485826i \(0.161481\pi\)
\(174\) −6.74876 −0.511622
\(175\) 2.78053 3.88831i 0.210188 0.293929i
\(176\) −0.126499 0.219103i −0.00953523 0.0165155i
\(177\) 15.0437 1.13075
\(178\) 6.84497 + 3.95194i 0.513052 + 0.296211i
\(179\) 4.23810i 0.316771i −0.987377 0.158385i \(-0.949371\pi\)
0.987377 0.158385i \(-0.0506288\pi\)
\(180\) −1.50247 1.65608i −0.111987 0.123437i
\(181\) −4.72246 + 8.17955i −0.351018 + 0.607981i −0.986428 0.164194i \(-0.947498\pi\)
0.635410 + 0.772175i \(0.280831\pi\)
\(182\) −1.42214 0.821073i −0.105416 0.0608620i
\(183\) 1.98545 + 3.43889i 0.146768 + 0.254210i
\(184\) 4.71996 0.347960
\(185\) 3.73655 13.0782i 0.274717 0.961525i
\(186\) 0.279008 0.0204579
\(187\) 0.729049 + 1.26275i 0.0533133 + 0.0923414i
\(188\) 5.35121 + 3.08952i 0.390277 + 0.225327i
\(189\) 0.478020 0.827955i 0.0347708 0.0602248i
\(190\) −7.44807 + 6.75722i −0.540339 + 0.490220i
\(191\) 14.5601i 1.05353i 0.850010 + 0.526766i \(0.176596\pi\)
−0.850010 + 0.526766i \(0.823404\pi\)
\(192\) 0.866025 + 0.500000i 0.0625000 + 0.0360844i
\(193\) −9.43753 −0.679329 −0.339664 0.940547i \(-0.610313\pi\)
−0.339664 + 0.940547i \(0.610313\pi\)
\(194\) 8.91478 + 15.4408i 0.640044 + 1.10859i
\(195\) 3.65725 + 1.17311i 0.261901 + 0.0840080i
\(196\) 6.08599 0.434713
\(197\) 13.6839 7.90037i 0.974934 0.562878i 0.0741971 0.997244i \(-0.476361\pi\)
0.900737 + 0.434365i \(0.143027\pi\)
\(198\) −0.126499 + 0.219103i −0.00898990 + 0.0155710i
\(199\) 3.54416i 0.251239i 0.992079 + 0.125619i \(0.0400918\pi\)
−0.992079 + 0.125619i \(0.959908\pi\)
\(200\) 0.485183 4.97640i 0.0343076 0.351885i
\(201\) −0.299295 0.518394i −0.0211106 0.0365647i
\(202\) 6.62067 + 11.4673i 0.465829 + 0.806839i
\(203\) 3.22604 5.58767i 0.226424 0.392177i
\(204\) −4.99114 2.88164i −0.349450 0.201755i
\(205\) −12.9484 + 2.80326i −0.904356 + 0.195789i
\(206\) −5.32783 9.22806i −0.371207 0.642950i
\(207\) −2.35998 4.08761i −0.164030 0.284108i
\(208\) −1.71765 −0.119098
\(209\) 0.985397 + 0.568919i 0.0681613 + 0.0393530i
\(210\) 2.08937 0.452337i 0.144180 0.0312142i
\(211\) −19.4199 −1.33692 −0.668461 0.743747i \(-0.733047\pi\)
−0.668461 + 0.743747i \(0.733047\pi\)
\(212\) 8.20102i 0.563248i
\(213\) 10.6955 6.17507i 0.732846 0.423109i
\(214\) 15.1065i 1.03266i
\(215\) 1.91420 + 2.10990i 0.130547 + 0.143894i
\(216\) 1.00000i 0.0680414i
\(217\) −0.133371 + 0.231006i −0.00905384 + 0.0156817i
\(218\) −10.6230 6.13320i −0.719481 0.415392i
\(219\) 5.36778 9.29726i 0.362721 0.628251i
\(220\) −0.552912 + 0.119703i −0.0372773 + 0.00807035i
\(221\) 9.89931 0.665900
\(222\) 5.16750 3.20888i 0.346820 0.215366i
\(223\) 11.3168i 0.757826i −0.925432 0.378913i \(-0.876298\pi\)
0.925432 0.378913i \(-0.123702\pi\)
\(224\) −0.827955 + 0.478020i −0.0553200 + 0.0319390i
\(225\) −4.55228 + 2.06802i −0.303486 + 0.137868i
\(226\) 1.13408 1.96429i 0.0754380 0.130662i
\(227\) 3.47406 6.01725i 0.230581 0.399379i −0.727398 0.686216i \(-0.759271\pi\)
0.957979 + 0.286837i \(0.0926039\pi\)
\(228\) −4.49741 −0.297849
\(229\) 10.4066 18.0248i 0.687690 1.19111i −0.284894 0.958559i \(-0.591958\pi\)
0.972583 0.232555i \(-0.0747084\pi\)
\(230\) 3.22360 10.0498i 0.212558 0.662665i
\(231\) −0.120938 0.209471i −0.00795715 0.0137822i
\(232\) 6.74876i 0.443078i
\(233\) 1.61054i 0.105510i −0.998607 0.0527550i \(-0.983200\pi\)
0.998607 0.0527550i \(-0.0168003\pi\)
\(234\) 0.858827 + 1.48753i 0.0561433 + 0.0972430i
\(235\) 10.2330 9.28382i 0.667526 0.605610i
\(236\) 15.0437i 0.979260i
\(237\) −1.27546 2.20916i −0.0828501 0.143500i
\(238\) 4.77173 2.75496i 0.309305 0.178577i
\(239\) 7.21821 4.16744i 0.466907 0.269569i −0.248037 0.968751i \(-0.579785\pi\)
0.714944 + 0.699181i \(0.246452\pi\)
\(240\) 1.65608 1.50247i 0.106899 0.0969839i
\(241\) −20.3057 11.7235i −1.30800 0.755176i −0.326241 0.945287i \(-0.605782\pi\)
−0.981763 + 0.190110i \(0.939115\pi\)
\(242\) −5.46800 9.47085i −0.351496 0.608809i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) −3.43889 + 1.98545i −0.220153 + 0.127105i
\(245\) 4.15655 12.9584i 0.265552 0.827880i
\(246\) −5.13107 2.96243i −0.327145 0.188877i
\(247\) 6.69005 3.86250i 0.425678 0.245765i
\(248\) 0.279008i 0.0177170i
\(249\) −14.4646 −0.916656
\(250\) −10.2645 4.43180i −0.649182 0.280291i
\(251\) 6.35514i 0.401133i −0.979680 0.200566i \(-0.935722\pi\)
0.979680 0.200566i \(-0.0642783\pi\)
\(252\) 0.827955 + 0.478020i 0.0521562 + 0.0301124i
\(253\) −1.19414 −0.0750751
\(254\) 2.12642 + 1.22769i 0.133424 + 0.0770322i
\(255\) −9.54442 + 8.65913i −0.597695 + 0.542256i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.3520 + 19.6623i 0.708119 + 1.22650i 0.965554 + 0.260203i \(0.0837894\pi\)
−0.257435 + 0.966296i \(0.582877\pi\)
\(258\) 1.27403i 0.0793179i
\(259\) 0.186636 + 5.81237i 0.0115970 + 0.361163i
\(260\) −1.17311 + 3.65725i −0.0727531 + 0.226813i
\(261\) −5.84460 + 3.37438i −0.361771 + 0.208869i
\(262\) 15.2442 + 8.80126i 0.941791 + 0.543743i
\(263\) −15.7566 9.09708i −0.971594 0.560950i −0.0718724 0.997414i \(-0.522897\pi\)
−0.899722 + 0.436464i \(0.856231\pi\)
\(264\) −0.219103 0.126499i −0.0134849 0.00778548i
\(265\) −17.4617 5.60106i −1.07267 0.344070i
\(266\) 2.14985 3.72366i 0.131816 0.228312i
\(267\) 7.90389 0.483710
\(268\) 0.518394 0.299295i 0.0316659 0.0182823i
\(269\) −14.0186 −0.854729 −0.427365 0.904079i \(-0.640558\pi\)
−0.427365 + 0.904079i \(0.640558\pi\)
\(270\) −2.12921 0.682971i −0.129580 0.0415643i
\(271\) 3.39607 + 5.88217i 0.206297 + 0.357316i 0.950545 0.310587i \(-0.100525\pi\)
−0.744248 + 0.667903i \(0.767192\pi\)
\(272\) 2.88164 4.99114i 0.174725 0.302632i
\(273\) −1.64215 −0.0993872
\(274\) −1.01490 + 0.585952i −0.0613123 + 0.0353987i
\(275\) −0.122750 + 1.25902i −0.00740213 + 0.0759219i
\(276\) 4.08761 2.35998i 0.246045 0.142054i
\(277\) 5.09774 8.82954i 0.306293 0.530516i −0.671255 0.741226i \(-0.734244\pi\)
0.977548 + 0.210711i \(0.0675778\pi\)
\(278\) −1.65873 + 2.87300i −0.0994838 + 0.172311i
\(279\) 0.241628 0.139504i 0.0144659 0.00835189i
\(280\) 0.452337 + 2.08937i 0.0270323 + 0.124863i
\(281\) 15.7170 9.07419i 0.937595 0.541321i 0.0483896 0.998829i \(-0.484591\pi\)
0.889206 + 0.457508i \(0.151258\pi\)
\(282\) 6.17905 0.367957
\(283\) 1.22946 2.12948i 0.0730835 0.126584i −0.827168 0.561955i \(-0.810049\pi\)
0.900251 + 0.435371i \(0.143383\pi\)
\(284\) 6.17507 + 10.6955i 0.366423 + 0.634663i
\(285\) −3.07160 + 9.57596i −0.181946 + 0.567231i
\(286\) 0.434563 0.0256963
\(287\) 4.90551 2.83220i 0.289563 0.167179i
\(288\) 1.00000 0.0589256
\(289\) −8.10766 + 14.0429i −0.476921 + 0.826052i
\(290\) −14.3695 4.60921i −0.843809 0.270662i
\(291\) 15.4408 + 8.91478i 0.905158 + 0.522593i
\(292\) 9.29726 + 5.36778i 0.544081 + 0.314125i
\(293\) 14.7982 + 8.54373i 0.864518 + 0.499130i 0.865523 0.500870i \(-0.166986\pi\)
−0.00100443 + 0.999999i \(0.500320\pi\)
\(294\) 5.27062 3.04299i 0.307389 0.177471i
\(295\) 32.0312 + 10.2744i 1.86493 + 0.598198i
\(296\) 3.20888 + 5.16750i 0.186512 + 0.300355i
\(297\) 0.252998i 0.0146804i
\(298\) −2.91394 5.04710i −0.168800 0.292370i
\(299\) −4.05363 + 7.02110i −0.234428 + 0.406040i
\(300\) −2.06802 4.55228i −0.119397 0.262826i
\(301\) −1.05484 0.609014i −0.0608001 0.0351030i
\(302\) 19.4744 1.12063
\(303\) 11.4673 + 6.62067i 0.658781 + 0.380348i
\(304\) 4.49741i 0.257944i
\(305\) 1.87877 + 8.67814i 0.107578 + 0.496909i
\(306\) −5.76327 −0.329464
\(307\) 18.3619i 1.04797i −0.851729 0.523983i \(-0.824445\pi\)
0.851729 0.523983i \(-0.175555\pi\)
\(308\) 0.209471 0.120938i 0.0119357 0.00689109i
\(309\) −9.22806 5.32783i −0.524966 0.303089i
\(310\) 0.594068 + 0.190555i 0.0337408 + 0.0108228i
\(311\) −8.27066 + 4.77507i −0.468986 + 0.270769i −0.715815 0.698290i \(-0.753945\pi\)
0.246829 + 0.969059i \(0.420611\pi\)
\(312\) −1.48753 + 0.858827i −0.0842149 + 0.0486215i
\(313\) 2.40463 + 4.16495i 0.135918 + 0.235417i 0.925948 0.377652i \(-0.123268\pi\)
−0.790030 + 0.613068i \(0.789935\pi\)
\(314\) 1.24648 + 0.719657i 0.0703430 + 0.0406126i
\(315\) 1.58328 1.43642i 0.0892075 0.0809330i
\(316\) 2.20916 1.27546i 0.124275 0.0717502i
\(317\) −12.6914 + 7.32737i −0.712818 + 0.411546i −0.812104 0.583513i \(-0.801678\pi\)
0.0992854 + 0.995059i \(0.468344\pi\)
\(318\) −4.10051 7.10229i −0.229945 0.398277i
\(319\) 1.70742i 0.0955974i
\(320\) 1.50247 + 1.65608i 0.0839905 + 0.0925775i
\(321\) 7.55326 + 13.0826i 0.421582 + 0.730201i
\(322\) 4.51247i 0.251470i
\(323\) 25.9198i 1.44222i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 6.98587 + 4.99560i 0.387507 + 0.277106i
\(326\) −4.06999 + 7.04943i −0.225416 + 0.390432i
\(327\) −12.2664 −0.678333
\(328\) 2.96243 5.13107i 0.163573 0.283316i
\(329\) −2.95371 + 5.11597i −0.162843 + 0.282053i
\(330\) −0.418985 + 0.380122i −0.0230643 + 0.0209250i
\(331\) −8.57428 + 4.95036i −0.471285 + 0.272097i −0.716778 0.697302i \(-0.754384\pi\)
0.245492 + 0.969399i \(0.421050\pi\)
\(332\) 14.4646i 0.793847i
\(333\) 2.87075 5.36272i 0.157316 0.293875i
\(334\) 17.9637 0.982929
\(335\) −0.283215 1.30818i −0.0154737 0.0714736i
\(336\) −0.478020 + 0.827955i −0.0260781 + 0.0451686i
\(337\) −20.2823 11.7100i −1.10485 0.637883i −0.167356 0.985897i \(-0.553523\pi\)
−0.937489 + 0.348014i \(0.886856\pi\)
\(338\) −5.02483 + 8.70326i −0.273315 + 0.473395i
\(339\) 2.26816i 0.123190i
\(340\) −8.65913 9.54442i −0.469607 0.517619i
\(341\) 0.0705886i 0.00382259i
\(342\) −3.89488 + 2.24871i −0.210611 + 0.121596i
\(343\) 12.5107i 0.675516i
\(344\) −1.27403 −0.0686913
\(345\) −2.23319 10.3152i −0.120231 0.555351i
\(346\) 11.7107 + 6.76116i 0.629570 + 0.363482i
\(347\) 36.3696 1.95242 0.976211 0.216821i \(-0.0695689\pi\)
0.976211 + 0.216821i \(0.0695689\pi\)
\(348\) −3.37438 5.84460i −0.180886 0.313303i
\(349\) −1.19043 2.06189i −0.0637225 0.110371i 0.832404 0.554169i \(-0.186964\pi\)
−0.896127 + 0.443799i \(0.853631\pi\)
\(350\) 4.75764 + 0.463854i 0.254307 + 0.0247940i
\(351\) 1.48753 + 0.858827i 0.0793986 + 0.0458408i
\(352\) 0.126499 0.219103i 0.00674243 0.0116782i
\(353\) −5.59944 9.69852i −0.298028 0.516200i 0.677657 0.735378i \(-0.262996\pi\)
−0.975685 + 0.219179i \(0.929662\pi\)
\(354\) 7.52184 + 13.0282i 0.399781 + 0.692441i
\(355\) 26.9905 5.84330i 1.43251 0.310130i
\(356\) 7.90389i 0.418905i
\(357\) 2.75496 4.77173i 0.145808 0.252547i
\(358\) 3.67031 2.11905i 0.193982 0.111995i
\(359\) −11.1332 −0.587590 −0.293795 0.955868i \(-0.594918\pi\)
−0.293795 + 0.955868i \(0.594918\pi\)
\(360\) 0.682971 2.12921i 0.0359957 0.112219i
\(361\) 0.613370 + 1.06239i 0.0322826 + 0.0559151i
\(362\) −9.44493 −0.496414
\(363\) −9.47085 5.46800i −0.497091 0.286995i
\(364\) 1.64215i 0.0860718i
\(365\) 17.7789 16.1298i 0.930590 0.844273i
\(366\) −1.98545 + 3.43889i −0.103781 + 0.179754i
\(367\) 18.2562 + 10.5402i 0.952967 + 0.550196i 0.894001 0.448064i \(-0.147886\pi\)
0.0589660 + 0.998260i \(0.481220\pi\)
\(368\) 2.35998 + 4.08761i 0.123023 + 0.213081i
\(369\) −5.92485 −0.308436
\(370\) 13.1943 3.30313i 0.685939 0.171722i
\(371\) 7.84050 0.407059
\(372\) 0.139504 + 0.241628i 0.00723295 + 0.0125278i
\(373\) −5.11640 2.95396i −0.264917 0.152950i 0.361658 0.932311i \(-0.382211\pi\)
−0.626576 + 0.779361i \(0.715544\pi\)
\(374\) −0.729049 + 1.26275i −0.0376982 + 0.0652952i
\(375\) −11.1052 + 1.29418i −0.573469 + 0.0668312i
\(376\) 6.17905i 0.318660i
\(377\) 10.0390 + 5.79602i 0.517035 + 0.298510i
\(378\) 0.956040 0.0491734
\(379\) −11.0088 19.0677i −0.565482 0.979444i −0.997005 0.0773420i \(-0.975357\pi\)
0.431522 0.902102i \(-0.357977\pi\)
\(380\) −9.57596 3.07160i −0.491236 0.157570i
\(381\) 2.45538 0.125793
\(382\) −12.6094 + 7.28005i −0.645154 + 0.372480i
\(383\) 2.98389 5.16824i 0.152470 0.264085i −0.779665 0.626197i \(-0.784611\pi\)
0.932135 + 0.362112i \(0.117944\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −0.114441 0.528606i −0.00583243 0.0269403i
\(386\) −4.71877 8.17314i −0.240179 0.416002i
\(387\) 0.637017 + 1.10335i 0.0323814 + 0.0560862i
\(388\) −8.91478 + 15.4408i −0.452579 + 0.783890i
\(389\) −5.95890 3.44038i −0.302128 0.174434i 0.341270 0.939965i \(-0.389143\pi\)
−0.643399 + 0.765531i \(0.722476\pi\)
\(390\) 0.812685 + 3.75383i 0.0411519 + 0.190082i
\(391\) −13.6012 23.5580i −0.687843 1.19138i
\(392\) 3.04299 + 5.27062i 0.153694 + 0.266207i
\(393\) 17.6025 0.887929
\(394\) 13.6839 + 7.90037i 0.689382 + 0.398015i
\(395\) −1.20693 5.57488i −0.0607274 0.280503i
\(396\) −0.252998 −0.0127136
\(397\) 8.30320i 0.416726i 0.978052 + 0.208363i \(0.0668135\pi\)
−0.978052 + 0.208363i \(0.933186\pi\)
\(398\) −3.06933 + 1.77208i −0.153852 + 0.0888263i
\(399\) 4.29971i 0.215255i
\(400\) 4.55228 2.06802i 0.227614 0.103401i
\(401\) 13.4756i 0.672937i −0.941695 0.336469i \(-0.890767\pi\)
0.941695 0.336469i \(-0.109233\pi\)
\(402\) 0.299295 0.518394i 0.0149275 0.0258551i
\(403\) −0.415034 0.239620i −0.0206743 0.0119363i
\(404\) −6.62067 + 11.4673i −0.329391 + 0.570521i
\(405\) −2.18544 + 0.473136i −0.108595 + 0.0235103i
\(406\) 6.45208 0.320211
\(407\) −0.811841 1.30737i −0.0402414 0.0648039i
\(408\) 5.76327i 0.285325i
\(409\) −13.6292 + 7.86885i −0.673923 + 0.389090i −0.797561 0.603238i \(-0.793877\pi\)
0.123638 + 0.992327i \(0.460544\pi\)
\(410\) −8.90190 9.81202i −0.439634 0.484581i
\(411\) −0.585952 + 1.01490i −0.0289029 + 0.0500613i
\(412\) 5.32783 9.22806i 0.262483 0.454634i
\(413\) −14.3823 −0.707709
\(414\) 2.35998 4.08761i 0.115987 0.200895i
\(415\) −30.7982 9.87889i −1.51182 0.484936i
\(416\) −0.858827 1.48753i −0.0421075 0.0729323i
\(417\) 3.31745i 0.162456i
\(418\) 1.13784i 0.0556535i
\(419\) −17.2973 29.9597i −0.845027 1.46363i −0.885598 0.464452i \(-0.846251\pi\)
0.0405714 0.999177i \(-0.487082\pi\)
\(420\) 1.43642 + 1.58328i 0.0700900 + 0.0772559i
\(421\) 24.6521i 1.20147i 0.799449 + 0.600734i \(0.205125\pi\)
−0.799449 + 0.600734i \(0.794875\pi\)
\(422\) −9.70996 16.8181i −0.472673 0.818694i
\(423\) 5.35121 3.08952i 0.260185 0.150218i
\(424\) 7.10229 4.10051i 0.344918 0.199138i
\(425\) −26.2361 + 11.9186i −1.27264 + 0.578136i
\(426\) 10.6955 + 6.17507i 0.518200 + 0.299183i
\(427\) −1.89817 3.28772i −0.0918586 0.159104i
\(428\) −13.0826 + 7.55326i −0.632373 + 0.365101i
\(429\) 0.376343 0.217282i 0.0181700 0.0104905i
\(430\) −0.870129 + 2.71269i −0.0419613 + 0.130818i
\(431\) 1.32424 + 0.764551i 0.0637864 + 0.0368271i 0.531554 0.847024i \(-0.321608\pi\)
−0.467768 + 0.883851i \(0.654942\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) 0.749467i 0.0360171i −0.999838 0.0180085i \(-0.994267\pi\)
0.999838 0.0180085i \(-0.00573261\pi\)
\(434\) −0.266743 −0.0128041
\(435\) −14.7490 + 3.19308i −0.707160 + 0.153097i
\(436\) 12.2664i 0.587454i
\(437\) −18.3837 10.6138i −0.879410 0.507728i
\(438\) 10.7356 0.512965
\(439\) 5.66201 + 3.26896i 0.270233 + 0.156019i 0.628994 0.777410i \(-0.283467\pi\)
−0.358760 + 0.933430i \(0.616801\pi\)
\(440\) −0.380122 0.418985i −0.0181216 0.0199743i
\(441\) 3.04299 5.27062i 0.144904 0.250982i
\(442\) 4.94966 + 8.57305i 0.235431 + 0.407779i
\(443\) 31.0306i 1.47431i 0.675724 + 0.737155i \(0.263831\pi\)
−0.675724 + 0.737155i \(0.736169\pi\)
\(444\) 5.36272 + 2.87075i 0.254504 + 0.136240i
\(445\) 16.8291 + 5.39813i 0.797774 + 0.255896i
\(446\) 9.80060 5.65838i 0.464072 0.267932i
\(447\) −5.04710 2.91394i −0.238719 0.137825i
\(448\) −0.827955 0.478020i −0.0391172 0.0225843i
\(449\) −30.7650 17.7622i −1.45189 0.838249i −0.453302 0.891357i \(-0.649754\pi\)
−0.998589 + 0.0531078i \(0.983087\pi\)
\(450\) −4.06710 2.90838i −0.191725 0.137102i
\(451\) −0.749489 + 1.29815i −0.0352921 + 0.0611276i
\(452\) 2.26816 0.106685
\(453\) 16.8654 9.73722i 0.792404 0.457495i
\(454\) 6.94812 0.326091
\(455\) −3.49648 1.12154i −0.163917 0.0525785i
\(456\) −2.24871 3.89488i −0.105305 0.182394i
\(457\) −12.4644 + 21.5890i −0.583061 + 1.00989i 0.412053 + 0.911160i \(0.364812\pi\)
−0.995114 + 0.0987315i \(0.968521\pi\)
\(458\) 20.8133 0.972540
\(459\) −4.99114 + 2.88164i −0.232967 + 0.134503i
\(460\) 10.3152 2.23319i 0.480948 0.104123i
\(461\) −25.5860 + 14.7721i −1.19166 + 0.688004i −0.958682 0.284479i \(-0.908180\pi\)
−0.232975 + 0.972483i \(0.574846\pi\)
\(462\) 0.120938 0.209471i 0.00562655 0.00974548i
\(463\) 10.2303 17.7195i 0.475444 0.823493i −0.524160 0.851620i \(-0.675621\pi\)
0.999604 + 0.0281264i \(0.00895409\pi\)
\(464\) 5.84460 3.37438i 0.271329 0.156652i
\(465\) 0.609755 0.132009i 0.0282767 0.00612177i
\(466\) 1.39477 0.805271i 0.0646115 0.0373035i
\(467\) 14.8626 0.687760 0.343880 0.939014i \(-0.388259\pi\)
0.343880 + 0.939014i \(0.388259\pi\)
\(468\) −0.858827 + 1.48753i −0.0396993 + 0.0687612i
\(469\) 0.286138 + 0.495605i 0.0132126 + 0.0228849i
\(470\) 13.1565 + 4.22011i 0.606865 + 0.194659i
\(471\) 1.43931 0.0663200
\(472\) −13.0282 + 7.52184i −0.599672 + 0.346221i
\(473\) 0.322329 0.0148207
\(474\) 1.27546 2.20916i 0.0585838 0.101470i
\(475\) −13.0802 + 18.2914i −0.600161 + 0.839269i
\(476\) 4.77173 + 2.75496i 0.218712 + 0.126273i
\(477\) −7.10229 4.10051i −0.325192 0.187749i
\(478\) 7.21821 + 4.16744i 0.330153 + 0.190614i
\(479\) 12.3586 7.13524i 0.564679 0.326017i −0.190343 0.981718i \(-0.560960\pi\)
0.755021 + 0.655700i \(0.227627\pi\)
\(480\) 2.12921 + 0.682971i 0.0971849 + 0.0311732i
\(481\) −10.4427 + 0.335317i −0.476146 + 0.0152891i
\(482\) 23.4470i 1.06798i
\(483\) 2.25624 + 3.90791i 0.102662 + 0.177816i
\(484\) 5.46800 9.47085i 0.248545 0.430493i
\(485\) 26.7883 + 29.5271i 1.21640 + 1.34076i
\(486\) −0.866025 0.500000i −0.0392837 0.0226805i
\(487\) −9.99983 −0.453136 −0.226568 0.973995i \(-0.572750\pi\)
−0.226568 + 0.973995i \(0.572750\pi\)
\(488\) −3.43889 1.98545i −0.155671 0.0898769i
\(489\) 8.13998i 0.368103i
\(490\) 13.3006 2.87950i 0.600858 0.130083i
\(491\) 2.92058 0.131804 0.0659020 0.997826i \(-0.479008\pi\)
0.0659020 + 0.997826i \(0.479008\pi\)
\(492\) 5.92485i 0.267113i
\(493\) −33.6840 + 19.4475i −1.51705 + 0.875870i
\(494\) 6.69005 + 3.86250i 0.301000 + 0.173782i
\(495\) −0.172790 + 0.538687i −0.00776635 + 0.0242122i
\(496\) −0.241628 + 0.139504i −0.0108494 + 0.00626392i
\(497\) −10.2254 + 5.90361i −0.458670 + 0.264813i
\(498\) −7.23229 12.5267i −0.324087 0.561335i
\(499\) −15.7111 9.07079i −0.703324 0.406064i 0.105260 0.994445i \(-0.466432\pi\)
−0.808584 + 0.588380i \(0.799766\pi\)
\(500\) −1.29418 11.1052i −0.0578775 0.496639i
\(501\) 15.5570 8.98184i 0.695036 0.401279i
\(502\) 5.50371 3.17757i 0.245643 0.141822i
\(503\) −19.8786 34.4308i −0.886344 1.53519i −0.844166 0.536083i \(-0.819904\pi\)
−0.0421784 0.999110i \(-0.513430\pi\)
\(504\) 0.956040i 0.0425854i
\(505\) 19.8947 + 21.9287i 0.885302 + 0.975813i
\(506\) −0.597071 1.03416i −0.0265430 0.0459739i
\(507\) 10.0497i 0.446321i
\(508\) 2.45538i 0.108940i
\(509\) −13.2095 22.8795i −0.585501 1.01412i −0.994813 0.101723i \(-0.967565\pi\)
0.409312 0.912394i \(-0.365769\pi\)
\(510\) −12.2712 3.93615i −0.543380 0.174296i
\(511\) −5.13181 + 8.88855i −0.227018 + 0.393206i
\(512\) −1.00000 −0.0441942
\(513\) −2.24871 + 3.89488i −0.0992829 + 0.171963i
\(514\) −11.3520 + 19.6623i −0.500716 + 0.867265i
\(515\) −16.0098 17.6466i −0.705475 0.777601i
\(516\) −1.10335 + 0.637017i −0.0485721 + 0.0280431i
\(517\) 1.56329i 0.0687534i
\(518\) −4.94034 + 3.06781i −0.217066 + 0.134792i
\(519\) 13.5223 0.593564
\(520\) −3.75383 + 0.812685i −0.164616 + 0.0356386i
\(521\) −15.6202 + 27.0551i −0.684335 + 1.18530i 0.289310 + 0.957235i \(0.406574\pi\)
−0.973645 + 0.228068i \(0.926759\pi\)
\(522\) −5.84460 3.37438i −0.255811 0.147693i
\(523\) 2.75025 4.76357i 0.120260 0.208296i −0.799610 0.600519i \(-0.794961\pi\)
0.919870 + 0.392223i \(0.128294\pi\)
\(524\) 17.6025i 0.768969i
\(525\) 4.35216 1.97711i 0.189944 0.0862882i
\(526\) 18.1942i 0.793303i
\(527\) 1.39257 0.804000i 0.0606613 0.0350228i
\(528\) 0.252998i 0.0110103i
\(529\) −0.721957 −0.0313894
\(530\) −3.88020 17.9228i −0.168545 0.778518i
\(531\) 13.0282 + 7.52184i 0.565376 + 0.326420i
\(532\) 4.29971 0.186416
\(533\) 5.08843 + 8.81341i 0.220404 + 0.381751i
\(534\) 3.95194 + 6.84497i 0.171017 + 0.296211i
\(535\) 7.14744 + 33.0144i 0.309011 + 1.42734i
\(536\) 0.518394 + 0.299295i 0.0223912 + 0.0129276i
\(537\) 2.11905 3.67031i 0.0914438 0.158385i
\(538\) −7.00930 12.1405i −0.302192 0.523413i
\(539\) −0.769872 1.33346i −0.0331607 0.0574361i
\(540\) −0.473136 2.18544i −0.0203606 0.0940463i
\(541\) 20.1172i 0.864904i −0.901657 0.432452i \(-0.857649\pi\)
0.901657 0.432452i \(-0.142351\pi\)
\(542\) −3.39607 + 5.88217i −0.145874 + 0.252661i
\(543\) −8.17955 + 4.72246i −0.351018 + 0.202660i
\(544\) 5.76327 0.247098
\(545\) −26.1178 8.37759i −1.11876 0.358857i
\(546\) −0.821073 1.42214i −0.0351387 0.0608620i
\(547\) 17.4376 0.745580 0.372790 0.927916i \(-0.378401\pi\)
0.372790 + 0.927916i \(0.378401\pi\)
\(548\) −1.01490 0.585952i −0.0433544 0.0250306i
\(549\) 3.97089i 0.169474i
\(550\) −1.15172 + 0.523206i −0.0491095 + 0.0223096i
\(551\) −15.1760 + 26.2856i −0.646519 + 1.11980i
\(552\) 4.08761 + 2.35998i 0.173980 + 0.100447i
\(553\) 1.21939 + 2.11205i 0.0518538 + 0.0898134i
\(554\) 10.1955 0.433164
\(555\) 9.77503 9.45774i 0.414927 0.401459i
\(556\) −3.31745 −0.140691
\(557\) 5.96951 + 10.3395i 0.252936 + 0.438098i 0.964333 0.264692i \(-0.0852704\pi\)
−0.711397 + 0.702791i \(0.751937\pi\)
\(558\) 0.241628 + 0.139504i 0.0102289 + 0.00590568i
\(559\) 1.09418 1.89517i 0.0462787 0.0801570i
\(560\) −1.58328 + 1.43642i −0.0669056 + 0.0606998i
\(561\) 1.45810i 0.0615609i
\(562\) 15.7170 + 9.07419i 0.662980 + 0.382772i
\(563\) −26.5836 −1.12036 −0.560182 0.828370i \(-0.689269\pi\)
−0.560182 + 0.828370i \(0.689269\pi\)
\(564\) 3.08952 + 5.35121i 0.130092 + 0.225327i
\(565\) 1.54909 4.82940i 0.0651707 0.203175i
\(566\) 2.45891 0.103356
\(567\) 0.827955 0.478020i 0.0347708 0.0200749i
\(568\) −6.17507 + 10.6955i −0.259100 + 0.448775i
\(569\) 31.4826i 1.31982i 0.751344 + 0.659911i \(0.229406\pi\)
−0.751344 + 0.659911i \(0.770594\pi\)
\(570\) −9.82882 + 2.12789i −0.411684 + 0.0891275i
\(571\) −21.1332 36.6037i −0.884395 1.53182i −0.846405 0.532539i \(-0.821238\pi\)
−0.0379900 0.999278i \(-0.512096\pi\)
\(572\) 0.217282 + 0.376343i 0.00908501 + 0.0157357i
\(573\) −7.28005 + 12.6094i −0.304128 + 0.526766i
\(574\) 4.90551 + 2.83220i 0.204752 + 0.118214i
\(575\) 2.29004 23.4884i 0.0955014 0.979536i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −2.58269 4.47335i −0.107519 0.186228i 0.807246 0.590216i \(-0.200957\pi\)
−0.914765 + 0.403987i \(0.867624\pi\)
\(578\) −16.2153 −0.674468
\(579\) −8.17314 4.71877i −0.339664 0.196105i
\(580\) −3.19308 14.7490i −0.132586 0.612419i
\(581\) 13.8287 0.573712
\(582\) 17.8296i 0.739059i
\(583\) −1.79687 + 1.03742i −0.0744187 + 0.0429656i
\(584\) 10.7356i 0.444240i
\(585\) 2.58072 + 2.84457i 0.106700 + 0.117608i
\(586\) 17.0875i 0.705876i
\(587\) −19.1660 + 33.1964i −0.791064 + 1.37016i 0.134244 + 0.990948i \(0.457139\pi\)
−0.925309 + 0.379215i \(0.876194\pi\)
\(588\) 5.27062 + 3.04299i 0.217357 + 0.125491i
\(589\) 0.627408 1.08670i 0.0258519 0.0447768i
\(590\) 7.11771 + 32.8770i 0.293032 + 1.35353i
\(591\) 15.8007 0.649956
\(592\) −2.87075 + 5.36272i −0.117987 + 0.220407i
\(593\) 44.1228i 1.81191i 0.423379 + 0.905953i \(0.360844\pi\)
−0.423379 + 0.905953i \(0.639156\pi\)
\(594\) −0.219103 + 0.126499i −0.00898990 + 0.00519032i
\(595\) 9.12485 8.27847i 0.374082 0.339384i
\(596\) 2.91394 5.04710i 0.119360 0.206737i
\(597\) −1.77208 + 3.06933i −0.0725264 + 0.125619i
\(598\) −8.10726 −0.331531
\(599\) −9.68215 + 16.7700i −0.395602 + 0.685202i −0.993178 0.116610i \(-0.962797\pi\)
0.597576 + 0.801812i \(0.296131\pi\)
\(600\) 2.90838 4.06710i 0.118734 0.166039i
\(601\) 16.6840 + 28.8976i 0.680555 + 1.17876i 0.974812 + 0.223030i \(0.0715947\pi\)
−0.294257 + 0.955726i \(0.595072\pi\)
\(602\) 1.21803i 0.0496431i
\(603\) 0.598590i 0.0243765i
\(604\) 9.73722 + 16.8654i 0.396202 + 0.686242i
\(605\) −16.4310 18.1108i −0.668014 0.736311i
\(606\) 13.2413i 0.537893i
\(607\) −8.61613 14.9236i −0.349718 0.605730i 0.636481 0.771292i \(-0.280389\pi\)
−0.986199 + 0.165563i \(0.947056\pi\)
\(608\) 3.89488 2.24871i 0.157958 0.0911971i
\(609\) 5.58767 3.22604i 0.226424 0.130726i
\(610\) −6.57610 + 5.96614i −0.266259 + 0.241562i
\(611\) −9.19154 5.30674i −0.371850 0.214688i
\(612\) −2.88164 4.99114i −0.116483 0.201755i
\(613\) −12.5282 + 7.23314i −0.506008 + 0.292144i −0.731191 0.682173i \(-0.761035\pi\)
0.225183 + 0.974316i \(0.427702\pi\)
\(614\) 15.9018 9.18093i 0.641746 0.370512i
\(615\) −12.6153 4.04650i −0.508697 0.163171i
\(616\) 0.209471 + 0.120938i 0.00843983 + 0.00487274i
\(617\) −12.2964 + 7.09933i −0.495035 + 0.285808i −0.726661 0.686996i \(-0.758929\pi\)
0.231626 + 0.972805i \(0.425595\pi\)
\(618\) 10.6557i 0.428633i
\(619\) 35.2133 1.41534 0.707670 0.706543i \(-0.249746\pi\)
0.707670 + 0.706543i \(0.249746\pi\)
\(620\) 0.132009 + 0.609755i 0.00530161 + 0.0244884i
\(621\) 4.71996i 0.189406i
\(622\) −8.27066 4.77507i −0.331623 0.191463i
\(623\) −7.55643 −0.302742
\(624\) −1.48753 0.858827i −0.0595489 0.0343806i
\(625\) −24.5292 4.82893i −0.981168 0.193157i
\(626\) −2.40463 + 4.16495i −0.0961085 + 0.166465i
\(627\) 0.568919 + 0.985397i 0.0227204 + 0.0393530i
\(628\) 1.43931i 0.0574348i
\(629\) 16.5449 30.9068i 0.659689 1.23234i
\(630\) 2.03561 + 0.652947i 0.0811007 + 0.0260140i
\(631\) −30.6967 + 17.7227i −1.22202 + 0.705531i −0.965347 0.260968i \(-0.915958\pi\)
−0.256668 + 0.966500i \(0.582625\pi\)
\(632\) 2.20916 + 1.27546i 0.0878757 + 0.0507351i
\(633\) −16.8181 9.70996i −0.668461 0.385936i
\(634\) −12.6914 7.32737i −0.504039 0.291007i
\(635\) 5.22803 + 1.67695i 0.207468 + 0.0665479i
\(636\) 4.10051 7.10229i 0.162596 0.281624i
\(637\) −10.4536 −0.414188
\(638\) −1.47867 + 0.853712i −0.0585412 + 0.0337988i
\(639\) 12.3501 0.488564
\(640\) −0.682971 + 2.12921i −0.0269968 + 0.0841646i
\(641\) 10.9838 + 19.0244i 0.433833 + 0.751420i 0.997200 0.0747865i \(-0.0238275\pi\)
−0.563367 + 0.826207i \(0.690494\pi\)
\(642\) −7.55326 + 13.0826i −0.298103 + 0.516330i
\(643\) 17.8210 0.702792 0.351396 0.936227i \(-0.385707\pi\)
0.351396 + 0.936227i \(0.385707\pi\)
\(644\) −3.90791 + 2.25624i −0.153993 + 0.0889081i
\(645\) 0.602792 + 2.78432i 0.0237349 + 0.109633i
\(646\) −22.4472 + 12.9599i −0.883174 + 0.509901i
\(647\) −14.0846 + 24.3952i −0.553722 + 0.959075i 0.444280 + 0.895888i \(0.353460\pi\)
−0.998002 + 0.0631867i \(0.979874\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) 3.29611 1.90301i 0.129384 0.0746997i
\(650\) −0.833376 + 8.54774i −0.0326877 + 0.335270i
\(651\) −0.231006 + 0.133371i −0.00905384 + 0.00522724i
\(652\) −8.13998 −0.318786
\(653\) −21.2537 + 36.8125i −0.831722 + 1.44058i 0.0649503 + 0.997888i \(0.479311\pi\)
−0.896672 + 0.442696i \(0.854022\pi\)
\(654\) −6.13320 10.6230i −0.239827 0.415392i
\(655\) 37.4795 + 12.0220i 1.46445 + 0.469739i
\(656\) 5.92485 0.231327
\(657\) 9.29726 5.36778i 0.362721 0.209417i
\(658\) −5.90742 −0.230295
\(659\) −8.89609 + 15.4085i −0.346543 + 0.600229i −0.985633 0.168902i \(-0.945978\pi\)
0.639090 + 0.769132i \(0.279311\pi\)
\(660\) −0.538687 0.172790i −0.0209684 0.00672586i
\(661\) −3.69052 2.13072i −0.143545 0.0828755i 0.426508 0.904484i \(-0.359744\pi\)
−0.570052 + 0.821608i \(0.693077\pi\)
\(662\) −8.57428 4.95036i −0.333249 0.192401i
\(663\) 8.57305 + 4.94966i 0.332950 + 0.192229i
\(664\) 12.5267 7.23229i 0.486130 0.280667i
\(665\) 2.93658 9.15499i 0.113876 0.355015i
\(666\) 6.07963 0.195218i 0.235581 0.00756454i
\(667\) 31.8539i 1.23339i
\(668\) 8.98184 + 15.5570i 0.347518 + 0.601919i
\(669\) 5.65838 9.80060i 0.218765 0.378913i
\(670\) 0.991311 0.899362i 0.0382977 0.0347454i
\(671\) 0.870034 + 0.502314i 0.0335873 + 0.0193916i
\(672\) −0.956040 −0.0368800
\(673\) 27.5111 + 15.8835i 1.06047 + 0.612265i 0.925563 0.378593i \(-0.123592\pi\)
0.134910 + 0.990858i \(0.456925\pi\)
\(674\) 23.4199i 0.902102i
\(675\) −4.97640 0.485183i −0.191542 0.0186747i
\(676\) −10.0497 −0.386526
\(677\) 1.40856i 0.0541352i −0.999634 0.0270676i \(-0.991383\pi\)
0.999634 0.0270676i \(-0.00861694\pi\)
\(678\) 1.96429 1.13408i 0.0754380 0.0435541i
\(679\) −14.7621 8.52288i −0.566516 0.327078i
\(680\) 3.93615 12.2712i 0.150944 0.470581i
\(681\) 6.01725 3.47406i 0.230581 0.133126i
\(682\) 0.0611315 0.0352943i 0.00234085 0.00135149i
\(683\) −3.02507 5.23957i −0.115751 0.200487i 0.802329 0.596882i \(-0.203594\pi\)
−0.918080 + 0.396396i \(0.870261\pi\)
\(684\) −3.89488 2.24871i −0.148924 0.0859815i
\(685\) −1.94076 + 1.76075i −0.0741528 + 0.0672748i
\(686\) −10.8346 + 6.25536i −0.413667 + 0.238831i
\(687\) 18.0248 10.4066i 0.687690 0.397038i
\(688\) −0.637017 1.10335i −0.0242861 0.0420647i
\(689\) 14.0865i 0.536654i
\(690\) 7.81662 7.09159i 0.297574 0.269972i
\(691\) 11.8687 + 20.5572i 0.451507 + 0.782034i 0.998480 0.0551168i \(-0.0175531\pi\)
−0.546973 + 0.837151i \(0.684220\pi\)
\(692\) 13.5223i 0.514042i
\(693\) 0.241876i 0.00918812i
\(694\) 18.1848 + 31.4970i 0.690286 + 1.19561i
\(695\) −2.26572 + 7.06356i −0.0859438 + 0.267936i
\(696\) 3.37438 5.84460i 0.127906 0.221539i
\(697\) −34.1466 −1.29339
\(698\) 1.19043 2.06189i 0.0450586 0.0780438i
\(699\) 0.805271 1.39477i 0.0304581 0.0527550i
\(700\) 1.97711 + 4.35216i 0.0747278 + 0.164496i
\(701\) −8.52293 + 4.92071i −0.321906 + 0.185853i −0.652242 0.758011i \(-0.726171\pi\)
0.330336 + 0.943864i \(0.392838\pi\)
\(702\) 1.71765i 0.0648287i
\(703\) −0.877976 27.3426i −0.0331135 1.03125i
\(704\) 0.252998 0.00953523
\(705\) 13.5039 2.92353i 0.508588 0.110107i
\(706\) 5.59944 9.69852i 0.210738 0.365008i
\(707\) −10.9632 6.32962i −0.412315 0.238050i
\(708\) −7.52184 + 13.0282i −0.282688 + 0.489630i
\(709\) 2.32525i 0.0873267i 0.999046 + 0.0436634i \(0.0139029\pi\)
−0.999046 + 0.0436634i \(0.986097\pi\)
\(710\) 18.5557 + 20.4528i 0.696382 + 0.767579i
\(711\) 2.55092i 0.0956670i
\(712\) −6.84497 + 3.95194i −0.256526 + 0.148105i
\(713\) 1.31691i 0.0493186i
\(714\) 5.50992 0.206203
\(715\) 0.949712 0.205608i 0.0355172 0.00768930i
\(716\) 3.67031 + 2.11905i 0.137166 + 0.0791927i
\(717\) 8.33488 0.311272
\(718\) −5.56662 9.64167i −0.207744 0.359824i
\(719\) −16.1985 28.0566i −0.604102 1.04634i −0.992193 0.124714i \(-0.960199\pi\)
0.388090 0.921621i \(-0.373135\pi\)
\(720\) 2.18544 0.473136i 0.0814465 0.0176328i
\(721\) 8.82240 + 5.09361i 0.328563 + 0.189696i
\(722\) −0.613370 + 1.06239i −0.0228273 + 0.0395380i
\(723\) −11.7235 20.3057i −0.436001 0.755176i
\(724\) −4.72246 8.17955i −0.175509 0.303990i
\(725\) −33.5845 3.27438i −1.24730 0.121607i
\(726\) 10.9360i 0.405873i
\(727\) −1.19340 + 2.06703i −0.0442608 + 0.0766620i −0.887307 0.461179i \(-0.847427\pi\)
0.843046 + 0.537841i \(0.180760\pi\)
\(728\) 1.42214 0.821073i 0.0527080 0.0304310i
\(729\) −1.00000 −0.0370370
\(730\) 22.8583 + 7.33207i 0.846023 + 0.271372i
\(731\) 3.67130 + 6.35889i 0.135788 + 0.235192i
\(732\) −3.97089 −0.146768
\(733\) 3.61173 + 2.08523i 0.133402 + 0.0770199i 0.565216 0.824943i \(-0.308793\pi\)
−0.431814 + 0.901963i \(0.642126\pi\)
\(734\) 21.0805i 0.778095i
\(735\) 10.0789 9.14400i 0.371765 0.337282i
\(736\) −2.35998 + 4.08761i −0.0869901 + 0.150671i
\(737\) −0.131153 0.0757211i −0.00483107 0.00278922i
\(738\) −2.96243 5.13107i −0.109048 0.188877i
\(739\) 16.3015 0.599659 0.299829 0.953993i \(-0.403070\pi\)
0.299829 + 0.953993i \(0.403070\pi\)
\(740\) 9.45774 + 9.77503i 0.347673 + 0.359337i
\(741\) 7.72500 0.283785
\(742\) 3.92025 + 6.79007i 0.143917 + 0.249271i
\(743\) −6.04362 3.48928i −0.221719 0.128009i 0.385027 0.922905i \(-0.374192\pi\)
−0.606746 + 0.794896i \(0.707525\pi\)
\(744\) −0.139504 + 0.241628i −0.00511447 + 0.00885852i
\(745\) −8.75621 9.65143i −0.320803 0.353601i
\(746\) 5.90791i 0.216304i
\(747\) −12.5267 7.23229i −0.458328 0.264616i
\(748\) −1.45810 −0.0533133
\(749\) −7.22121 12.5075i −0.263857 0.457015i
\(750\) −6.67339 8.97028i −0.243678 0.327548i
\(751\) −33.5526 −1.22435 −0.612176 0.790721i \(-0.709706\pi\)
−0.612176 + 0.790721i \(0.709706\pi\)
\(752\) −5.35121 + 3.08952i −0.195139 + 0.112663i
\(753\) 3.17757 5.50371i 0.115797 0.200566i
\(754\) 11.5920i 0.422157i
\(755\) 42.5602 9.21407i 1.54892 0.335334i
\(756\) 0.478020 + 0.827955i 0.0173854 + 0.0301124i
\(757\) 18.3507 + 31.7843i 0.666967 + 1.15522i 0.978748 + 0.205067i \(0.0657411\pi\)
−0.311781 + 0.950154i \(0.600926\pi\)
\(758\) 11.0088 19.0677i 0.399856 0.692572i
\(759\) −1.03416 0.597071i −0.0375375 0.0216723i
\(760\) −2.12789 9.82882i −0.0771867 0.356529i
\(761\) 13.3114 + 23.0559i 0.482536 + 0.835777i 0.999799 0.0200493i \(-0.00638233\pi\)
−0.517263 + 0.855827i \(0.673049\pi\)
\(762\) 1.22769 + 2.12642i 0.0444746 + 0.0770322i
\(763\) 11.7272 0.424552
\(764\) −12.6094 7.28005i −0.456193 0.263383i
\(765\) −12.5953 + 2.72681i −0.455383 + 0.0985882i
\(766\) 5.96777 0.215624
\(767\) 25.8398i 0.933022i
\(768\) −0.866025 + 0.500000i −0.0312500 + 0.0180422i
\(769\) 20.2744i 0.731112i −0.930789 0.365556i \(-0.880879\pi\)
0.930789 0.365556i \(-0.119121\pi\)
\(770\) 0.400566 0.363411i 0.0144354 0.0130964i
\(771\) 22.7040i 0.817666i
\(772\) 4.71877 8.17314i 0.169832 0.294158i
\(773\) 18.6843 + 10.7874i 0.672027 + 0.387995i 0.796844 0.604185i \(-0.206501\pi\)
−0.124817 + 0.992180i \(0.539834\pi\)
\(774\) −0.637017 + 1.10335i −0.0228971 + 0.0396590i
\(775\) 1.38846 + 0.135370i 0.0498749 + 0.00486263i
\(776\) −17.8296 −0.640044