Properties

Label 1110.2.ba.a.619.2
Level $1110$
Weight $2$
Character 1110.619
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 619.2
Character \(\chi\) \(=\) 1110.619
Dual form 1110.2.ba.a.529.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.648845 + 2.13986i) q^{5} -1.00000i q^{6} +(1.49882 - 0.865342i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.648845 + 2.13986i) q^{5} -1.00000i q^{6} +(1.49882 - 0.865342i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.52875 - 1.63185i) q^{10} -1.54769 q^{11} +(0.866025 + 0.500000i) q^{12} +(-1.64535 - 2.84982i) q^{13} +1.73068i q^{14} +(-0.508014 - 2.17760i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.18797 - 5.52173i) q^{17} +(0.500000 + 0.866025i) q^{18} +(-3.40218 + 1.96425i) q^{19} +(2.17760 - 0.508014i) q^{20} +(-0.865342 + 1.49882i) q^{21} +(0.773843 - 1.34034i) q^{22} +5.76456 q^{23} +(-0.866025 + 0.500000i) q^{24} +(-4.15800 - 2.77687i) q^{25} +3.29069 q^{26} +1.00000i q^{27} +(-1.49882 - 0.865342i) q^{28} -0.719561i q^{29} +(2.13986 + 0.648845i) q^{30} -9.04219i q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.34034 - 0.773843i) q^{33} +(3.18797 + 5.52173i) q^{34} +(0.879211 + 3.76873i) q^{35} -1.00000 q^{36} +(-5.20707 - 3.14427i) q^{37} -3.92850i q^{38} +(2.84982 + 1.64535i) q^{39} +(-0.648845 + 2.13986i) q^{40} +(0.726915 + 1.25905i) q^{41} +(-0.865342 - 1.49882i) q^{42} +0.853321 q^{43} +(0.773843 + 1.34034i) q^{44} +(1.52875 + 1.63185i) q^{45} +(-2.88228 + 4.99226i) q^{46} -8.07046i q^{47} -1.00000i q^{48} +(-2.00237 + 3.46820i) q^{49} +(4.48384 - 2.21250i) q^{50} +6.37594i q^{51} +(-1.64535 + 2.84982i) q^{52} +(9.03833 + 5.21828i) q^{53} +(-0.866025 - 0.500000i) q^{54} +(1.00421 - 3.31183i) q^{55} +(1.49882 - 0.865342i) q^{56} +(1.96425 - 3.40218i) q^{57} +(0.623158 + 0.359780i) q^{58} +(3.25086 + 1.87689i) q^{59} +(-1.63185 + 1.52875i) q^{60} +(-0.355641 + 0.205329i) q^{61} +(7.83077 + 4.52110i) q^{62} -1.73068i q^{63} +1.00000 q^{64} +(7.16579 - 1.67172i) q^{65} +1.54769i q^{66} +(7.11411 - 4.10733i) q^{67} -6.37594 q^{68} +(-4.99226 + 2.88228i) q^{69} +(-3.70342 - 1.12295i) q^{70} +(2.29731 + 3.97906i) q^{71} +(0.500000 - 0.866025i) q^{72} -5.50667i q^{73} +(5.32655 - 2.93732i) q^{74} +(4.98937 + 0.325844i) q^{75} +(3.40218 + 1.96425i) q^{76} +(-2.31970 + 1.33928i) q^{77} +(-2.84982 + 1.64535i) q^{78} +(10.5472 - 6.08942i) q^{79} +(-1.52875 - 1.63185i) q^{80} +(-0.500000 - 0.866025i) q^{81} -1.45383 q^{82} +(10.2377 + 5.91076i) q^{83} +1.73068 q^{84} +(9.74723 + 10.4046i) q^{85} +(-0.426660 + 0.738998i) q^{86} +(0.359780 + 0.623158i) q^{87} -1.54769 q^{88} +(-8.13018 - 4.69396i) q^{89} +(-2.17760 + 0.508014i) q^{90} +(-4.93214 - 2.84757i) q^{91} +(-2.88228 - 4.99226i) q^{92} +(4.52110 + 7.83077i) q^{93} +(6.98922 + 4.03523i) q^{94} +(-1.99573 - 8.55467i) q^{95} +(0.866025 + 0.500000i) q^{96} +16.6738 q^{97} +(-2.00237 - 3.46820i) q^{98} +(-0.773843 + 1.34034i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} - 14q^{13} - 2q^{15} - 18q^{16} + 18q^{18} + 6q^{19} - 4q^{20} - 2q^{22} - 20q^{23} + 4q^{25} + 28q^{26} - 2q^{30} - 18q^{32} - 6q^{33} - 40q^{35} - 36q^{36} + 20q^{37} + 6q^{39} + 2q^{40} + 10q^{41} - 2q^{44} - 2q^{45} + 10q^{46} + 10q^{49} - 2q^{50} - 14q^{52} - 12q^{53} + 56q^{55} + 8q^{57} + 30q^{58} + 18q^{59} + 4q^{60} - 6q^{61} - 12q^{62} + 36q^{64} + 40q^{65} + 36q^{67} + 12q^{69} + 20q^{70} - 24q^{71} + 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} - 24q^{77} - 6q^{78} + 2q^{80} - 18q^{81} - 20q^{82} + 36q^{83} + 26q^{85} - 10q^{87} + 4q^{88} + 4q^{90} - 36q^{91} + 10q^{92} + 12q^{93} + 12q^{94} - 30q^{95} + 52q^{97} + 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.648845 + 2.13986i −0.290172 + 0.956974i
\(6\) 1.00000i 0.408248i
\(7\) 1.49882 0.865342i 0.566499 0.327069i −0.189251 0.981929i \(-0.560606\pi\)
0.755750 + 0.654860i \(0.227273\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.52875 1.63185i −0.483433 0.516035i
\(11\) −1.54769 −0.466645 −0.233323 0.972399i \(-0.574960\pi\)
−0.233323 + 0.972399i \(0.574960\pi\)
\(12\) 0.866025 + 0.500000i 0.250000 + 0.144338i
\(13\) −1.64535 2.84982i −0.456337 0.790398i 0.542427 0.840103i \(-0.317505\pi\)
−0.998764 + 0.0497044i \(0.984172\pi\)
\(14\) 1.73068i 0.462545i
\(15\) −0.508014 2.17760i −0.131169 0.562253i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.18797 5.52173i 0.773197 1.33922i −0.162606 0.986691i \(-0.551990\pi\)
0.935802 0.352525i \(-0.114677\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) −3.40218 + 1.96425i −0.780513 + 0.450629i −0.836612 0.547796i \(-0.815467\pi\)
0.0560991 + 0.998425i \(0.482134\pi\)
\(20\) 2.17760 0.508014i 0.486925 0.113595i
\(21\) −0.865342 + 1.49882i −0.188833 + 0.327069i
\(22\) 0.773843 1.34034i 0.164984 0.285761i
\(23\) 5.76456 1.20199 0.600997 0.799251i \(-0.294770\pi\)
0.600997 + 0.799251i \(0.294770\pi\)
\(24\) −0.866025 + 0.500000i −0.176777 + 0.102062i
\(25\) −4.15800 2.77687i −0.831600 0.555375i
\(26\) 3.29069 0.645358
\(27\) 1.00000i 0.192450i
\(28\) −1.49882 0.865342i −0.283250 0.163534i
\(29\) 0.719561i 0.133619i −0.997766 0.0668096i \(-0.978718\pi\)
0.997766 0.0668096i \(-0.0212820\pi\)
\(30\) 2.13986 + 0.648845i 0.390683 + 0.118462i
\(31\) 9.04219i 1.62403i −0.583639 0.812013i \(-0.698372\pi\)
0.583639 0.812013i \(-0.301628\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 1.34034 0.773843i 0.233323 0.134709i
\(34\) 3.18797 + 5.52173i 0.546733 + 0.946969i
\(35\) 0.879211 + 3.76873i 0.148614 + 0.637032i
\(36\) −1.00000 −0.166667
\(37\) −5.20707 3.14427i −0.856037 0.516915i
\(38\) 3.92850i 0.637286i
\(39\) 2.84982 + 1.64535i 0.456337 + 0.263466i
\(40\) −0.648845 + 2.13986i −0.102591 + 0.338342i
\(41\) 0.726915 + 1.25905i 0.113525 + 0.196631i 0.917189 0.398452i \(-0.130452\pi\)
−0.803664 + 0.595083i \(0.797119\pi\)
\(42\) −0.865342 1.49882i −0.133525 0.231272i
\(43\) 0.853321 0.130130 0.0650651 0.997881i \(-0.479274\pi\)
0.0650651 + 0.997881i \(0.479274\pi\)
\(44\) 0.773843 + 1.34034i 0.116661 + 0.202063i
\(45\) 1.52875 + 1.63185i 0.227893 + 0.243261i
\(46\) −2.88228 + 4.99226i −0.424969 + 0.736068i
\(47\) 8.07046i 1.17720i −0.808425 0.588599i \(-0.799680\pi\)
0.808425 0.588599i \(-0.200320\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.00237 + 3.46820i −0.286052 + 0.495457i
\(50\) 4.48384 2.21250i 0.634111 0.312894i
\(51\) 6.37594i 0.892811i
\(52\) −1.64535 + 2.84982i −0.228168 + 0.395199i
\(53\) 9.03833 + 5.21828i 1.24151 + 0.716786i 0.969402 0.245481i \(-0.0789457\pi\)
0.272108 + 0.962267i \(0.412279\pi\)
\(54\) −0.866025 0.500000i −0.117851 0.0680414i
\(55\) 1.00421 3.31183i 0.135407 0.446567i
\(56\) 1.49882 0.865342i 0.200288 0.115636i
\(57\) 1.96425 3.40218i 0.260171 0.450629i
\(58\) 0.623158 + 0.359780i 0.0818247 + 0.0472415i
\(59\) 3.25086 + 1.87689i 0.423226 + 0.244350i 0.696457 0.717599i \(-0.254759\pi\)
−0.273230 + 0.961949i \(0.588092\pi\)
\(60\) −1.63185 + 1.52875i −0.210670 + 0.197361i
\(61\) −0.355641 + 0.205329i −0.0455352 + 0.0262897i −0.522595 0.852581i \(-0.675036\pi\)
0.477060 + 0.878871i \(0.341703\pi\)
\(62\) 7.83077 + 4.52110i 0.994509 + 0.574180i
\(63\) 1.73068i 0.218046i
\(64\) 1.00000 0.125000
\(65\) 7.16579 1.67172i 0.888807 0.207351i
\(66\) 1.54769i 0.190507i
\(67\) 7.11411 4.10733i 0.869127 0.501791i 0.00206895 0.999998i \(-0.499341\pi\)
0.867058 + 0.498207i \(0.166008\pi\)
\(68\) −6.37594 −0.773197
\(69\) −4.99226 + 2.88228i −0.600997 + 0.346986i
\(70\) −3.70342 1.12295i −0.442643 0.134218i
\(71\) 2.29731 + 3.97906i 0.272641 + 0.472228i 0.969537 0.244944i \(-0.0787696\pi\)
−0.696896 + 0.717172i \(0.745436\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) 5.50667i 0.644507i −0.946653 0.322254i \(-0.895560\pi\)
0.946653 0.322254i \(-0.104440\pi\)
\(74\) 5.32655 2.93732i 0.619199 0.341457i
\(75\) 4.98937 + 0.325844i 0.576123 + 0.0376252i
\(76\) 3.40218 + 1.96425i 0.390256 + 0.225315i
\(77\) −2.31970 + 1.33928i −0.264354 + 0.152625i
\(78\) −2.84982 + 1.64535i −0.322679 + 0.186299i
\(79\) 10.5472 6.08942i 1.18665 0.685113i 0.229107 0.973401i \(-0.426419\pi\)
0.957544 + 0.288288i \(0.0930860\pi\)
\(80\) −1.52875 1.63185i −0.170919 0.182446i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −1.45383 −0.160549
\(83\) 10.2377 + 5.91076i 1.12374 + 0.648790i 0.942352 0.334622i \(-0.108609\pi\)
0.181385 + 0.983412i \(0.441942\pi\)
\(84\) 1.73068 0.188833
\(85\) 9.74723 + 10.4046i 1.05724 + 1.12853i
\(86\) −0.426660 + 0.738998i −0.0460080 + 0.0796882i
\(87\) 0.359780 + 0.623158i 0.0385725 + 0.0668096i
\(88\) −1.54769 −0.164984
\(89\) −8.13018 4.69396i −0.861798 0.497559i 0.00281612 0.999996i \(-0.499104\pi\)
−0.864614 + 0.502437i \(0.832437\pi\)
\(90\) −2.17760 + 0.508014i −0.229539 + 0.0535493i
\(91\) −4.93214 2.84757i −0.517029 0.298507i
\(92\) −2.88228 4.99226i −0.300499 0.520479i
\(93\) 4.52110 + 7.83077i 0.468816 + 0.812013i
\(94\) 6.98922 + 4.03523i 0.720883 + 0.416202i
\(95\) −1.99573 8.55467i −0.204757 0.877691i
\(96\) 0.866025 + 0.500000i 0.0883883 + 0.0510310i
\(97\) 16.6738 1.69296 0.846482 0.532417i \(-0.178716\pi\)
0.846482 + 0.532417i \(0.178716\pi\)
\(98\) −2.00237 3.46820i −0.202270 0.350341i
\(99\) −0.773843 + 1.34034i −0.0777742 + 0.134709i
\(100\) −0.325844 + 4.98937i −0.0325844 + 0.498937i
\(101\) 2.56090 0.254819 0.127410 0.991850i \(-0.459334\pi\)
0.127410 + 0.991850i \(0.459334\pi\)
\(102\) −5.52173 3.18797i −0.546733 0.315656i
\(103\) 3.81879 0.376276 0.188138 0.982143i \(-0.439755\pi\)
0.188138 + 0.982143i \(0.439755\pi\)
\(104\) −1.64535 2.84982i −0.161339 0.279448i
\(105\) −2.64578 2.82421i −0.258202 0.275615i
\(106\) −9.03833 + 5.21828i −0.877880 + 0.506844i
\(107\) 12.8377 7.41182i 1.24106 0.716528i 0.271752 0.962367i \(-0.412397\pi\)
0.969311 + 0.245839i \(0.0790635\pi\)
\(108\) 0.866025 0.500000i 0.0833333 0.0481125i
\(109\) 1.92541 + 1.11164i 0.184421 + 0.106475i 0.589368 0.807865i \(-0.299377\pi\)
−0.404947 + 0.914340i \(0.632710\pi\)
\(110\) 2.36603 + 2.52559i 0.225592 + 0.240805i
\(111\) 6.08159 + 0.119482i 0.577239 + 0.0113407i
\(112\) 1.73068i 0.163534i
\(113\) −9.77887 + 16.9375i −0.919918 + 1.59335i −0.120382 + 0.992728i \(0.538412\pi\)
−0.799536 + 0.600618i \(0.794921\pi\)
\(114\) 1.96425 + 3.40218i 0.183969 + 0.318643i
\(115\) −3.74031 + 12.3354i −0.348785 + 1.15028i
\(116\) −0.623158 + 0.359780i −0.0578588 + 0.0334048i
\(117\) −3.29069 −0.304224
\(118\) −3.25086 + 1.87689i −0.299266 + 0.172781i
\(119\) 11.0347i 1.01155i
\(120\) −0.508014 2.17760i −0.0463751 0.198786i
\(121\) −8.60467 −0.782242
\(122\) 0.410659i 0.0371793i
\(123\) −1.25905 0.726915i −0.113525 0.0655437i
\(124\) −7.83077 + 4.52110i −0.703224 + 0.406006i
\(125\) 8.64002 7.09578i 0.772787 0.634666i
\(126\) 1.49882 + 0.865342i 0.133525 + 0.0770908i
\(127\) −8.57640 4.95159i −0.761033 0.439382i 0.0686338 0.997642i \(-0.478136\pi\)
−0.829666 + 0.558260i \(0.811469\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −0.738998 + 0.426660i −0.0650651 + 0.0375654i
\(130\) −2.13515 + 7.04162i −0.187265 + 0.617591i
\(131\) −10.8086 6.24033i −0.944349 0.545220i −0.0530283 0.998593i \(-0.516887\pi\)
−0.891321 + 0.453373i \(0.850221\pi\)
\(132\) −1.34034 0.773843i −0.116661 0.0673544i
\(133\) −3.39949 + 5.88809i −0.294773 + 0.510562i
\(134\) 8.21467i 0.709639i
\(135\) −2.13986 0.648845i −0.184170 0.0558437i
\(136\) 3.18797 5.52173i 0.273366 0.473484i
\(137\) 11.5585i 0.987508i −0.869602 0.493754i \(-0.835624\pi\)
0.869602 0.493754i \(-0.164376\pi\)
\(138\) 5.76456i 0.490712i
\(139\) 1.25720 2.17753i 0.106634 0.184696i −0.807771 0.589497i \(-0.799326\pi\)
0.914405 + 0.404801i \(0.132659\pi\)
\(140\) 2.82421 2.64578i 0.238689 0.223610i
\(141\) 4.03523 + 6.98922i 0.339828 + 0.588599i
\(142\) −4.59462 −0.385572
\(143\) 2.54648 + 4.41063i 0.212947 + 0.368835i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) 1.53976 + 0.466884i 0.127870 + 0.0387726i
\(146\) 4.76892 + 2.75334i 0.394678 + 0.227868i
\(147\) 4.00473i 0.330305i
\(148\) −0.119482 + 6.08159i −0.00982137 + 0.499904i
\(149\) −12.5220 −1.02584 −0.512920 0.858436i \(-0.671436\pi\)
−0.512920 + 0.858436i \(0.671436\pi\)
\(150\) −2.77687 + 4.15800i −0.226731 + 0.339499i
\(151\) −9.02188 15.6264i −0.734191 1.27166i −0.955078 0.296356i \(-0.904229\pi\)
0.220887 0.975299i \(-0.429105\pi\)
\(152\) −3.40218 + 1.96425i −0.275953 + 0.159322i
\(153\) −3.18797 5.52173i −0.257732 0.446405i
\(154\) 2.67856i 0.215844i
\(155\) 19.3490 + 5.86698i 1.55415 + 0.471247i
\(156\) 3.29069i 0.263466i
\(157\) −19.0331 10.9888i −1.51901 0.876999i −0.999750 0.0223804i \(-0.992875\pi\)
−0.519257 0.854618i \(-0.673791\pi\)
\(158\) 12.1788i 0.968897i
\(159\) −10.4366 −0.827673
\(160\) 2.17760 0.508014i 0.172154 0.0401620i
\(161\) 8.64002 4.98832i 0.680929 0.393135i
\(162\) 1.00000 0.0785674
\(163\) −6.27827 + 10.8743i −0.491752 + 0.851739i −0.999955 0.00949793i \(-0.996977\pi\)
0.508203 + 0.861237i \(0.330310\pi\)
\(164\) 0.726915 1.25905i 0.0567625 0.0983156i
\(165\) 0.786246 + 3.37024i 0.0612092 + 0.262372i
\(166\) −10.2377 + 5.91076i −0.794602 + 0.458764i
\(167\) 3.34316 + 5.79053i 0.258702 + 0.448085i 0.965894 0.258936i \(-0.0833720\pi\)
−0.707193 + 0.707021i \(0.750039\pi\)
\(168\) −0.865342 + 1.49882i −0.0667626 + 0.115636i
\(169\) 1.08568 1.88045i 0.0835137 0.144650i
\(170\) −13.8842 + 3.23907i −1.06487 + 0.248425i
\(171\) 3.92850i 0.300420i
\(172\) −0.426660 0.738998i −0.0325326 0.0563480i
\(173\) −3.16647 1.82816i −0.240742 0.138993i 0.374776 0.927116i \(-0.377720\pi\)
−0.615518 + 0.788123i \(0.711053\pi\)
\(174\) −0.719561 −0.0545498
\(175\) −8.63502 0.563933i −0.652747 0.0426293i
\(176\) 0.773843 1.34034i 0.0583306 0.101032i
\(177\) −3.75377 −0.282151
\(178\) 8.13018 4.69396i 0.609383 0.351827i
\(179\) 22.2334i 1.66180i −0.556422 0.830900i \(-0.687826\pi\)
0.556422 0.830900i \(-0.312174\pi\)
\(180\) 0.648845 2.13986i 0.0483621 0.159496i
\(181\) 4.97146 + 8.61082i 0.369526 + 0.640037i 0.989491 0.144591i \(-0.0461868\pi\)
−0.619966 + 0.784629i \(0.712853\pi\)
\(182\) 4.93214 2.84757i 0.365595 0.211076i
\(183\) 0.205329 0.355641i 0.0151784 0.0262897i
\(184\) 5.76456 0.424969
\(185\) 10.1069 9.10226i 0.743072 0.669211i
\(186\) −9.04219 −0.663006
\(187\) −4.93398 + 8.54591i −0.360808 + 0.624939i
\(188\) −6.98922 + 4.03523i −0.509741 + 0.294299i
\(189\) 0.865342 + 1.49882i 0.0629444 + 0.109023i
\(190\) 8.40643 + 2.54898i 0.609866 + 0.184923i
\(191\) 12.7228i 0.920592i 0.887766 + 0.460296i \(0.152257\pi\)
−0.887766 + 0.460296i \(0.847743\pi\)
\(192\) −0.866025 + 0.500000i −0.0625000 + 0.0360844i
\(193\) −7.19149 −0.517655 −0.258827 0.965924i \(-0.583336\pi\)
−0.258827 + 0.965924i \(0.583336\pi\)
\(194\) −8.33688 + 14.4399i −0.598553 + 1.03672i
\(195\) −5.36990 + 5.03064i −0.384547 + 0.360252i
\(196\) 4.00473 0.286052
\(197\) 4.31757 + 2.49275i 0.307614 + 0.177601i 0.645858 0.763457i \(-0.276500\pi\)
−0.338244 + 0.941058i \(0.609833\pi\)
\(198\) −0.773843 1.34034i −0.0549947 0.0952535i
\(199\) 7.94025i 0.562870i 0.959580 + 0.281435i \(0.0908103\pi\)
−0.959580 + 0.281435i \(0.909190\pi\)
\(200\) −4.15800 2.77687i −0.294015 0.196355i
\(201\) −4.10733 + 7.11411i −0.289709 + 0.501791i
\(202\) −1.28045 + 2.21781i −0.0900922 + 0.156044i
\(203\) −0.622666 1.07849i −0.0437026 0.0756951i
\(204\) 5.52173 3.18797i 0.386598 0.223203i
\(205\) −3.16585 + 0.738566i −0.221113 + 0.0515837i
\(206\) −1.90939 + 3.30717i −0.133034 + 0.230421i
\(207\) 2.88228 4.99226i 0.200332 0.346986i
\(208\) 3.29069 0.228168
\(209\) 5.26550 3.04004i 0.364223 0.210284i
\(210\) 3.76873 0.879211i 0.260067 0.0606713i
\(211\) 11.7676 0.810112 0.405056 0.914292i \(-0.367252\pi\)
0.405056 + 0.914292i \(0.367252\pi\)
\(212\) 10.4366i 0.716786i
\(213\) −3.97906 2.29731i −0.272641 0.157409i
\(214\) 14.8236i 1.01332i
\(215\) −0.553673 + 1.82599i −0.0377602 + 0.124531i
\(216\) 1.00000i 0.0680414i
\(217\) −7.82459 13.5526i −0.531168 0.920010i
\(218\) −1.92541 + 1.11164i −0.130405 + 0.0752894i
\(219\) 2.75334 + 4.76892i 0.186053 + 0.322254i
\(220\) −3.37024 + 0.786246i −0.227221 + 0.0530087i
\(221\) −20.9813 −1.41135
\(222\) −3.14427 + 5.20707i −0.211030 + 0.349476i
\(223\) 16.7406i 1.12103i −0.828143 0.560517i \(-0.810602\pi\)
0.828143 0.560517i \(-0.189398\pi\)
\(224\) −1.49882 0.865342i −0.100144 0.0578181i
\(225\) −4.48384 + 2.21250i −0.298923 + 0.147500i
\(226\) −9.77887 16.9375i −0.650481 1.12667i
\(227\) 1.51026 + 2.61584i 0.100239 + 0.173620i 0.911783 0.410672i \(-0.134706\pi\)
−0.811544 + 0.584291i \(0.801372\pi\)
\(228\) −3.92850 −0.260171
\(229\) 0.284128 + 0.492123i 0.0187757 + 0.0325204i 0.875261 0.483652i \(-0.160690\pi\)
−0.856485 + 0.516172i \(0.827356\pi\)
\(230\) −8.81258 9.40688i −0.581084 0.620271i
\(231\) 1.33928 2.31970i 0.0881180 0.152625i
\(232\) 0.719561i 0.0472415i
\(233\) 5.62242i 0.368337i −0.982895 0.184169i \(-0.941041\pi\)
0.982895 0.184169i \(-0.0589592\pi\)
\(234\) 1.64535 2.84982i 0.107560 0.186299i
\(235\) 17.2696 + 5.23648i 1.12655 + 0.341590i
\(236\) 3.75377i 0.244350i
\(237\) −6.08942 + 10.5472i −0.395550 + 0.685113i
\(238\) 9.55637 + 5.51737i 0.619447 + 0.357638i
\(239\) 21.1400 + 12.2052i 1.36743 + 0.789487i 0.990600 0.136794i \(-0.0436799\pi\)
0.376833 + 0.926281i \(0.377013\pi\)
\(240\) 2.13986 + 0.648845i 0.138127 + 0.0418828i
\(241\) −10.2774 + 5.93368i −0.662027 + 0.382222i −0.793049 0.609158i \(-0.791508\pi\)
0.131022 + 0.991379i \(0.458174\pi\)
\(242\) 4.30233 7.45186i 0.276564 0.479024i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 0.355641 + 0.205329i 0.0227676 + 0.0131449i
\(245\) −6.12224 6.53511i −0.391135 0.417513i
\(246\) 1.25905 0.726915i 0.0802744 0.0463464i
\(247\) 11.1955 + 6.46373i 0.712353 + 0.411277i
\(248\) 9.04219i 0.574180i
\(249\) −11.8215 −0.749158
\(250\) 1.82511 + 11.0304i 0.115430 + 0.697622i
\(251\) 11.7493i 0.741611i −0.928710 0.370806i \(-0.879082\pi\)
0.928710 0.370806i \(-0.120918\pi\)
\(252\) −1.49882 + 0.865342i −0.0944166 + 0.0545114i
\(253\) −8.92174 −0.560905
\(254\) 8.57640 4.95159i 0.538131 0.310690i
\(255\) −13.6436 4.13700i −0.854397 0.259069i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.56386 13.1010i 0.471820 0.817217i −0.527660 0.849456i \(-0.676930\pi\)
0.999480 + 0.0322389i \(0.0102637\pi\)
\(258\) 0.853321i 0.0531254i
\(259\) −10.5253 0.206786i −0.654011 0.0128490i
\(260\) −5.03064 5.36990i −0.311987 0.333027i
\(261\) −0.623158 0.359780i −0.0385725 0.0222699i
\(262\) 10.8086 6.24033i 0.667756 0.385529i
\(263\) −12.4096 + 7.16469i −0.765209 + 0.441794i −0.831163 0.556029i \(-0.812324\pi\)
0.0659538 + 0.997823i \(0.478991\pi\)
\(264\) 1.34034 0.773843i 0.0824920 0.0476268i
\(265\) −17.0309 + 15.9549i −1.04620 + 0.980102i
\(266\) −3.39949 5.88809i −0.208436 0.361022i
\(267\) 9.38793 0.574532
\(268\) −7.11411 4.10733i −0.434563 0.250895i
\(269\) −4.81724 −0.293713 −0.146856 0.989158i \(-0.546915\pi\)
−0.146856 + 0.989158i \(0.546915\pi\)
\(270\) 1.63185 1.52875i 0.0993110 0.0930368i
\(271\) 3.92526 6.79875i 0.238443 0.412995i −0.721825 0.692076i \(-0.756696\pi\)
0.960268 + 0.279081i \(0.0900298\pi\)
\(272\) 3.18797 + 5.52173i 0.193299 + 0.334804i
\(273\) 5.69515 0.344686
\(274\) 10.0099 + 5.77924i 0.604723 + 0.349137i
\(275\) 6.43528 + 4.29773i 0.388062 + 0.259163i
\(276\) 4.99226 + 2.88228i 0.300499 + 0.173493i
\(277\) −4.07494 7.05800i −0.244839 0.424074i 0.717247 0.696819i \(-0.245402\pi\)
−0.962086 + 0.272745i \(0.912069\pi\)
\(278\) 1.25720 + 2.17753i 0.0754017 + 0.130600i
\(279\) −7.83077 4.52110i −0.468816 0.270671i
\(280\) 0.879211 + 3.76873i 0.0525429 + 0.225225i
\(281\) −26.6881 15.4084i −1.59208 0.919188i −0.992950 0.118537i \(-0.962179\pi\)
−0.599131 0.800651i \(-0.704487\pi\)
\(282\) −8.07046 −0.480589
\(283\) 3.63012 + 6.28756i 0.215789 + 0.373757i 0.953516 0.301342i \(-0.0974345\pi\)
−0.737728 + 0.675098i \(0.764101\pi\)
\(284\) 2.29731 3.97906i 0.136320 0.236114i
\(285\) 6.00569 + 6.41070i 0.355746 + 0.379737i
\(286\) −5.09296 −0.301153
\(287\) 2.17903 + 1.25806i 0.128624 + 0.0742610i
\(288\) −1.00000 −0.0589256
\(289\) −11.8263 20.4838i −0.695667 1.20493i
\(290\) −1.17421 + 1.10003i −0.0689522 + 0.0645959i
\(291\) −14.4399 + 8.33688i −0.846482 + 0.488717i
\(292\) −4.76892 + 2.75334i −0.279080 + 0.161127i
\(293\) −27.1811 + 15.6930i −1.58794 + 0.916796i −0.594291 + 0.804250i \(0.702567\pi\)
−0.993646 + 0.112546i \(0.964099\pi\)
\(294\) 3.46820 + 2.00237i 0.202270 + 0.116780i
\(295\) −6.12558 + 5.73858i −0.356645 + 0.334113i
\(296\) −5.20707 3.14427i −0.302655 0.182757i
\(297\) 1.54769i 0.0898059i
\(298\) 6.26099 10.8444i 0.362689 0.628196i
\(299\) −9.48470 16.4280i −0.548514 0.950054i
\(300\) −2.21250 4.48384i −0.127739 0.258875i
\(301\) 1.27897 0.738414i 0.0737187 0.0425615i
\(302\) 18.0438 1.03830
\(303\) −2.21781 + 1.28045i −0.127410 + 0.0735600i
\(304\) 3.92850i 0.225315i
\(305\) −0.208620 0.894249i −0.0119456 0.0512045i
\(306\) 6.37594 0.364488
\(307\) 19.2087i 1.09630i −0.836381 0.548149i \(-0.815333\pi\)
0.836381 0.548149i \(-0.184667\pi\)
\(308\) 2.31970 + 1.33928i 0.132177 + 0.0763125i
\(309\) −3.30717 + 1.90939i −0.188138 + 0.108622i
\(310\) −14.7555 + 13.8233i −0.838054 + 0.785108i
\(311\) 15.8871 + 9.17242i 0.900875 + 0.520120i 0.877484 0.479606i \(-0.159220\pi\)
0.0233910 + 0.999726i \(0.492554\pi\)
\(312\) 2.84982 + 1.64535i 0.161339 + 0.0931493i
\(313\) 13.4284 23.2587i 0.759018 1.31466i −0.184334 0.982864i \(-0.559013\pi\)
0.943352 0.331794i \(-0.107654\pi\)
\(314\) 19.0331 10.9888i 1.07410 0.620132i
\(315\) 3.70342 + 1.12295i 0.208664 + 0.0632708i
\(316\) −10.5472 6.08942i −0.593326 0.342557i
\(317\) −19.7427 11.3984i −1.10886 0.640200i −0.170325 0.985388i \(-0.554482\pi\)
−0.938534 + 0.345188i \(0.887815\pi\)
\(318\) 5.21828 9.03833i 0.292627 0.506844i
\(319\) 1.11365i 0.0623527i
\(320\) −0.648845 + 2.13986i −0.0362715 + 0.119622i
\(321\) −7.41182 + 12.8377i −0.413688 + 0.716528i
\(322\) 9.97664i 0.555976i
\(323\) 25.0479i 1.39370i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −1.07225 + 16.4185i −0.0594778 + 0.910733i
\(326\) −6.27827 10.8743i −0.347721 0.602271i
\(327\) −2.22327 −0.122947
\(328\) 0.726915 + 1.25905i 0.0401372 + 0.0695196i
\(329\) −6.98371 12.0961i −0.385024 0.666881i
\(330\) −3.31183 1.00421i −0.182310 0.0552799i
\(331\) −0.719083 0.415163i −0.0395244 0.0228194i 0.480108 0.877210i \(-0.340598\pi\)
−0.519632 + 0.854390i \(0.673931\pi\)
\(332\) 11.8215i 0.648790i
\(333\) −5.32655 + 2.93732i −0.291893 + 0.160964i
\(334\) −6.68633 −0.365859
\(335\) 4.17316 + 17.8882i 0.228004 + 0.977338i
\(336\) −0.865342 1.49882i −0.0472083 0.0817671i
\(337\) −25.7764 + 14.8820i −1.40413 + 0.810674i −0.994813 0.101719i \(-0.967566\pi\)
−0.409315 + 0.912393i \(0.634232\pi\)
\(338\) 1.08568 + 1.88045i 0.0590531 + 0.102283i
\(339\) 19.5577i 1.06223i
\(340\) 4.13700 13.6436i 0.224360 0.739930i
\(341\) 13.9945i 0.757844i
\(342\) −3.40218 1.96425i −0.183969 0.106214i
\(343\) 19.0457i 1.02837i
\(344\) 0.853321 0.0460080
\(345\) −2.92848 12.5529i −0.157664 0.675825i
\(346\) 3.16647 1.82816i 0.170230 0.0982826i
\(347\) 6.26127 0.336123 0.168061 0.985777i \(-0.446249\pi\)
0.168061 + 0.985777i \(0.446249\pi\)
\(348\) 0.359780 0.623158i 0.0192863 0.0334048i
\(349\) 10.1013 17.4960i 0.540712 0.936540i −0.458152 0.888874i \(-0.651488\pi\)
0.998863 0.0476661i \(-0.0151783\pi\)
\(350\) 4.80589 7.19618i 0.256886 0.384652i
\(351\) 2.84982 1.64535i 0.152112 0.0878220i
\(352\) 0.773843 + 1.34034i 0.0412460 + 0.0714401i
\(353\) 4.65889 8.06944i 0.247968 0.429493i −0.714994 0.699131i \(-0.753571\pi\)
0.962962 + 0.269638i \(0.0869039\pi\)
\(354\) 1.87689 3.25086i 0.0997554 0.172781i
\(355\) −10.0052 + 2.33413i −0.531023 + 0.123883i
\(356\) 9.38793i 0.497559i
\(357\) 5.51737 + 9.55637i 0.292010 + 0.505777i
\(358\) 19.2547 + 11.1167i 1.01764 + 0.587535i
\(359\) −17.3408 −0.915214 −0.457607 0.889154i \(-0.651293\pi\)
−0.457607 + 0.889154i \(0.651293\pi\)
\(360\) 1.52875 + 1.63185i 0.0805722 + 0.0860058i
\(361\) −1.78346 + 3.08905i −0.0938664 + 0.162581i
\(362\) −9.94292 −0.522588
\(363\) 7.45186 4.30233i 0.391121 0.225814i
\(364\) 5.69515i 0.298507i
\(365\) 11.7835 + 3.57298i 0.616777 + 0.187018i
\(366\) 0.205329 + 0.355641i 0.0107327 + 0.0185896i
\(367\) 24.1739 13.9568i 1.26187 0.728540i 0.288432 0.957500i \(-0.406866\pi\)
0.973436 + 0.228960i \(0.0735326\pi\)
\(368\) −2.88228 + 4.99226i −0.150249 + 0.260239i
\(369\) 1.45383 0.0756834
\(370\) 2.82935 + 13.3039i 0.147091 + 0.691639i
\(371\) 18.0624 0.937753
\(372\) 4.52110 7.83077i 0.234408 0.406006i
\(373\) 3.32576 1.92013i 0.172202 0.0994206i −0.411422 0.911445i \(-0.634968\pi\)
0.583624 + 0.812024i \(0.301634\pi\)
\(374\) −4.93398 8.54591i −0.255130 0.441898i
\(375\) −3.93459 + 10.4651i −0.203181 + 0.540417i
\(376\) 8.07046i 0.416202i
\(377\) −2.05062 + 1.18393i −0.105612 + 0.0609753i
\(378\) −1.73068 −0.0890168
\(379\) −9.96232 + 17.2553i −0.511730 + 0.886343i 0.488177 + 0.872744i \(0.337662\pi\)
−0.999908 + 0.0135983i \(0.995671\pi\)
\(380\) −6.41070 + 6.00569i −0.328862 + 0.308085i
\(381\) 9.90318 0.507355
\(382\) −11.0183 6.36142i −0.563745 0.325478i
\(383\) 8.99091 + 15.5727i 0.459414 + 0.795728i 0.998930 0.0462470i \(-0.0147261\pi\)
−0.539516 + 0.841975i \(0.681393\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −1.36074 5.83281i −0.0693499 0.297268i
\(386\) 3.59574 6.22801i 0.183019 0.316997i
\(387\) 0.426660 0.738998i 0.0216884 0.0375654i
\(388\) −8.33688 14.4399i −0.423241 0.733075i
\(389\) 1.27239 0.734617i 0.0645129 0.0372465i −0.467397 0.884048i \(-0.654808\pi\)
0.531910 + 0.846801i \(0.321475\pi\)
\(390\) −1.67172 7.16579i −0.0846506 0.362854i
\(391\) 18.3773 31.8304i 0.929378 1.60973i
\(392\) −2.00237 + 3.46820i −0.101135 + 0.175171i
\(393\) 12.4807 0.629566
\(394\) −4.31757 + 2.49275i −0.217516 + 0.125583i
\(395\) 6.18702 + 26.5206i 0.311303 + 1.33440i
\(396\) 1.54769 0.0777742
\(397\) 30.5115i 1.53133i −0.643242 0.765663i \(-0.722411\pi\)
0.643242 0.765663i \(-0.277589\pi\)
\(398\) −6.87646 3.97013i −0.344686 0.199004i
\(399\) 6.79898i 0.340375i
\(400\) 4.48384 2.21250i 0.224192 0.110625i
\(401\) 21.3954i 1.06844i 0.845347 + 0.534218i \(0.179394\pi\)
−0.845347 + 0.534218i \(0.820606\pi\)
\(402\) −4.10733 7.11411i −0.204855 0.354820i
\(403\) −25.7686 + 14.8775i −1.28363 + 0.741103i
\(404\) −1.28045 2.21781i −0.0637048 0.110340i
\(405\) 2.17760 0.508014i 0.108206 0.0252434i
\(406\) 1.24533 0.0618048
\(407\) 8.05891 + 4.86634i 0.399465 + 0.241216i
\(408\) 6.37594i 0.315656i
\(409\) 29.3220 + 16.9291i 1.44988 + 0.837089i 0.998474 0.0552285i \(-0.0175887\pi\)
0.451408 + 0.892318i \(0.350922\pi\)
\(410\) 0.943311 3.11099i 0.0465868 0.153641i
\(411\) 5.77924 + 10.0099i 0.285069 + 0.493754i
\(412\) −1.90939 3.30717i −0.0940691 0.162932i
\(413\) 6.49659 0.319676
\(414\) 2.88228 + 4.99226i 0.141656 + 0.245356i
\(415\) −19.2909 + 18.0721i −0.946953 + 0.887127i
\(416\) −1.64535 + 2.84982i −0.0806697 + 0.139724i
\(417\) 2.51440i 0.123130i
\(418\) 6.08008i 0.297386i
\(419\) 5.34770 9.26250i 0.261252 0.452503i −0.705323 0.708887i \(-0.749198\pi\)
0.966575 + 0.256384i \(0.0825312\pi\)
\(420\) −1.12295 + 3.70342i −0.0547941 + 0.180708i
\(421\) 5.00935i 0.244141i −0.992521 0.122070i \(-0.961047\pi\)
0.992521 0.122070i \(-0.0389534\pi\)
\(422\) −5.88378 + 10.1910i −0.286418 + 0.496090i
\(423\) −6.98922 4.03523i −0.339828 0.196200i
\(424\) 9.03833 + 5.21828i 0.438940 + 0.253422i
\(425\) −28.5887 + 14.1068i −1.38676 + 0.684278i
\(426\) 3.97906 2.29731i 0.192786 0.111305i
\(427\) −0.355360 + 0.615502i −0.0171971 + 0.0297862i
\(428\) −12.8377 7.41182i −0.620532 0.358264i
\(429\) −4.41063 2.54648i −0.212947 0.122945i
\(430\) −1.30451 1.39249i −0.0629093 0.0671518i
\(431\) 17.0851 9.86409i 0.822960 0.475136i −0.0284759 0.999594i \(-0.509065\pi\)
0.851436 + 0.524458i \(0.175732\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) 36.6203i 1.75986i −0.475102 0.879931i \(-0.657589\pi\)
0.475102 0.879931i \(-0.342411\pi\)
\(434\) 15.6492 0.751185
\(435\) −1.56691 + 0.365547i −0.0751277 + 0.0175266i
\(436\) 2.22327i 0.106475i
\(437\) −19.6121 + 11.3230i −0.938172 + 0.541654i
\(438\) −5.50667 −0.263119
\(439\) −3.37908 + 1.95091i −0.161275 + 0.0931119i −0.578465 0.815707i \(-0.696348\pi\)
0.417191 + 0.908819i \(0.363015\pi\)
\(440\) 1.00421 3.31183i 0.0478738 0.157885i
\(441\) 2.00237 + 3.46820i 0.0953508 + 0.165152i
\(442\) 10.4906 18.1703i 0.498988 0.864273i
\(443\) 8.30484i 0.394575i −0.980346 0.197287i \(-0.936787\pi\)
0.980346 0.197287i \(-0.0632132\pi\)
\(444\) −2.93732 5.32655i −0.139399 0.252787i
\(445\) 15.3197 14.3518i 0.726221 0.680341i
\(446\) 14.4978 + 8.37030i 0.686490 + 0.396345i
\(447\) 10.8444 6.26099i 0.512920 0.296135i
\(448\) 1.49882 0.865342i 0.0708124 0.0408836i
\(449\) −28.5245 + 16.4687i −1.34616 + 0.777204i −0.987703 0.156344i \(-0.950029\pi\)
−0.358454 + 0.933548i \(0.616696\pi\)
\(450\) 0.325844 4.98937i 0.0153604 0.235201i
\(451\) −1.12504 1.94862i −0.0529759 0.0917570i
\(452\) 19.5577 0.919918
\(453\) 15.6264 + 9.02188i 0.734191 + 0.423885i
\(454\) −3.02052 −0.141760
\(455\) 9.29360 8.70646i 0.435691 0.408165i
\(456\) 1.96425 3.40218i 0.0919843 0.159322i
\(457\) 14.5444 + 25.1916i 0.680359 + 1.17842i 0.974871 + 0.222768i \(0.0715093\pi\)
−0.294513 + 0.955647i \(0.595157\pi\)
\(458\) −0.568255 −0.0265528
\(459\) 5.52173 + 3.18797i 0.257732 + 0.148802i
\(460\) 12.5529 2.92848i 0.585281 0.136541i
\(461\) 21.8552 + 12.6181i 1.01790 + 0.587684i 0.913495 0.406851i \(-0.133373\pi\)
0.104404 + 0.994535i \(0.466706\pi\)
\(462\) 1.33928 + 2.31970i 0.0623089 + 0.107922i
\(463\) 10.2575 + 17.7665i 0.476707 + 0.825680i 0.999644 0.0266912i \(-0.00849707\pi\)
−0.522937 + 0.852371i \(0.675164\pi\)
\(464\) 0.623158 + 0.359780i 0.0289294 + 0.0167024i
\(465\) −19.6902 + 4.59356i −0.913113 + 0.213021i
\(466\) 4.86916 + 2.81121i 0.225559 + 0.130227i
\(467\) 10.1214 0.468362 0.234181 0.972193i \(-0.424759\pi\)
0.234181 + 0.972193i \(0.424759\pi\)
\(468\) 1.64535 + 2.84982i 0.0760561 + 0.131733i
\(469\) 7.10850 12.3123i 0.328240 0.568528i
\(470\) −13.1697 + 12.3377i −0.607475 + 0.569096i
\(471\) 21.9775 1.01267
\(472\) 3.25086 + 1.87689i 0.149633 + 0.0863907i
\(473\) −1.32067 −0.0607246
\(474\) −6.08942 10.5472i −0.279696 0.484448i
\(475\) 19.6007 + 1.28008i 0.899343 + 0.0587340i
\(476\) −9.55637 + 5.51737i −0.438015 + 0.252888i
\(477\) 9.03833 5.21828i 0.413837 0.238929i
\(478\) −21.1400 + 12.2052i −0.966921 + 0.558252i
\(479\) 12.1338 + 7.00544i 0.554407 + 0.320087i 0.750897 0.660419i \(-0.229621\pi\)
−0.196491 + 0.980506i \(0.562955\pi\)
\(480\) −1.63185 + 1.52875i −0.0744832 + 0.0697776i
\(481\) −0.393178 + 20.0126i −0.0179274 + 0.912497i
\(482\) 11.8674i 0.540543i
\(483\) −4.98832 + 8.64002i −0.226976 + 0.393135i
\(484\) 4.30233 + 7.45186i 0.195561 + 0.338721i
\(485\) −10.8187 + 35.6795i −0.491251 + 1.62012i
\(486\) −0.866025 + 0.500000i −0.0392837 + 0.0226805i
\(487\) 22.1521 1.00381 0.501903 0.864924i \(-0.332633\pi\)
0.501903 + 0.864924i \(0.332633\pi\)
\(488\) −0.355641 + 0.205329i −0.0160991 + 0.00929482i
\(489\) 12.5565i 0.567826i
\(490\) 8.72069 2.03446i 0.393961 0.0919075i
\(491\) 17.8500 0.805561 0.402780 0.915297i \(-0.368044\pi\)
0.402780 + 0.915297i \(0.368044\pi\)
\(492\) 1.45383i 0.0655437i
\(493\) −3.97322 2.29394i −0.178945 0.103314i
\(494\) −11.1955 + 6.46373i −0.503710 + 0.290817i
\(495\) −2.36603 2.52559i −0.106345 0.113517i
\(496\) 7.83077 + 4.52110i 0.351612 + 0.203003i
\(497\) 6.88650 + 3.97592i 0.308902 + 0.178344i
\(498\) 5.91076 10.2377i 0.264867 0.458764i
\(499\) −6.41175 + 3.70182i −0.287029 + 0.165716i −0.636601 0.771193i \(-0.719660\pi\)
0.349572 + 0.936909i \(0.386327\pi\)
\(500\) −10.4651 3.93459i −0.468015 0.175960i
\(501\) −5.79053 3.34316i −0.258702 0.149362i
\(502\) 10.1752 + 5.87467i 0.454142 + 0.262199i
\(503\) 5.60295 9.70459i 0.249823 0.432706i −0.713653 0.700499i \(-0.752961\pi\)
0.963477 + 0.267793i \(0.0862942\pi\)
\(504\) 1.73068i 0.0770908i
\(505\) −1.66163 + 5.47997i −0.0739415 + 0.243855i
\(506\) 4.46087 7.72645i 0.198310 0.343483i
\(507\) 2.17136i 0.0964333i
\(508\) 9.90318i 0.439382i
\(509\) −4.33262 + 7.50432i −0.192040 + 0.332623i −0.945926 0.324382i \(-0.894844\pi\)
0.753886 + 0.657005i \(0.228177\pi\)
\(510\) 10.4046 9.74723i 0.460722 0.431614i
\(511\) −4.76515 8.25349i −0.210798 0.365113i
\(512\) 1.00000 0.0441942
\(513\) −1.96425 3.40218i −0.0867237 0.150210i
\(514\) 7.56386 + 13.1010i 0.333627 + 0.577860i
\(515\) −2.47780 + 8.17167i −0.109185 + 0.360087i
\(516\) 0.738998 + 0.426660i 0.0325326 + 0.0187827i
\(517\) 12.4905i 0.549333i
\(518\) 5.44174 9.01179i 0.239096 0.395955i
\(519\) 3.65632 0.160495
\(520\) 7.16579 1.67172i 0.314241 0.0733096i
\(521\) 14.1102 + 24.4396i 0.618180 + 1.07072i 0.989818 + 0.142342i \(0.0454632\pi\)
−0.371637 + 0.928378i \(0.621203\pi\)
\(522\) 0.623158 0.359780i 0.0272749 0.0157472i
\(523\) 16.0303 + 27.7652i 0.700954 + 1.21409i 0.968132 + 0.250441i \(0.0805756\pi\)
−0.267178 + 0.963647i \(0.586091\pi\)
\(524\) 12.4807i 0.545220i
\(525\) 7.76012 3.82913i 0.338679 0.167117i
\(526\) 14.3294i 0.624791i
\(527\) −49.9285 28.8263i −2.17492 1.25569i
\(528\) 1.54769i 0.0673544i
\(529\) 10.2302 0.444790
\(530\) −5.30192 22.7266i −0.230301 0.987181i
\(531\) 3.25086 1.87689i 0.141075 0.0814499i
\(532\) 6.79898 0.294773
\(533\) 2.39205 4.14316i 0.103611 0.179460i
\(534\) −4.69396 + 8.13018i −0.203128 + 0.351827i
\(535\) 7.53062 + 32.2799i 0.325577 + 1.39558i
\(536\) 7.11411 4.10733i 0.307283 0.177410i
\(537\) 11.1167 + 19.2547i 0.479720 + 0.830900i
\(538\) 2.40862 4.17186i 0.103843 0.179861i
\(539\) 3.09904 5.36769i 0.133485 0.231203i
\(540\) 0.508014 + 2.17760i 0.0218614 + 0.0937088i
\(541\) 34.9514i 1.50268i 0.659917 + 0.751339i \(0.270592\pi\)
−0.659917 + 0.751339i \(0.729408\pi\)
\(542\) 3.92526 + 6.79875i 0.168604 + 0.292031i
\(543\) −8.61082 4.97146i −0.369526 0.213346i
\(544\) −6.37594 −0.273366
\(545\) −3.62804 + 3.39883i −0.155408 + 0.145590i
\(546\) −2.84757 + 4.93214i −0.121865 + 0.211076i
\(547\) −8.96803 −0.383445 −0.191723 0.981449i \(-0.561407\pi\)
−0.191723 + 0.981449i \(0.561407\pi\)
\(548\) −10.0099 + 5.77924i −0.427603 + 0.246877i
\(549\) 0.410659i 0.0175265i
\(550\) −6.93959 + 3.42425i −0.295905 + 0.146011i
\(551\) 1.41340 + 2.44807i 0.0602127 + 0.104291i
\(552\) −4.99226 + 2.88228i −0.212485 + 0.122678i
\(553\) 10.5389 18.2538i 0.448158 0.776232i
\(554\) 8.14988 0.346255
\(555\) −4.20168 + 12.9362i −0.178352 + 0.549112i
\(556\) −2.51440 −0.106634
\(557\) 0.0853571 0.147843i 0.00361670 0.00626430i −0.864211 0.503129i \(-0.832182\pi\)
0.867828 + 0.496865i \(0.165515\pi\)
\(558\) 7.83077 4.52110i 0.331503 0.191393i
\(559\) −1.40401 2.43181i −0.0593832 0.102855i
\(560\) −3.70342 1.12295i −0.156498 0.0474531i
\(561\) 9.86796i 0.416626i
\(562\) 26.6881 15.4084i 1.12577 0.649964i
\(563\) −34.8483 −1.46868 −0.734340 0.678782i \(-0.762508\pi\)
−0.734340 + 0.678782i \(0.762508\pi\)
\(564\) 4.03523 6.98922i 0.169914 0.294299i
\(565\) −29.8989 31.9152i −1.25786 1.34268i
\(566\) −7.26025 −0.305171
\(567\) −1.49882 0.865342i −0.0629444 0.0363409i
\(568\) 2.29731 + 3.97906i 0.0963931 + 0.166958i
\(569\) 33.1753i 1.39078i 0.718632 + 0.695391i \(0.244769\pi\)
−0.718632 + 0.695391i \(0.755231\pi\)
\(570\) −8.55467 + 1.99573i −0.358316 + 0.0835919i
\(571\) 11.2302 19.4512i 0.469967 0.814007i −0.529443 0.848346i \(-0.677599\pi\)
0.999410 + 0.0343382i \(0.0109324\pi\)
\(572\) 2.54648 4.41063i 0.106474 0.184418i
\(573\) −6.36142 11.0183i −0.265752 0.460296i
\(574\) −2.17903 + 1.25806i −0.0909507 + 0.0525104i
\(575\) −23.9691 16.0075i −0.999579 0.667558i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 18.1519 31.4399i 0.755672 1.30886i −0.189368 0.981906i \(-0.560644\pi\)
0.945040 0.326956i \(-0.106023\pi\)
\(578\) 23.6527 0.983821
\(579\) 6.22801 3.59574i 0.258827 0.149434i
\(580\) −0.365547 1.56691i −0.0151785 0.0650625i
\(581\) 20.4593 0.848795
\(582\) 16.6738i 0.691150i
\(583\) −13.9885 8.07626i −0.579345 0.334485i
\(584\) 5.50667i 0.227868i
\(585\) 2.13515 7.04162i 0.0882775 0.291135i
\(586\) 31.3860i 1.29655i
\(587\) −16.9255 29.3157i −0.698588 1.20999i −0.968956 0.247233i \(-0.920479\pi\)
0.270368 0.962757i \(-0.412855\pi\)
\(588\) −3.46820 + 2.00237i −0.143026 + 0.0825762i
\(589\) 17.7611 + 30.7631i 0.731834 + 1.26757i
\(590\) −1.90697 8.17420i −0.0785086 0.336526i
\(591\) −4.98550 −0.205076
\(592\) 5.32655 2.93732i 0.218920 0.120723i
\(593\) 29.3602i 1.20568i −0.797862 0.602840i \(-0.794036\pi\)
0.797862 0.602840i \(-0.205964\pi\)
\(594\) 1.34034 + 0.773843i 0.0549947 + 0.0317512i
\(595\) 23.6128 + 7.15984i 0.968031 + 0.293525i
\(596\) 6.26099 + 10.8444i 0.256460 + 0.444202i
\(597\) −3.97013 6.87646i −0.162486 0.281435i
\(598\) 18.9694 0.775716
\(599\) 4.83015 + 8.36606i 0.197354 + 0.341828i 0.947670 0.319252i \(-0.103432\pi\)
−0.750315 + 0.661080i \(0.770098\pi\)
\(600\) 4.98937 + 0.325844i 0.203690 + 0.0133025i
\(601\) 19.3609 33.5341i 0.789748 1.36788i −0.136373 0.990658i \(-0.543544\pi\)
0.926121 0.377226i \(-0.123122\pi\)
\(602\) 1.47683i 0.0601910i
\(603\) 8.21467i 0.334527i
\(604\) −9.02188 + 15.6264i −0.367095 + 0.635828i
\(605\) 5.58309 18.4128i 0.226985 0.748586i
\(606\) 2.56090i 0.104030i
\(607\) −11.2085 + 19.4138i −0.454941 + 0.787980i −0.998685 0.0512708i \(-0.983673\pi\)
0.543744 + 0.839251i \(0.317006\pi\)
\(608\) 3.40218 + 1.96425i 0.137976 + 0.0796608i
\(609\) 1.07849 + 0.622666i 0.0437026 + 0.0252317i
\(610\) 0.878752 + 0.266454i 0.0355796 + 0.0107884i
\(611\) −22.9994 + 13.2787i −0.930455 + 0.537198i
\(612\) −3.18797 + 5.52173i −0.128866 + 0.223203i
\(613\) 23.8394 + 13.7637i 0.962863 + 0.555909i 0.897053 0.441923i \(-0.145703\pi\)
0.0658102 + 0.997832i \(0.479037\pi\)
\(614\) 16.6352 + 9.60435i 0.671343 + 0.387600i
\(615\) 2.37243 2.22254i 0.0956655 0.0896216i
\(616\) −2.31970 + 1.33928i −0.0934633 + 0.0539611i
\(617\) −12.3634 7.13803i −0.497733 0.287366i 0.230044 0.973180i \(-0.426113\pi\)
−0.727777 + 0.685814i \(0.759446\pi\)
\(618\) 3.81879i 0.153614i
\(619\) −13.8734 −0.557618 −0.278809 0.960347i \(-0.589940\pi\)
−0.278809 + 0.960347i \(0.589940\pi\)
\(620\) −4.59356 19.6902i −0.184482 0.790779i
\(621\) 5.76456i 0.231324i
\(622\) −15.8871 + 9.17242i −0.637015 + 0.367781i
\(623\) −16.2475 −0.650944
\(624\) −2.84982 + 1.64535i −0.114084 + 0.0658665i
\(625\) 9.57793 + 23.0925i 0.383117 + 0.923700i
\(626\) 13.4284 + 23.2587i 0.536707 + 0.929603i
\(627\) −3.04004 + 5.26550i −0.121408 + 0.210284i
\(628\) 21.9775i 0.876999i
\(629\) −33.9618 + 18.7282i −1.35415 + 0.746742i
\(630\) −2.82421 + 2.64578i −0.112519 + 0.105411i
\(631\) −20.7095 11.9566i −0.824432 0.475986i 0.0275102 0.999622i \(-0.491242\pi\)
−0.851943 + 0.523635i \(0.824575\pi\)
\(632\) 10.5472 6.08942i 0.419545 0.242224i
\(633\) −10.1910 + 5.88378i −0.405056 + 0.233859i
\(634\) 19.7427 11.3984i 0.784082 0.452690i
\(635\) 16.1605 15.1395i 0.641308 0.600792i
\(636\) 5.21828 + 9.03833i 0.206918 + 0.358393i
\(637\) 13.1783 0.522145
\(638\) −0.964453 0.556827i −0.0381831 0.0220450i
\(639\) 4.59462 0.181761
\(640\) −1.52875 1.63185i −0.0604292 0.0645044i
\(641\) −6.76676 + 11.7204i −0.267271 + 0.462927i −0.968156 0.250347i \(-0.919455\pi\)
0.700885 + 0.713274i \(0.252789\pi\)
\(642\) −7.41182 12.8377i −0.292521 0.506662i
\(643\) −29.4508 −1.16143 −0.580713 0.814108i \(-0.697226\pi\)
−0.580713 + 0.814108i \(0.697226\pi\)
\(644\) −8.64002 4.98832i −0.340464 0.196567i
\(645\) −0.433499 1.85819i −0.0170690 0.0731661i
\(646\) −21.6921 12.5239i −0.853464 0.492748i
\(647\) 22.4281 + 38.8466i 0.881739 + 1.52722i 0.849406 + 0.527740i \(0.176960\pi\)
0.0323330 + 0.999477i \(0.489706\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) −5.03132 2.90483i −0.197496 0.114025i
\(650\) −13.6827 9.13784i −0.536679 0.358415i
\(651\) 13.5526 + 7.82459i 0.531168 + 0.306670i
\(652\) 12.5565 0.491752
\(653\) 7.49053 + 12.9740i 0.293127 + 0.507711i 0.974547 0.224181i \(-0.0719707\pi\)
−0.681420 + 0.731892i \(0.738637\pi\)
\(654\) 1.11164 1.92541i 0.0434684 0.0752894i
\(655\) 20.3665 19.0798i 0.795786 0.745510i
\(656\) −1.45383 −0.0567625
\(657\) −4.76892 2.75334i −0.186053 0.107418i
\(658\) 13.9674 0.544506
\(659\) 17.7987 + 30.8282i 0.693338 + 1.20090i 0.970738 + 0.240142i \(0.0771939\pi\)
−0.277400 + 0.960754i \(0.589473\pi\)
\(660\) 2.52559 2.36603i 0.0983083 0.0920975i
\(661\) −3.99182 + 2.30468i −0.155264 + 0.0896417i −0.575619 0.817718i \(-0.695239\pi\)
0.420355 + 0.907360i \(0.361906\pi\)
\(662\) 0.719083 0.415163i 0.0279480 0.0161358i
\(663\) 18.1703 10.4906i 0.705676 0.407422i
\(664\) 10.2377 + 5.91076i 0.397301 + 0.229382i
\(665\) −10.3939 11.0949i −0.403060 0.430242i
\(666\) 0.119482 6.08159i 0.00462984 0.235657i
\(667\) 4.14795i 0.160609i
\(668\) 3.34316 5.79053i 0.129351 0.224042i
\(669\) 8.37030 + 14.4978i 0.323615 + 0.560517i
\(670\) −17.5782 5.33005i −0.679107 0.205918i
\(671\) 0.550421 0.317786i 0.0212488 0.0122680i
\(672\) 1.73068 0.0667626
\(673\) 19.1175 11.0375i 0.736926 0.425464i −0.0840245 0.996464i \(-0.526777\pi\)
0.820951 + 0.570999i \(0.193444\pi\)
\(674\) 29.7640i 1.14647i
\(675\) 2.77687 4.15800i 0.106882 0.160042i
\(676\) −2.17136 −0.0835137
\(677\) 16.0360i 0.616312i 0.951336 + 0.308156i \(0.0997119\pi\)
−0.951336 + 0.308156i \(0.900288\pi\)
\(678\) 16.9375 + 9.77887i 0.650481 + 0.375555i
\(679\) 24.9909 14.4285i 0.959063 0.553715i
\(680\) 9.74723 + 10.4046i 0.373789 + 0.398997i
\(681\) −2.61584 1.51026i −0.100239 0.0578732i
\(682\) −12.1196 6.99724i −0.464083 0.267938i
\(683\) 6.53813 11.3244i 0.250175 0.433315i −0.713399 0.700758i \(-0.752845\pi\)
0.963574 + 0.267443i \(0.0861787\pi\)
\(684\) 3.40218 1.96425i 0.130085 0.0751049i
\(685\) 24.7335 + 7.49966i 0.945020 + 0.286547i
\(686\) −16.4941 9.52286i −0.629747 0.363584i
\(687\) −0.492123 0.284128i −0.0187757 0.0108401i
\(688\) −0.426660 + 0.738998i −0.0162663 + 0.0281740i
\(689\) 34.3435i 1.30838i
\(690\) 12.3354 + 3.74031i 0.469599 + 0.142391i
\(691\) 21.9067 37.9435i 0.833369 1.44344i −0.0619818 0.998077i \(-0.519742\pi\)
0.895351 0.445361i \(-0.146925\pi\)
\(692\) 3.65632i 0.138993i
\(693\) 2.67856i 0.101750i
\(694\) −3.13064 + 5.42242i −0.118837 + 0.205832i
\(695\) 3.84388 + 4.10311i 0.145807 + 0.155640i
\(696\) 0.359780 + 0.623158i 0.0136374 + 0.0236207i
\(697\) 9.26954 0.351109
\(698\) 10.1013 + 17.4960i 0.382341 + 0.662234i
\(699\) 2.81121 + 4.86916i 0.106330 + 0.184169i
\(700\) 3.82913 + 7.76012i 0.144728 + 0.293305i
\(701\) 7.54537 + 4.35632i 0.284985 + 0.164536i 0.635678 0.771954i \(-0.280721\pi\)
−0.350693 + 0.936490i \(0.614054\pi\)
\(702\) 3.29069i 0.124199i
\(703\) 23.8915 + 0.469385i 0.901085 + 0.0177032i
\(704\) −1.54769 −0.0583306
\(705\) −17.5742 + 4.09990i −0.661882 + 0.154411i
\(706\) 4.65889 + 8.06944i 0.175340 + 0.303697i
\(707\) 3.83832 2.21606i 0.144355 0.0833434i
\(708\) 1.87689 + 3.25086i 0.0705377 + 0.122175i
\(709\) 39.6479i 1.48901i −0.667618 0.744504i \(-0.732686\pi\)
0.667618 0.744504i \(-0.267314\pi\)
\(710\) 2.98120 9.83185i 0.111882 0.368983i
\(711\) 12.1788i 0.456742i
\(712\) −8.13018 4.69396i −0.304692 0.175914i
\(713\) 52.1243i 1.95207i
\(714\) −11.0347 −0.412965
\(715\) −11.0904 + 2.58729i −0.414758 + 0.0967592i
\(716\) −19.2547 + 11.1167i −0.719581 + 0.415450i
\(717\) −24.4104 −0.911621
\(718\) 8.67042 15.0176i 0.323577 0.560452i
\(719\) 7.14786 12.3805i 0.266570 0.461713i −0.701404 0.712764i \(-0.747443\pi\)
0.967974 + 0.251051i \(0.0807762\pi\)
\(720\) −2.17760 + 0.508014i −0.0811542 + 0.0189326i
\(721\) 5.72366 3.30456i 0.213160 0.123068i
\(722\) −1.78346 3.08905i −0.0663736 0.114962i
\(723\) 5.93368 10.2774i 0.220676 0.382222i
\(724\) 4.97146 8.61082i 0.184763 0.320019i
\(725\) −1.99813 + 2.99193i −0.0742087 + 0.111118i
\(726\) 8.60467i 0.319349i
\(727\) −12.5801 21.7894i −0.466572 0.808126i 0.532699 0.846305i \(-0.321178\pi\)
−0.999271 + 0.0381788i \(0.987844\pi\)
\(728\) −4.93214 2.84757i −0.182797 0.105538i
\(729\) −1.00000 −0.0370370
\(730\) −8.98604 + 8.41833i −0.332588 + 0.311576i
\(731\) 2.72036 4.71181i 0.100616 0.174272i
\(732\) −0.410659 −0.0151784
\(733\) −23.8349 + 13.7611i −0.880364 + 0.508278i −0.870778 0.491676i \(-0.836385\pi\)
−0.00958538 + 0.999954i \(0.503051\pi\)
\(734\) 27.9136i 1.03031i
\(735\) 8.56957 + 2.59845i 0.316093 + 0.0958453i
\(736\) −2.88228 4.99226i −0.106242 0.184017i
\(737\) −11.0104 + 6.35687i −0.405574 + 0.234158i
\(738\) −0.726915 + 1.25905i −0.0267581 + 0.0463464i
\(739\) −36.0740 −1.32700 −0.663502 0.748174i \(-0.730931\pi\)
−0.663502 + 0.748174i \(0.730931\pi\)
\(740\) −12.9362 4.20168i −0.475545 0.154457i
\(741\) −12.9275 −0.474902
\(742\) −9.03120 + 15.6425i −0.331546 + 0.574254i
\(743\) −1.98536 + 1.14625i −0.0728357 + 0.0420517i −0.535976 0.844234i \(-0.680056\pi\)
0.463140 + 0.886285i \(0.346723\pi\)
\(744\) 4.52110 + 7.83077i 0.165751 + 0.287090i
\(745\) 8.12482 26.7953i 0.297670 0.981703i
\(746\) 3.84026i 0.140602i
\(747\) 10.2377 5.91076i 0.374579 0.216263i
\(748\) 9.86796 0.360808
\(749\) 12.8275 22.2179i 0.468708 0.811825i
\(750\) −7.09578 8.64002i −0.259101 0.315489i
\(751\) 11.1112 0.405453 0.202726 0.979235i \(-0.435020\pi\)
0.202726 + 0.979235i \(0.435020\pi\)
\(752\) 6.98922 + 4.03523i 0.254871 + 0.147150i
\(753\) 5.87467 + 10.1752i 0.214085 + 0.370806i
\(754\) 2.36785i 0.0862321i
\(755\) 39.2920 9.16648i 1.42998 0.333602i
\(756\) 0.865342 1.49882i 0.0314722 0.0545114i
\(757\) −10.4100 + 18.0307i −0.378359 + 0.655337i −0.990824 0.135161i \(-0.956845\pi\)
0.612465 + 0.790498i \(0.290178\pi\)
\(758\) −9.96232 17.2553i −0.361848 0.626739i
\(759\) 7.72645 4.46087i 0.280452 0.161919i
\(760\) −1.99573 8.55467i −0.0723927 0.310311i
\(761\) −21.8158 + 37.7861i −0.790822 + 1.36974i 0.134636 + 0.990895i \(0.457013\pi\)
−0.925458 + 0.378849i \(0.876320\pi\)
\(762\) −4.95159 + 8.57640i −0.179377 + 0.310690i
\(763\) 3.84778 0.139299
\(764\) 11.0183 6.36142i 0.398628 0.230148i
\(765\) 13.8842 3.23907i 0.501985 0.117109i
\(766\) −17.9818 −0.649709
\(767\) 12.3525i 0.446023i
\(768\) 0.866025 + 0.500000i 0.0312500 + 0.0180422i
\(769\) 8.96772i 0.323384i 0.986841 + 0.161692i \(0.0516951\pi\)
−0.986841 + 0.161692i \(0.948305\pi\)
\(770\) 5.73174 + 1.73797i 0.206557 + 0.0626320i
\(771\) 15.1277i 0.544811i
\(772\) 3.59574 + 6.22801i 0.129414 + 0.224151i
\(773\) −20.2283 + 11.6788i −0.727560 + 0.420057i −0.817529 0.575887i \(-0.804657\pi\)
0.0899686 + 0.995945i \(0.471323\pi\)
\(774\) 0.426660 + 0.738998i 0.0153360 + 0.0265627i
\(775\) −25.1090 + 37.5974i −0.901943 + 1.35054i
\(776\) 16.6738 0.598553
\(777\)