Properties

Label 1110.2.ba.a.619.16
Level $1110$
Weight $2$
Character 1110.619
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 619.16
Character \(\chi\) \(=\) 1110.619
Dual form 1110.2.ba.a.529.16

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.603880 + 2.15298i) q^{5} +1.00000i q^{6} +(0.998396 - 0.576424i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.603880 + 2.15298i) q^{5} +1.00000i q^{6} +(0.998396 - 0.576424i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +(-2.16648 - 0.553515i) q^{10} +1.60140 q^{11} +(-0.866025 - 0.500000i) q^{12} +(1.89712 + 3.28591i) q^{13} +1.15285i q^{14} +(1.59947 + 1.56260i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.28940 - 5.69741i) q^{17} +(0.500000 + 0.866025i) q^{18} +(-0.174421 + 0.100702i) q^{19} +(1.56260 - 1.59947i) q^{20} +(0.576424 - 0.998396i) q^{21} +(-0.800700 + 1.38685i) q^{22} -0.633422 q^{23} +(0.866025 - 0.500000i) q^{24} +(-4.27066 + 2.60029i) q^{25} -3.79425 q^{26} -1.00000i q^{27} +(-0.998396 - 0.576424i) q^{28} -5.73899i q^{29} +(-2.15298 + 0.603880i) q^{30} +8.34912i q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.38685 - 0.800700i) q^{33} +(3.28940 + 5.69741i) q^{34} +(1.84394 + 1.80144i) q^{35} -1.00000 q^{36} +(6.07690 + 0.267030i) q^{37} -0.201405i q^{38} +(3.28591 + 1.89712i) q^{39} +(0.603880 + 2.15298i) q^{40} +(4.00330 + 6.93392i) q^{41} +(0.576424 + 0.998396i) q^{42} +1.95146 q^{43} +(-0.800700 - 1.38685i) q^{44} +(2.16648 + 0.553515i) q^{45} +(0.316711 - 0.548560i) q^{46} -4.65434i q^{47} +1.00000i q^{48} +(-2.83547 + 4.91118i) q^{49} +(-0.116584 - 4.99864i) q^{50} -6.57881i q^{51} +(1.89712 - 3.28591i) q^{52} +(-7.47374 - 4.31497i) q^{53} +(0.866025 + 0.500000i) q^{54} +(0.967053 + 3.44778i) q^{55} +(0.998396 - 0.576424i) q^{56} +(-0.100702 + 0.174421i) q^{57} +(4.97011 + 2.86950i) q^{58} +(10.3918 + 5.99970i) q^{59} +(0.553515 - 2.16648i) q^{60} +(-11.3423 + 6.54846i) q^{61} +(-7.23055 - 4.17456i) q^{62} -1.15285i q^{63} +1.00000 q^{64} +(-5.92888 + 6.06877i) q^{65} +1.60140i q^{66} +(9.33087 - 5.38718i) q^{67} -6.57881 q^{68} +(-0.548560 + 0.316711i) q^{69} +(-2.48206 + 0.696182i) q^{70} +(-5.52164 - 9.56376i) q^{71} +(0.500000 - 0.866025i) q^{72} +4.32373i q^{73} +(-3.26970 + 5.12923i) q^{74} +(-2.39836 + 4.38724i) q^{75} +(0.174421 + 0.100702i) q^{76} +(1.59883 - 0.923086i) q^{77} +(-3.28591 + 1.89712i) q^{78} +(6.91117 - 3.99017i) q^{79} +(-2.16648 - 0.553515i) q^{80} +(-0.500000 - 0.866025i) q^{81} -8.00660 q^{82} +(12.4882 + 7.21006i) q^{83} -1.15285 q^{84} +(14.2528 + 3.64147i) q^{85} +(-0.975731 + 1.69002i) q^{86} +(-2.86950 - 4.97011i) q^{87} +1.60140 q^{88} +(15.6356 + 9.02723i) q^{89} +(-1.56260 + 1.59947i) q^{90} +(3.78816 + 2.18710i) q^{91} +(0.316711 + 0.548560i) q^{92} +(4.17456 + 7.23055i) q^{93} +(4.03078 + 2.32717i) q^{94} +(-0.322140 - 0.314714i) q^{95} +(-0.866025 - 0.500000i) q^{96} +2.93176 q^{97} +(-2.83547 - 4.91118i) q^{98} +(0.800700 - 1.38685i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} - 14q^{13} - 2q^{15} - 18q^{16} + 18q^{18} + 6q^{19} - 4q^{20} - 2q^{22} - 20q^{23} + 4q^{25} + 28q^{26} - 2q^{30} - 18q^{32} - 6q^{33} - 40q^{35} - 36q^{36} + 20q^{37} + 6q^{39} + 2q^{40} + 10q^{41} - 2q^{44} - 2q^{45} + 10q^{46} + 10q^{49} - 2q^{50} - 14q^{52} - 12q^{53} + 56q^{55} + 8q^{57} + 30q^{58} + 18q^{59} + 4q^{60} - 6q^{61} - 12q^{62} + 36q^{64} + 40q^{65} + 36q^{67} + 12q^{69} + 20q^{70} - 24q^{71} + 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} - 24q^{77} - 6q^{78} + 2q^{80} - 18q^{81} - 20q^{82} + 36q^{83} + 26q^{85} - 10q^{87} + 4q^{88} + 4q^{90} - 36q^{91} + 10q^{92} + 12q^{93} + 12q^{94} - 30q^{95} + 52q^{97} + 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.603880 + 2.15298i 0.270063 + 0.962843i
\(6\) 1.00000i 0.408248i
\(7\) 0.998396 0.576424i 0.377358 0.217868i −0.299310 0.954156i \(-0.596756\pi\)
0.676668 + 0.736288i \(0.263423\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −2.16648 0.553515i −0.685100 0.175037i
\(11\) 1.60140 0.482840 0.241420 0.970421i \(-0.422387\pi\)
0.241420 + 0.970421i \(0.422387\pi\)
\(12\) −0.866025 0.500000i −0.250000 0.144338i
\(13\) 1.89712 + 3.28591i 0.526167 + 0.911349i 0.999535 + 0.0304838i \(0.00970480\pi\)
−0.473368 + 0.880865i \(0.656962\pi\)
\(14\) 1.15285i 0.308112i
\(15\) 1.59947 + 1.56260i 0.412980 + 0.403461i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.28940 5.69741i 0.797798 1.38183i −0.123250 0.992376i \(-0.539332\pi\)
0.921048 0.389450i \(-0.127335\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) −0.174421 + 0.100702i −0.0400150 + 0.0231027i −0.519874 0.854243i \(-0.674021\pi\)
0.479859 + 0.877346i \(0.340688\pi\)
\(20\) 1.56260 1.59947i 0.349407 0.357652i
\(21\) 0.576424 0.998396i 0.125786 0.217868i
\(22\) −0.800700 + 1.38685i −0.170710 + 0.295678i
\(23\) −0.633422 −0.132078 −0.0660388 0.997817i \(-0.521036\pi\)
−0.0660388 + 0.997817i \(0.521036\pi\)
\(24\) 0.866025 0.500000i 0.176777 0.102062i
\(25\) −4.27066 + 2.60029i −0.854132 + 0.520057i
\(26\) −3.79425 −0.744113
\(27\) 1.00000i 0.192450i
\(28\) −0.998396 0.576424i −0.188679 0.108934i
\(29\) 5.73899i 1.06570i −0.846208 0.532852i \(-0.821120\pi\)
0.846208 0.532852i \(-0.178880\pi\)
\(30\) −2.15298 + 0.603880i −0.393079 + 0.110253i
\(31\) 8.34912i 1.49955i 0.661695 + 0.749773i \(0.269837\pi\)
−0.661695 + 0.749773i \(0.730163\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 1.38685 0.800700i 0.241420 0.139384i
\(34\) 3.28940 + 5.69741i 0.564128 + 0.977098i
\(35\) 1.84394 + 1.80144i 0.311683 + 0.304498i
\(36\) −1.00000 −0.166667
\(37\) 6.07690 + 0.267030i 0.999036 + 0.0438995i
\(38\) 0.201405i 0.0326721i
\(39\) 3.28591 + 1.89712i 0.526167 + 0.303783i
\(40\) 0.603880 + 2.15298i 0.0954818 + 0.340416i
\(41\) 4.00330 + 6.93392i 0.625211 + 1.08290i 0.988500 + 0.151220i \(0.0483203\pi\)
−0.363289 + 0.931676i \(0.618346\pi\)
\(42\) 0.576424 + 0.998396i 0.0889442 + 0.154056i
\(43\) 1.95146 0.297595 0.148798 0.988868i \(-0.452460\pi\)
0.148798 + 0.988868i \(0.452460\pi\)
\(44\) −0.800700 1.38685i −0.120710 0.209076i
\(45\) 2.16648 + 0.553515i 0.322959 + 0.0825132i
\(46\) 0.316711 0.548560i 0.0466965 0.0808807i
\(47\) 4.65434i 0.678905i −0.940623 0.339453i \(-0.889758\pi\)
0.940623 0.339453i \(-0.110242\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.83547 + 4.91118i −0.405067 + 0.701597i
\(50\) −0.116584 4.99864i −0.0164875 0.706915i
\(51\) 6.57881i 0.921217i
\(52\) 1.89712 3.28591i 0.263084 0.455674i
\(53\) −7.47374 4.31497i −1.02660 0.592706i −0.110589 0.993866i \(-0.535274\pi\)
−0.916008 + 0.401160i \(0.868607\pi\)
\(54\) 0.866025 + 0.500000i 0.117851 + 0.0680414i
\(55\) 0.967053 + 3.44778i 0.130397 + 0.464899i
\(56\) 0.998396 0.576424i 0.133416 0.0770279i
\(57\) −0.100702 + 0.174421i −0.0133383 + 0.0231027i
\(58\) 4.97011 + 2.86950i 0.652608 + 0.376783i
\(59\) 10.3918 + 5.99970i 1.35289 + 0.781094i 0.988654 0.150211i \(-0.0479953\pi\)
0.364241 + 0.931305i \(0.381329\pi\)
\(60\) 0.553515 2.16648i 0.0714585 0.279691i
\(61\) −11.3423 + 6.54846i −1.45223 + 0.838445i −0.998608 0.0527502i \(-0.983201\pi\)
−0.453621 + 0.891195i \(0.649868\pi\)
\(62\) −7.23055 4.17456i −0.918280 0.530169i
\(63\) 1.15285i 0.145245i
\(64\) 1.00000 0.125000
\(65\) −5.92888 + 6.06877i −0.735387 + 0.752738i
\(66\) 1.60140i 0.197119i
\(67\) 9.33087 5.38718i 1.13995 0.658149i 0.193529 0.981094i \(-0.438007\pi\)
0.946417 + 0.322946i \(0.104673\pi\)
\(68\) −6.57881 −0.797798
\(69\) −0.548560 + 0.316711i −0.0660388 + 0.0381275i
\(70\) −2.48206 + 0.696182i −0.296663 + 0.0832097i
\(71\) −5.52164 9.56376i −0.655298 1.13501i −0.981819 0.189819i \(-0.939210\pi\)
0.326521 0.945190i \(-0.394124\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) 4.32373i 0.506054i 0.967459 + 0.253027i \(0.0814262\pi\)
−0.967459 + 0.253027i \(0.918574\pi\)
\(74\) −3.26970 + 5.12923i −0.380095 + 0.596261i
\(75\) −2.39836 + 4.38724i −0.276938 + 0.506595i
\(76\) 0.174421 + 0.100702i 0.0200075 + 0.0115513i
\(77\) 1.59883 0.923086i 0.182204 0.105195i
\(78\) −3.28591 + 1.89712i −0.372057 + 0.214807i
\(79\) 6.91117 3.99017i 0.777568 0.448929i −0.0580000 0.998317i \(-0.518472\pi\)
0.835568 + 0.549388i \(0.185139\pi\)
\(80\) −2.16648 0.553515i −0.242219 0.0618849i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −8.00660 −0.884181
\(83\) 12.4882 + 7.21006i 1.37076 + 0.791407i 0.991023 0.133689i \(-0.0426822\pi\)
0.379734 + 0.925096i \(0.376016\pi\)
\(84\) −1.15285 −0.125786
\(85\) 14.2528 + 3.64147i 1.54594 + 0.394973i
\(86\) −0.975731 + 1.69002i −0.105216 + 0.182239i
\(87\) −2.86950 4.97011i −0.307642 0.532852i
\(88\) 1.60140 0.170710
\(89\) 15.6356 + 9.02723i 1.65737 + 0.956885i 0.973920 + 0.226890i \(0.0728557\pi\)
0.683452 + 0.729995i \(0.260478\pi\)
\(90\) −1.56260 + 1.59947i −0.164712 + 0.168599i
\(91\) 3.78816 + 2.18710i 0.397107 + 0.229270i
\(92\) 0.316711 + 0.548560i 0.0330194 + 0.0571913i
\(93\) 4.17456 + 7.23055i 0.432882 + 0.749773i
\(94\) 4.03078 + 2.32717i 0.415743 + 0.240029i
\(95\) −0.322140 0.314714i −0.0330508 0.0322890i
\(96\) −0.866025 0.500000i −0.0883883 0.0510310i
\(97\) 2.93176 0.297675 0.148838 0.988862i \(-0.452447\pi\)
0.148838 + 0.988862i \(0.452447\pi\)
\(98\) −2.83547 4.91118i −0.286426 0.496104i
\(99\) 0.800700 1.38685i 0.0804734 0.139384i
\(100\) 4.38724 + 2.39836i 0.438724 + 0.239836i
\(101\) −14.8756 −1.48018 −0.740088 0.672510i \(-0.765216\pi\)
−0.740088 + 0.672510i \(0.765216\pi\)
\(102\) 5.69741 + 3.28940i 0.564128 + 0.325699i
\(103\) −2.82877 −0.278727 −0.139363 0.990241i \(-0.544506\pi\)
−0.139363 + 0.990241i \(0.544506\pi\)
\(104\) 1.89712 + 3.28591i 0.186028 + 0.322210i
\(105\) 2.49762 + 0.638119i 0.243743 + 0.0622741i
\(106\) 7.47374 4.31497i 0.725914 0.419107i
\(107\) −8.16662 + 4.71500i −0.789497 + 0.455816i −0.839786 0.542918i \(-0.817319\pi\)
0.0502882 + 0.998735i \(0.483986\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) −11.8873 6.86312i −1.13859 0.657367i −0.192512 0.981295i \(-0.561663\pi\)
−0.946082 + 0.323927i \(0.894997\pi\)
\(110\) −3.46940 0.886399i −0.330794 0.0845148i
\(111\) 5.39626 2.80719i 0.512191 0.266447i
\(112\) 1.15285i 0.108934i
\(113\) 4.45519 7.71661i 0.419109 0.725917i −0.576741 0.816927i \(-0.695676\pi\)
0.995850 + 0.0910093i \(0.0290093\pi\)
\(114\) −0.100702 0.174421i −0.00943163 0.0163361i
\(115\) −0.382511 1.36375i −0.0356693 0.127170i
\(116\) −4.97011 + 2.86950i −0.461463 + 0.266426i
\(117\) 3.79425 0.350778
\(118\) −10.3918 + 5.99970i −0.956641 + 0.552317i
\(119\) 7.58437i 0.695258i
\(120\) 1.59947 + 1.56260i 0.146011 + 0.142645i
\(121\) −8.43552 −0.766865
\(122\) 13.0969i 1.18574i
\(123\) 6.93392 + 4.00330i 0.625211 + 0.360966i
\(124\) 7.23055 4.17456i 0.649322 0.374886i
\(125\) −8.17733 7.62439i −0.731403 0.681946i
\(126\) 0.998396 + 0.576424i 0.0889442 + 0.0513520i
\(127\) 10.7457 + 6.20405i 0.953529 + 0.550520i 0.894175 0.447717i \(-0.147763\pi\)
0.0593538 + 0.998237i \(0.481096\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 1.69002 0.975731i 0.148798 0.0859083i
\(130\) −2.29127 8.16894i −0.200958 0.716464i
\(131\) −0.150501 0.0868917i −0.0131493 0.00759176i 0.493411 0.869796i \(-0.335750\pi\)
−0.506560 + 0.862205i \(0.669083\pi\)
\(132\) −1.38685 0.800700i −0.120710 0.0696920i
\(133\) −0.116094 + 0.201082i −0.0100667 + 0.0174360i
\(134\) 10.7744i 0.930763i
\(135\) 2.15298 0.603880i 0.185299 0.0519737i
\(136\) 3.28940 5.69741i 0.282064 0.488549i
\(137\) 0.163889i 0.0140020i 0.999975 + 0.00700100i \(0.00222850\pi\)
−0.999975 + 0.00700100i \(0.997771\pi\)
\(138\) 0.633422i 0.0539205i
\(139\) −0.808880 + 1.40102i −0.0686083 + 0.118833i −0.898289 0.439405i \(-0.855189\pi\)
0.829681 + 0.558238i \(0.188523\pi\)
\(140\) 0.638119 2.49762i 0.0539309 0.211087i
\(141\) −2.32717 4.03078i −0.195983 0.339453i
\(142\) 11.0433 0.926731
\(143\) 3.03805 + 5.26206i 0.254055 + 0.440036i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) 12.3559 3.46566i 1.02611 0.287808i
\(146\) −3.74446 2.16187i −0.309894 0.178917i
\(147\) 5.67094i 0.467731i
\(148\) −2.80719 5.39626i −0.230750 0.443570i
\(149\) −16.0986 −1.31885 −0.659423 0.751772i \(-0.729200\pi\)
−0.659423 + 0.751772i \(0.729200\pi\)
\(150\) −2.60029 4.27066i −0.212312 0.348698i
\(151\) 3.14518 + 5.44761i 0.255951 + 0.443320i 0.965153 0.261685i \(-0.0842780\pi\)
−0.709202 + 0.705005i \(0.750945\pi\)
\(152\) −0.174421 + 0.100702i −0.0141474 + 0.00816803i
\(153\) −3.28940 5.69741i −0.265933 0.460609i
\(154\) 1.84617i 0.148769i
\(155\) −17.9755 + 5.04187i −1.44383 + 0.404972i
\(156\) 3.79425i 0.303783i
\(157\) −3.38321 1.95330i −0.270009 0.155890i 0.358883 0.933383i \(-0.383158\pi\)
−0.628892 + 0.777493i \(0.716491\pi\)
\(158\) 7.98033i 0.634881i
\(159\) −8.62993 −0.684398
\(160\) 1.56260 1.59947i 0.123534 0.126449i
\(161\) −0.632406 + 0.365120i −0.0498406 + 0.0287755i
\(162\) 1.00000 0.0785674
\(163\) −3.44377 + 5.96478i −0.269737 + 0.467198i −0.968794 0.247868i \(-0.920270\pi\)
0.699057 + 0.715066i \(0.253603\pi\)
\(164\) 4.00330 6.93392i 0.312605 0.541448i
\(165\) 2.56138 + 2.50234i 0.199404 + 0.194807i
\(166\) −12.4882 + 7.21006i −0.969272 + 0.559609i
\(167\) 2.06388 + 3.57474i 0.159708 + 0.276622i 0.934763 0.355271i \(-0.115611\pi\)
−0.775055 + 0.631893i \(0.782278\pi\)
\(168\) 0.576424 0.998396i 0.0444721 0.0770279i
\(169\) −0.698155 + 1.20924i −0.0537042 + 0.0930185i
\(170\) −10.2800 + 10.5226i −0.788442 + 0.807045i
\(171\) 0.201405i 0.0154018i
\(172\) −0.975731 1.69002i −0.0743988 0.128862i
\(173\) −20.7126 11.9584i −1.57475 0.909181i −0.995574 0.0939768i \(-0.970042\pi\)
−0.579173 0.815204i \(-0.696625\pi\)
\(174\) 5.73899 0.435072
\(175\) −2.76494 + 5.05783i −0.209010 + 0.382336i
\(176\) −0.800700 + 1.38685i −0.0603550 + 0.104538i
\(177\) 11.9994 0.901930
\(178\) −15.6356 + 9.02723i −1.17194 + 0.676620i
\(179\) 16.2259i 1.21278i −0.795167 0.606390i \(-0.792617\pi\)
0.795167 0.606390i \(-0.207383\pi\)
\(180\) −0.603880 2.15298i −0.0450106 0.160474i
\(181\) −2.06172 3.57100i −0.153246 0.265431i 0.779173 0.626809i \(-0.215639\pi\)
−0.932419 + 0.361379i \(0.882306\pi\)
\(182\) −3.78816 + 2.18710i −0.280797 + 0.162118i
\(183\) −6.54846 + 11.3423i −0.484076 + 0.838445i
\(184\) −0.633422 −0.0466965
\(185\) 3.09481 + 13.2447i 0.227535 + 0.973770i
\(186\) −8.34912 −0.612187
\(187\) 5.26765 9.12384i 0.385209 0.667201i
\(188\) −4.03078 + 2.32717i −0.293975 + 0.169726i
\(189\) −0.576424 0.998396i −0.0419287 0.0726226i
\(190\) 0.433620 0.121624i 0.0314581 0.00882355i
\(191\) 4.40002i 0.318374i 0.987248 + 0.159187i \(0.0508873\pi\)
−0.987248 + 0.159187i \(0.949113\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) 1.15300 0.0829950 0.0414975 0.999139i \(-0.486787\pi\)
0.0414975 + 0.999139i \(0.486787\pi\)
\(194\) −1.46588 + 2.53898i −0.105244 + 0.182288i
\(195\) −2.10017 + 8.22015i −0.150397 + 0.588657i
\(196\) 5.67094 0.405067
\(197\) 1.50044 + 0.866279i 0.106902 + 0.0617199i 0.552498 0.833514i \(-0.313675\pi\)
−0.445596 + 0.895234i \(0.647008\pi\)
\(198\) 0.800700 + 1.38685i 0.0569033 + 0.0985593i
\(199\) 19.8702i 1.40856i −0.709922 0.704281i \(-0.751270\pi\)
0.709922 0.704281i \(-0.248730\pi\)
\(200\) −4.27066 + 2.60029i −0.301981 + 0.183868i
\(201\) 5.38718 9.33087i 0.379982 0.658149i
\(202\) 7.43779 12.8826i 0.523321 0.906419i
\(203\) −3.30809 5.72979i −0.232183 0.402152i
\(204\) −5.69741 + 3.28940i −0.398899 + 0.230304i
\(205\) −12.5111 + 12.8063i −0.873812 + 0.894430i
\(206\) 1.41438 2.44978i 0.0985447 0.170684i
\(207\) −0.316711 + 0.548560i −0.0220129 + 0.0381275i
\(208\) −3.79425 −0.263084
\(209\) −0.279319 + 0.161265i −0.0193209 + 0.0111549i
\(210\) −1.80144 + 1.84394i −0.124311 + 0.127244i
\(211\) −15.6536 −1.07764 −0.538820 0.842421i \(-0.681130\pi\)
−0.538820 + 0.842421i \(0.681130\pi\)
\(212\) 8.62993i 0.592706i
\(213\) −9.56376 5.52164i −0.655298 0.378336i
\(214\) 9.43000i 0.644622i
\(215\) 1.17845 + 4.20146i 0.0803696 + 0.286537i
\(216\) 1.00000i 0.0680414i
\(217\) 4.81263 + 8.33573i 0.326703 + 0.565866i
\(218\) 11.8873 6.86312i 0.805107 0.464829i
\(219\) 2.16187 + 3.74446i 0.146085 + 0.253027i
\(220\) 2.50234 2.56138i 0.168708 0.172689i
\(221\) 24.9616 1.67910
\(222\) −0.267030 + 6.07690i −0.0179219 + 0.407855i
\(223\) 16.3946i 1.09786i 0.835867 + 0.548932i \(0.184965\pi\)
−0.835867 + 0.548932i \(0.815035\pi\)
\(224\) −0.998396 0.576424i −0.0667081 0.0385140i
\(225\) 0.116584 + 4.99864i 0.00777227 + 0.333243i
\(226\) 4.45519 + 7.71661i 0.296355 + 0.513301i
\(227\) −13.6135 23.5793i −0.903562 1.56502i −0.822836 0.568279i \(-0.807610\pi\)
−0.0807258 0.996736i \(-0.525724\pi\)
\(228\) 0.201405 0.0133383
\(229\) −6.12750 10.6131i −0.404917 0.701336i 0.589395 0.807845i \(-0.299366\pi\)
−0.994312 + 0.106509i \(0.966033\pi\)
\(230\) 1.37229 + 0.350609i 0.0904864 + 0.0231185i
\(231\) 0.923086 1.59883i 0.0607346 0.105195i
\(232\) 5.73899i 0.376783i
\(233\) 12.4646i 0.816581i −0.912852 0.408290i \(-0.866125\pi\)
0.912852 0.408290i \(-0.133875\pi\)
\(234\) −1.89712 + 3.28591i −0.124019 + 0.214807i
\(235\) 10.0207 2.81066i 0.653679 0.183347i
\(236\) 11.9994i 0.781094i
\(237\) 3.99017 6.91117i 0.259189 0.448929i
\(238\) 6.56826 + 3.79218i 0.425757 + 0.245811i
\(239\) −13.9717 8.06659i −0.903757 0.521784i −0.0253399 0.999679i \(-0.508067\pi\)
−0.878417 + 0.477894i \(0.841400\pi\)
\(240\) −2.15298 + 0.603880i −0.138974 + 0.0389803i
\(241\) −0.462479 + 0.267013i −0.0297909 + 0.0171998i −0.514821 0.857297i \(-0.672142\pi\)
0.485031 + 0.874497i \(0.338808\pi\)
\(242\) 4.21776 7.30537i 0.271128 0.469607i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 11.3423 + 6.54846i 0.726114 + 0.419222i
\(245\) −12.2860 3.13895i −0.784921 0.200540i
\(246\) −6.93392 + 4.00330i −0.442091 + 0.255241i
\(247\) −0.661798 0.382089i −0.0421092 0.0243118i
\(248\) 8.34912i 0.530169i
\(249\) 14.4201 0.913838
\(250\) 10.6916 3.26958i 0.676195 0.206787i
\(251\) 17.0952i 1.07904i −0.841973 0.539520i \(-0.818606\pi\)
0.841973 0.539520i \(-0.181394\pi\)
\(252\) −0.998396 + 0.576424i −0.0628930 + 0.0363113i
\(253\) −1.01436 −0.0637724
\(254\) −10.7457 + 6.20405i −0.674247 + 0.389277i
\(255\) 14.1640 3.97281i 0.886987 0.248787i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 2.85889 4.95174i 0.178333 0.308881i −0.762977 0.646426i \(-0.776263\pi\)
0.941310 + 0.337544i \(0.109596\pi\)
\(258\) 1.95146i 0.121493i
\(259\) 6.22107 3.23627i 0.386559 0.201092i
\(260\) 8.22015 + 2.10017i 0.509792 + 0.130247i
\(261\) −4.97011 2.86950i −0.307642 0.177617i
\(262\) 0.150501 0.0868917i 0.00929797 0.00536819i
\(263\) 26.5295 15.3168i 1.63588 0.944474i 0.653645 0.756802i \(-0.273239\pi\)
0.982232 0.187672i \(-0.0600942\pi\)
\(264\) 1.38685 0.800700i 0.0853549 0.0492797i
\(265\) 4.77680 18.6965i 0.293436 1.14852i
\(266\) −0.116094 0.201082i −0.00711821 0.0123291i
\(267\) 18.0545 1.10492
\(268\) −9.33087 5.38718i −0.569973 0.329074i
\(269\) 11.7982 0.719351 0.359675 0.933077i \(-0.382887\pi\)
0.359675 + 0.933077i \(0.382887\pi\)
\(270\) −0.553515 + 2.16648i −0.0336859 + 0.131848i
\(271\) −5.06391 + 8.77094i −0.307610 + 0.532797i −0.977839 0.209358i \(-0.932863\pi\)
0.670229 + 0.742155i \(0.266196\pi\)
\(272\) 3.28940 + 5.69741i 0.199449 + 0.345456i
\(273\) 4.37419 0.264738
\(274\) −0.141932 0.0819446i −0.00857443 0.00495045i
\(275\) −6.83903 + 4.16410i −0.412409 + 0.251104i
\(276\) 0.548560 + 0.316711i 0.0330194 + 0.0190638i
\(277\) −14.9276 25.8554i −0.896913 1.55350i −0.831419 0.555646i \(-0.812471\pi\)
−0.0654936 0.997853i \(-0.520862\pi\)
\(278\) −0.808880 1.40102i −0.0485134 0.0840277i
\(279\) 7.23055 + 4.17456i 0.432882 + 0.249924i
\(280\) 1.84394 + 1.80144i 0.110197 + 0.107656i
\(281\) −14.1619 8.17640i −0.844831 0.487763i 0.0140724 0.999901i \(-0.495520\pi\)
−0.858903 + 0.512138i \(0.828854\pi\)
\(282\) 4.65434 0.277162
\(283\) −2.38752 4.13531i −0.141924 0.245819i 0.786297 0.617848i \(-0.211995\pi\)
−0.928221 + 0.372029i \(0.878662\pi\)
\(284\) −5.52164 + 9.56376i −0.327649 + 0.567505i
\(285\) −0.436338 0.111480i −0.0258464 0.00660353i
\(286\) −6.07611 −0.359288
\(287\) 7.99376 + 4.61520i 0.471857 + 0.272427i
\(288\) −1.00000 −0.0589256
\(289\) −13.1403 22.7598i −0.772962 1.33881i
\(290\) −3.17662 + 12.4334i −0.186538 + 0.730114i
\(291\) 2.53898 1.46588i 0.148838 0.0859314i
\(292\) 3.74446 2.16187i 0.219128 0.126514i
\(293\) −3.03946 + 1.75483i −0.177567 + 0.102518i −0.586149 0.810203i \(-0.699357\pi\)
0.408582 + 0.912722i \(0.366023\pi\)
\(294\) −4.91118 2.83547i −0.286426 0.165368i
\(295\) −6.64185 + 25.9964i −0.386703 + 1.51357i
\(296\) 6.07690 + 0.267030i 0.353213 + 0.0155208i
\(297\) 1.60140i 0.0929226i
\(298\) 8.04929 13.9418i 0.466283 0.807625i
\(299\) −1.20168 2.08137i −0.0694950 0.120369i
\(300\) 4.99864 0.116584i 0.288597 0.00673099i
\(301\) 1.94833 1.12487i 0.112300 0.0648364i
\(302\) −6.29036 −0.361970
\(303\) −12.8826 + 7.43779i −0.740088 + 0.427290i
\(304\) 0.201405i 0.0115513i
\(305\) −20.9481 20.4652i −1.19948 1.17183i
\(306\) 6.57881 0.376085
\(307\) 13.8678i 0.791479i 0.918363 + 0.395739i \(0.129512\pi\)
−0.918363 + 0.395739i \(0.870488\pi\)
\(308\) −1.59883 0.923086i −0.0911019 0.0525977i
\(309\) −2.44978 + 1.41438i −0.139363 + 0.0804614i
\(310\) 4.62136 18.0882i 0.262476 1.02734i
\(311\) −13.6673 7.89080i −0.775000 0.447446i 0.0596555 0.998219i \(-0.481000\pi\)
−0.834655 + 0.550773i \(0.814333\pi\)
\(312\) 3.28591 + 1.89712i 0.186028 + 0.107403i
\(313\) 6.99253 12.1114i 0.395241 0.684578i −0.597891 0.801578i \(-0.703994\pi\)
0.993132 + 0.117000i \(0.0373276\pi\)
\(314\) 3.38321 1.95330i 0.190925 0.110231i
\(315\) 2.48206 0.696182i 0.139848 0.0392254i
\(316\) −6.91117 3.99017i −0.388784 0.224464i
\(317\) −4.22693 2.44042i −0.237408 0.137068i 0.376577 0.926385i \(-0.377101\pi\)
−0.613985 + 0.789318i \(0.710434\pi\)
\(318\) 4.31497 7.47374i 0.241971 0.419107i
\(319\) 9.19042i 0.514565i
\(320\) 0.603880 + 2.15298i 0.0337579 + 0.120355i
\(321\) −4.71500 + 8.16662i −0.263166 + 0.455816i
\(322\) 0.730240i 0.0406947i
\(323\) 1.32500i 0.0737251i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −16.6463 9.09995i −0.923369 0.504775i
\(326\) −3.44377 5.96478i −0.190733 0.330359i
\(327\) −13.7262 −0.759063
\(328\) 4.00330 + 6.93392i 0.221045 + 0.382862i
\(329\) −2.68287 4.64687i −0.147912 0.256190i
\(330\) −3.44778 + 0.967053i −0.189794 + 0.0532345i
\(331\) 8.03353 + 4.63816i 0.441563 + 0.254936i 0.704260 0.709942i \(-0.251279\pi\)
−0.262698 + 0.964878i \(0.584612\pi\)
\(332\) 14.4201i 0.791407i
\(333\) 3.26970 5.12923i 0.179179 0.281080i
\(334\) −4.12776 −0.225861
\(335\) 17.2332 + 16.8360i 0.941551 + 0.919847i
\(336\) 0.576424 + 0.998396i 0.0314465 + 0.0544670i
\(337\) 26.0610 15.0463i 1.41963 0.819625i 0.423367 0.905958i \(-0.360848\pi\)
0.996266 + 0.0863330i \(0.0275149\pi\)
\(338\) −0.698155 1.20924i −0.0379746 0.0657740i
\(339\) 8.91037i 0.483945i
\(340\) −3.97281 14.1640i −0.215456 0.768153i
\(341\) 13.3703i 0.724041i
\(342\) −0.174421 0.100702i −0.00943163 0.00544536i
\(343\) 14.6077i 0.788740i
\(344\) 1.95146 0.105216
\(345\) −1.01314 0.989784i −0.0545455 0.0532882i
\(346\) 20.7126 11.9584i 1.11351 0.642888i
\(347\) 24.1815 1.29813 0.649066 0.760733i \(-0.275160\pi\)
0.649066 + 0.760733i \(0.275160\pi\)
\(348\) −2.86950 + 4.97011i −0.153821 + 0.266426i
\(349\) −3.22778 + 5.59068i −0.172779 + 0.299262i −0.939390 0.342849i \(-0.888608\pi\)
0.766611 + 0.642111i \(0.221941\pi\)
\(350\) −2.99773 4.92342i −0.160236 0.263168i
\(351\) 3.28591 1.89712i 0.175389 0.101261i
\(352\) −0.800700 1.38685i −0.0426774 0.0739195i
\(353\) −5.33390 + 9.23859i −0.283895 + 0.491721i −0.972341 0.233567i \(-0.924960\pi\)
0.688446 + 0.725288i \(0.258293\pi\)
\(354\) −5.99970 + 10.3918i −0.318880 + 0.552317i
\(355\) 17.2562 17.6633i 0.915863 0.937473i
\(356\) 18.0545i 0.956885i
\(357\) −3.79218 6.56826i −0.200704 0.347629i
\(358\) 14.0520 + 8.11294i 0.742673 + 0.428782i
\(359\) −7.32628 −0.386666 −0.193333 0.981133i \(-0.561930\pi\)
−0.193333 + 0.981133i \(0.561930\pi\)
\(360\) 2.16648 + 0.553515i 0.114183 + 0.0291728i
\(361\) −9.47972 + 16.4194i −0.498933 + 0.864176i
\(362\) 4.12344 0.216723
\(363\) −7.30537 + 4.21776i −0.383433 + 0.221375i
\(364\) 4.37419i 0.229270i
\(365\) −9.30891 + 2.61101i −0.487251 + 0.136667i
\(366\) −6.54846 11.3423i −0.342294 0.592870i
\(367\) 3.73951 2.15901i 0.195201 0.112699i −0.399214 0.916858i \(-0.630717\pi\)
0.594415 + 0.804159i \(0.297384\pi\)
\(368\) 0.316711 0.548560i 0.0165097 0.0285957i
\(369\) 8.00660 0.416807
\(370\) −13.0177 3.94217i −0.676756 0.204944i
\(371\) −9.94900 −0.516527
\(372\) 4.17456 7.23055i 0.216441 0.374886i
\(373\) 0.164880 0.0951938i 0.00853719 0.00492895i −0.495725 0.868479i \(-0.665098\pi\)
0.504263 + 0.863550i \(0.331764\pi\)
\(374\) 5.26765 + 9.12384i 0.272384 + 0.471782i
\(375\) −10.8940 2.51425i −0.562562 0.129835i
\(376\) 4.65434i 0.240029i
\(377\) 18.8578 10.8876i 0.971228 0.560739i
\(378\) 1.15285 0.0592961
\(379\) −15.9392 + 27.6075i −0.818742 + 1.41810i 0.0878680 + 0.996132i \(0.471995\pi\)
−0.906610 + 0.421970i \(0.861339\pi\)
\(380\) −0.111480 + 0.436338i −0.00571883 + 0.0223837i
\(381\) 12.4081 0.635686
\(382\) −3.81053 2.20001i −0.194963 0.112562i
\(383\) −11.9491 20.6964i −0.610569 1.05754i −0.991145 0.132787i \(-0.957607\pi\)
0.380575 0.924750i \(-0.375726\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 2.95289 + 2.88482i 0.150493 + 0.147024i
\(386\) −0.576502 + 0.998530i −0.0293432 + 0.0508238i
\(387\) 0.975731 1.69002i 0.0495992 0.0859083i
\(388\) −1.46588 2.53898i −0.0744188 0.128897i
\(389\) 6.13244 3.54056i 0.310927 0.179514i −0.336414 0.941714i \(-0.609214\pi\)
0.647341 + 0.762200i \(0.275881\pi\)
\(390\) −6.06877 5.92888i −0.307304 0.300220i
\(391\) −2.08358 + 3.60887i −0.105371 + 0.182508i
\(392\) −2.83547 + 4.91118i −0.143213 + 0.248052i
\(393\) −0.173783 −0.00876621
\(394\) −1.50044 + 0.866279i −0.0755911 + 0.0436425i
\(395\) 12.7643 + 12.4700i 0.642240 + 0.627436i
\(396\) −1.60140 −0.0804734
\(397\) 1.61077i 0.0808422i 0.999183 + 0.0404211i \(0.0128699\pi\)
−0.999183 + 0.0404211i \(0.987130\pi\)
\(398\) 17.2081 + 9.93510i 0.862564 + 0.498002i
\(399\) 0.232189i 0.0116240i
\(400\) −0.116584 4.99864i −0.00582921 0.249932i
\(401\) 8.93803i 0.446344i −0.974779 0.223172i \(-0.928359\pi\)
0.974779 0.223172i \(-0.0716411\pi\)
\(402\) 5.38718 + 9.33087i 0.268688 + 0.465381i
\(403\) −27.4345 + 15.8393i −1.36661 + 0.789012i
\(404\) 7.43779 + 12.8826i 0.370044 + 0.640935i
\(405\) 1.56260 1.59947i 0.0776460 0.0794781i
\(406\) 6.61619 0.328356
\(407\) 9.73154 + 0.427622i 0.482375 + 0.0211964i
\(408\) 6.57881i 0.325699i
\(409\) −24.5929 14.1987i −1.21604 0.702080i −0.251971 0.967735i \(-0.581079\pi\)
−0.964068 + 0.265654i \(0.914412\pi\)
\(410\) −4.83503 17.2381i −0.238785 0.851327i
\(411\) 0.0819446 + 0.141932i 0.00404203 + 0.00700100i
\(412\) 1.41438 + 2.44978i 0.0696816 + 0.120692i
\(413\) 13.8335 0.680701
\(414\) −0.316711 0.548560i −0.0155655 0.0269602i
\(415\) −7.98176 + 31.2409i −0.391809 + 1.53355i
\(416\) 1.89712 3.28591i 0.0930141 0.161105i
\(417\) 1.61776i 0.0792221i
\(418\) 0.322529i 0.0157754i
\(419\) −17.6867 + 30.6343i −0.864053 + 1.49658i 0.00393056 + 0.999992i \(0.498749\pi\)
−0.867984 + 0.496592i \(0.834584\pi\)
\(420\) −0.696182 2.48206i −0.0339702 0.121112i
\(421\) 6.87298i 0.334968i 0.985875 + 0.167484i \(0.0535643\pi\)
−0.985875 + 0.167484i \(0.946436\pi\)
\(422\) 7.82681 13.5564i 0.381003 0.659917i
\(423\) −4.03078 2.32717i −0.195983 0.113151i
\(424\) −7.47374 4.31497i −0.362957 0.209553i
\(425\) 0.766984 + 32.8851i 0.0372042 + 1.59516i
\(426\) 9.56376 5.52164i 0.463366 0.267524i
\(427\) −7.54938 + 13.0759i −0.365340 + 0.632788i
\(428\) 8.16662 + 4.71500i 0.394749 + 0.227908i
\(429\) 5.26206 + 3.03805i 0.254055 + 0.146679i
\(430\) −4.22780 1.08016i −0.203882 0.0520901i
\(431\) 29.8230 17.2183i 1.43652 0.829376i 0.438915 0.898529i \(-0.355363\pi\)
0.997606 + 0.0691529i \(0.0220296\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) 17.7398i 0.852520i −0.904601 0.426260i \(-0.859831\pi\)
0.904601 0.426260i \(-0.140169\pi\)
\(434\) −9.62527 −0.462028
\(435\) 8.96773 9.17932i 0.429970 0.440115i
\(436\) 13.7262i 0.657367i
\(437\) 0.110482 0.0637871i 0.00528509 0.00305135i
\(438\) −4.32373 −0.206596
\(439\) −4.36970 + 2.52285i −0.208554 + 0.120409i −0.600639 0.799520i \(-0.705087\pi\)
0.392085 + 0.919929i \(0.371754\pi\)
\(440\) 0.967053 + 3.44778i 0.0461025 + 0.164367i
\(441\) 2.83547 + 4.91118i 0.135022 + 0.233866i
\(442\) −12.4808 + 21.6174i −0.593652 + 1.02823i
\(443\) 5.67021i 0.269400i 0.990886 + 0.134700i \(0.0430070\pi\)
−0.990886 + 0.134700i \(0.956993\pi\)
\(444\) −5.12923 3.26970i −0.243423 0.155173i
\(445\) −9.99342 + 39.1146i −0.473734 + 1.85421i
\(446\) −14.1981 8.19730i −0.672301 0.388153i
\(447\) −13.9418 + 8.04929i −0.659423 + 0.380718i
\(448\) 0.998396 0.576424i 0.0471698 0.0272335i
\(449\) −5.83240 + 3.36734i −0.275248 + 0.158914i −0.631270 0.775563i \(-0.717466\pi\)
0.356022 + 0.934477i \(0.384133\pi\)
\(450\) −4.38724 2.39836i −0.206817 0.113060i
\(451\) 6.41089 + 11.1040i 0.301877 + 0.522866i
\(452\) −8.91037 −0.419109
\(453\) 5.44761 + 3.14518i 0.255951 + 0.147773i
\(454\) 27.2271 1.27783
\(455\) −2.42118 + 9.47659i −0.113507 + 0.444269i
\(456\) −0.100702 + 0.174421i −0.00471582 + 0.00816803i
\(457\) −12.5902 21.8068i −0.588944 1.02008i −0.994371 0.105953i \(-0.966211\pi\)
0.405427 0.914127i \(-0.367123\pi\)
\(458\) 12.2550 0.572639
\(459\) −5.69741 3.28940i −0.265933 0.153536i
\(460\) −0.989784 + 1.01314i −0.0461489 + 0.0472378i
\(461\) 30.6749 + 17.7102i 1.42867 + 0.824846i 0.997016 0.0771914i \(-0.0245952\pi\)
0.431658 + 0.902037i \(0.357929\pi\)
\(462\) 0.923086 + 1.59883i 0.0429458 + 0.0743844i
\(463\) −10.5328 18.2434i −0.489502 0.847842i 0.510425 0.859922i \(-0.329488\pi\)
−0.999927 + 0.0120800i \(0.996155\pi\)
\(464\) 4.97011 + 2.86950i 0.230732 + 0.133213i
\(465\) −13.0463 + 13.3541i −0.605008 + 0.619283i
\(466\) 10.7946 + 6.23228i 0.500052 + 0.288705i
\(467\) −36.8742 −1.70634 −0.853168 0.521636i \(-0.825322\pi\)
−0.853168 + 0.521636i \(0.825322\pi\)
\(468\) −1.89712 3.28591i −0.0876946 0.151891i
\(469\) 6.21060 10.7571i 0.286779 0.496716i
\(470\) −2.57625 + 10.0835i −0.118833 + 0.465118i
\(471\) −3.90659 −0.180006
\(472\) 10.3918 + 5.99970i 0.478320 + 0.276158i
\(473\) 3.12507 0.143691
\(474\) 3.99017 + 6.91117i 0.183274 + 0.317441i
\(475\) 0.483040 0.883611i 0.0221634 0.0405428i
\(476\) −6.56826 + 3.79218i −0.301055 + 0.173814i
\(477\) −7.47374 + 4.31497i −0.342199 + 0.197569i
\(478\) 13.9717 8.06659i 0.639053 0.368957i
\(479\) 3.93591 + 2.27240i 0.179836 + 0.103829i 0.587216 0.809430i \(-0.300224\pi\)
−0.407379 + 0.913259i \(0.633557\pi\)
\(480\) 0.553515 2.16648i 0.0252644 0.0988857i
\(481\) 10.6512 + 20.4748i 0.485652 + 0.933569i
\(482\) 0.534025i 0.0243242i
\(483\) −0.365120 + 0.632406i −0.0166135 + 0.0287755i
\(484\) 4.21776 + 7.30537i 0.191716 + 0.332062i
\(485\) 1.77043 + 6.31202i 0.0803911 + 0.286614i
\(486\) 0.866025 0.500000i 0.0392837 0.0226805i
\(487\) −26.0473 −1.18032 −0.590158 0.807288i \(-0.700935\pi\)
−0.590158 + 0.807288i \(0.700935\pi\)
\(488\) −11.3423 + 6.54846i −0.513440 + 0.296435i
\(489\) 6.88754i 0.311465i
\(490\) 8.86139 9.07048i 0.400317 0.409762i
\(491\) 28.0039 1.26380 0.631900 0.775050i \(-0.282276\pi\)
0.631900 + 0.775050i \(0.282276\pi\)
\(492\) 8.00660i 0.360966i
\(493\) −32.6974 18.8779i −1.47262 0.850216i
\(494\) 0.661798 0.382089i 0.0297757 0.0171910i
\(495\) 3.46940 + 0.886399i 0.155938 + 0.0398407i
\(496\) −7.23055 4.17456i −0.324661 0.187443i
\(497\) −11.0256 6.36561i −0.494564 0.285537i
\(498\) −7.21006 + 12.4882i −0.323091 + 0.559609i
\(499\) 22.5995 13.0478i 1.01169 0.584100i 0.100005 0.994987i \(-0.468114\pi\)
0.911686 + 0.410887i \(0.134781\pi\)
\(500\) −2.51425 + 10.8940i −0.112441 + 0.487193i
\(501\) 3.57474 + 2.06388i 0.159708 + 0.0922073i
\(502\) 14.8049 + 8.54760i 0.660774 + 0.381498i
\(503\) −14.5457 + 25.1938i −0.648559 + 1.12334i 0.334908 + 0.942251i \(0.391295\pi\)
−0.983467 + 0.181087i \(0.942038\pi\)
\(504\) 1.15285i 0.0513520i
\(505\) −8.98307 32.0269i −0.399741 1.42518i
\(506\) 0.507181 0.878464i 0.0225470 0.0390525i
\(507\) 1.39631i 0.0620123i
\(508\) 12.4081i 0.550520i
\(509\) −5.98303 + 10.3629i −0.265193 + 0.459328i −0.967614 0.252434i \(-0.918769\pi\)
0.702421 + 0.711762i \(0.252102\pi\)
\(510\) −3.64147 + 14.2528i −0.161247 + 0.631126i
\(511\) 2.49230 + 4.31680i 0.110253 + 0.190964i
\(512\) 1.00000 0.0441942
\(513\) 0.100702 + 0.174421i 0.00444611 + 0.00770090i
\(514\) 2.85889 + 4.95174i 0.126100 + 0.218412i
\(515\) −1.70824 6.09028i −0.0752738 0.268370i
\(516\) −1.69002 0.975731i −0.0743988 0.0429542i
\(517\) 7.45346i 0.327803i
\(518\) −0.307845 + 7.00574i −0.0135259 + 0.307815i
\(519\) −23.9168 −1.04983
\(520\) −5.92888 + 6.06877i −0.259998 + 0.266133i
\(521\) 18.7348 + 32.4496i 0.820787 + 1.42164i 0.905097 + 0.425205i \(0.139798\pi\)
−0.0843099 + 0.996440i \(0.526869\pi\)
\(522\) 4.97011 2.86950i 0.217536 0.125594i
\(523\) 17.4308 + 30.1910i 0.762195 + 1.32016i 0.941717 + 0.336407i \(0.109212\pi\)
−0.179522 + 0.983754i \(0.557455\pi\)
\(524\) 0.173783i 0.00759176i
\(525\) 0.134404 + 5.76268i 0.00586586 + 0.251504i
\(526\) 30.6336i 1.33569i
\(527\) 47.5684 + 27.4636i 2.07211 + 1.19633i
\(528\) 1.60140i 0.0696920i
\(529\) −22.5988 −0.982555
\(530\) 13.8033 + 13.4851i 0.599576 + 0.585755i
\(531\) 10.3918 5.99970i 0.450965 0.260365i
\(532\) 0.232189 0.0100667
\(533\) −15.1895 + 26.3090i −0.657931 + 1.13957i
\(534\) −9.02723 + 15.6356i −0.390647 + 0.676620i
\(535\) −15.0830 14.7353i −0.652094 0.637062i
\(536\) 9.33087 5.38718i 0.403032 0.232691i
\(537\) −8.11294 14.0520i −0.350099 0.606390i
\(538\) −5.89911 + 10.2176i −0.254329 + 0.440511i
\(539\) −4.54072 + 7.86476i −0.195583 + 0.338759i
\(540\) −1.59947 1.56260i −0.0688301 0.0672434i
\(541\) 6.10400i 0.262432i 0.991354 + 0.131216i \(0.0418881\pi\)
−0.991354 + 0.131216i \(0.958112\pi\)
\(542\) −5.06391 8.77094i −0.217513 0.376744i
\(543\) −3.57100 2.06172i −0.153246 0.0884769i
\(544\) −6.57881 −0.282064
\(545\) 7.59768 29.7376i 0.325449 1.27382i
\(546\) −2.18710 + 3.78816i −0.0935991 + 0.162118i
\(547\) −28.0504 −1.19935 −0.599675 0.800243i \(-0.704704\pi\)
−0.599675 + 0.800243i \(0.704704\pi\)
\(548\) 0.141932 0.0819446i 0.00606304 0.00350050i
\(549\) 13.0969i 0.558963i
\(550\) −0.186698 8.00482i −0.00796082 0.341327i
\(551\) 0.577930 + 1.00100i 0.0246206 + 0.0426442i
\(552\) −0.548560 + 0.316711i −0.0233483 + 0.0134801i
\(553\) 4.60006 7.96753i 0.195614 0.338814i
\(554\) 29.8552 1.26843
\(555\) 9.30253 + 9.92285i 0.394871 + 0.421201i
\(556\) 1.61776 0.0686083
\(557\) 1.04224 1.80521i 0.0441610 0.0764890i −0.843100 0.537757i \(-0.819272\pi\)
0.887261 + 0.461268i \(0.152605\pi\)
\(558\) −7.23055 + 4.17456i −0.306093 + 0.176723i
\(559\) 3.70216 + 6.41234i 0.156585 + 0.271213i
\(560\) −2.48206 + 0.696182i −0.104886 + 0.0294191i
\(561\) 10.5353i 0.444801i
\(562\) 14.1619 8.17640i 0.597386 0.344901i
\(563\) −6.83925 −0.288240 −0.144120 0.989560i \(-0.546035\pi\)
−0.144120 + 0.989560i \(0.546035\pi\)
\(564\) −2.32717 + 4.03078i −0.0979915 + 0.169726i
\(565\) 19.3041 + 4.93203i 0.812130 + 0.207492i
\(566\) 4.77505 0.200710
\(567\) −0.998396 0.576424i −0.0419287 0.0242075i
\(568\) −5.52164 9.56376i −0.231683 0.401286i
\(569\) 1.30706i 0.0547947i −0.999625 0.0273973i \(-0.991278\pi\)
0.999625 0.0273973i \(-0.00872194\pi\)
\(570\) 0.314714 0.322140i 0.0131819 0.0134930i
\(571\) 12.5935 21.8126i 0.527022 0.912829i −0.472482 0.881340i \(-0.656642\pi\)
0.999504 0.0314890i \(-0.0100249\pi\)
\(572\) 3.03805 5.26206i 0.127027 0.220018i
\(573\) 2.20001 + 3.81053i 0.0919066 + 0.159187i
\(574\) −7.99376 + 4.61520i −0.333653 + 0.192635i
\(575\) 2.70513 1.64708i 0.112812 0.0686879i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) −14.3582 + 24.8692i −0.597741 + 1.03532i 0.395413 + 0.918503i \(0.370601\pi\)
−0.993154 + 0.116814i \(0.962732\pi\)
\(578\) 26.2807 1.09313
\(579\) 0.998530 0.576502i 0.0414975 0.0239586i
\(580\) −9.17932 8.96773i −0.381151 0.372365i
\(581\) 16.6242 0.689689
\(582\) 2.93176i 0.121525i
\(583\) −11.9684 6.90999i −0.495682 0.286182i
\(584\) 4.32373i 0.178917i
\(585\) 2.29127 + 8.16894i 0.0947324 + 0.337744i
\(586\) 3.50966i 0.144983i
\(587\) 19.0536 + 33.0018i 0.786427 + 1.36213i 0.928143 + 0.372224i \(0.121405\pi\)
−0.141716 + 0.989907i \(0.545262\pi\)
\(588\) 4.91118 2.83547i 0.202534 0.116933i
\(589\) −0.840775 1.45627i −0.0346435 0.0600044i
\(590\) −19.1926 18.7502i −0.790148 0.771934i
\(591\) 1.73256 0.0712679
\(592\) −3.26970 + 5.12923i −0.134384 + 0.210810i
\(593\) 10.9777i 0.450800i 0.974266 + 0.225400i \(0.0723688\pi\)
−0.974266 + 0.225400i \(0.927631\pi\)
\(594\) 1.38685 + 0.800700i 0.0569033 + 0.0328531i
\(595\) 16.3290 4.58005i 0.669424 0.187764i
\(596\) 8.04929 + 13.9418i 0.329712 + 0.571077i
\(597\) −9.93510 17.2081i −0.406617 0.704281i
\(598\) 2.40336 0.0982807
\(599\) 6.68729 + 11.5827i 0.273235 + 0.473258i 0.969688 0.244345i \(-0.0785729\pi\)
−0.696453 + 0.717602i \(0.745240\pi\)
\(600\) −2.39836 + 4.38724i −0.0979125 + 0.179108i
\(601\) −8.44195 + 14.6219i −0.344354 + 0.596439i −0.985236 0.171200i \(-0.945235\pi\)
0.640882 + 0.767639i \(0.278569\pi\)
\(602\) 2.24974i 0.0916926i
\(603\) 10.7744i 0.438766i
\(604\) 3.14518 5.44761i 0.127976 0.221660i
\(605\) −5.09404 18.1615i −0.207102 0.738371i
\(606\) 14.8756i 0.604279i
\(607\) 12.0273 20.8319i 0.488172 0.845539i −0.511735 0.859143i \(-0.670997\pi\)
0.999907 + 0.0136043i \(0.00433051\pi\)
\(608\) 0.174421 + 0.100702i 0.00707372 + 0.00408402i
\(609\) −5.72979 3.30809i −0.232183 0.134051i
\(610\) 28.1974 7.90897i 1.14168 0.320225i
\(611\) 15.2938 8.82986i 0.618719 0.357218i
\(612\) −3.28940 + 5.69741i −0.132966 + 0.230304i
\(613\) 17.7700 + 10.2595i 0.717724 + 0.414378i 0.813914 0.580985i \(-0.197332\pi\)
−0.0961906 + 0.995363i \(0.530666\pi\)
\(614\) −12.0099 6.93391i −0.484680 0.279830i
\(615\) −4.43178 + 17.3461i −0.178706 + 0.699463i
\(616\) 1.59883 0.923086i 0.0644188 0.0371922i
\(617\) −17.4897 10.0977i −0.704108 0.406517i 0.104767 0.994497i \(-0.466590\pi\)
−0.808876 + 0.587980i \(0.799924\pi\)
\(618\) 2.82877i 0.113790i
\(619\) 1.21856 0.0489782 0.0244891 0.999700i \(-0.492204\pi\)
0.0244891 + 0.999700i \(0.492204\pi\)
\(620\) 13.3541 + 13.0463i 0.536315 + 0.523952i
\(621\) 0.633422i 0.0254184i
\(622\) 13.6673 7.89080i 0.548008 0.316392i
\(623\) 20.8141 0.833898
\(624\) −3.28591 + 1.89712i −0.131542 + 0.0759457i
\(625\) 11.4770 22.2099i 0.459081 0.888394i
\(626\) 6.99253 + 12.1114i 0.279478 + 0.484070i
\(627\) −0.161265 + 0.279319i −0.00644029 + 0.0111549i
\(628\) 3.90659i 0.155890i
\(629\) 21.5108 33.7442i 0.857690 1.34547i
\(630\) −0.638119 + 2.49762i −0.0254233 + 0.0995075i
\(631\) 35.4811 + 20.4850i 1.41248 + 0.815497i 0.995622 0.0934743i \(-0.0297973\pi\)
0.416860 + 0.908971i \(0.363131\pi\)
\(632\) 6.91117 3.99017i 0.274912 0.158720i
\(633\) −13.5564 + 7.82681i −0.538820 + 0.311088i
\(634\) 4.22693 2.44042i 0.167873 0.0969215i
\(635\) −6.86807 + 26.8819i −0.272551 + 1.06677i
\(636\) 4.31497 + 7.47374i 0.171100 + 0.296353i
\(637\) −21.5169 −0.852533
\(638\) 7.95914 + 4.59521i 0.315105 + 0.181926i
\(639\) −11.0433 −0.436865
\(640\) −2.16648 0.553515i −0.0856375 0.0218796i
\(641\) −7.32583 + 12.6887i −0.289353 + 0.501174i −0.973655 0.228024i \(-0.926773\pi\)
0.684302 + 0.729198i \(0.260107\pi\)
\(642\) −4.71500 8.16662i −0.186086 0.322311i
\(643\) 26.8103 1.05730 0.528648 0.848841i \(-0.322699\pi\)
0.528648 + 0.848841i \(0.322699\pi\)
\(644\) 0.632406 + 0.365120i 0.0249203 + 0.0143877i
\(645\) 3.12130 + 3.04935i 0.122901 + 0.120068i
\(646\) −1.14749 0.662501i −0.0451472 0.0260657i
\(647\) 10.9636 + 18.9895i 0.431024 + 0.746555i 0.996962 0.0778928i \(-0.0248192\pi\)
−0.565938 + 0.824448i \(0.691486\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 16.6414 + 9.60791i 0.653232 + 0.377144i
\(650\) 16.2039 9.86612i 0.635570 0.386981i
\(651\) 8.33573 + 4.81263i 0.326703 + 0.188622i
\(652\) 6.88754 0.269737
\(653\) 13.8367 + 23.9659i 0.541473 + 0.937859i 0.998820 + 0.0485707i \(0.0154666\pi\)
−0.457346 + 0.889289i \(0.651200\pi\)
\(654\) 6.86312 11.8873i 0.268369 0.464829i
\(655\) 0.0961918 0.376498i 0.00375852 0.0147110i
\(656\) −8.00660 −0.312605
\(657\) 3.74446 + 2.16187i 0.146085 + 0.0843424i
\(658\) 5.36575 0.209179
\(659\) −24.2847 42.0624i −0.945998 1.63852i −0.753740 0.657172i \(-0.771752\pi\)
−0.192258 0.981344i \(-0.561581\pi\)
\(660\) 0.886399 3.46940i 0.0345030 0.135046i
\(661\) −24.9498 + 14.4048i −0.970434 + 0.560280i −0.899368 0.437192i \(-0.855973\pi\)
−0.0710652 + 0.997472i \(0.522640\pi\)
\(662\) −8.03353 + 4.63816i −0.312232 + 0.180267i
\(663\) 21.6174 12.4808i 0.839550 0.484714i
\(664\) 12.4882 + 7.21006i 0.484636 + 0.279805i
\(665\) −0.503032 0.128520i −0.0195067 0.00498380i
\(666\) 2.80719 + 5.39626i 0.108777 + 0.209101i
\(667\) 3.63521i 0.140756i
\(668\) 2.06388 3.57474i 0.0798539 0.138311i
\(669\) 8.19730 + 14.1981i 0.316926 + 0.548932i
\(670\) −23.1970 + 6.50642i −0.896178 + 0.251365i
\(671\) −18.1635 + 10.4867i −0.701194 + 0.404835i
\(672\) −1.15285 −0.0444721
\(673\) −25.5316 + 14.7407i −0.984171 + 0.568211i −0.903527 0.428532i \(-0.859031\pi\)
−0.0806443 + 0.996743i \(0.525698\pi\)
\(674\) 30.0926i 1.15913i
\(675\) 2.60029 + 4.27066i 0.100085 + 0.164378i
\(676\) 1.39631 0.0537042
\(677\) 15.7058i 0.603625i −0.953367 0.301812i \(-0.902408\pi\)
0.953367 0.301812i \(-0.0975916\pi\)
\(678\) 7.71661 + 4.45519i 0.296355 + 0.171100i
\(679\) 2.92706 1.68994i 0.112330 0.0648539i
\(680\) 14.2528 + 3.64147i 0.546571 + 0.139644i
\(681\) −23.5793 13.6135i −0.903562 0.521672i
\(682\) −11.5790 6.68514i −0.443383 0.255987i
\(683\) 10.5991 18.3581i 0.405562 0.702454i −0.588825 0.808261i \(-0.700409\pi\)
0.994387 + 0.105807i \(0.0337426\pi\)
\(684\) 0.174421 0.100702i 0.00666917 0.00385045i
\(685\) −0.352850 + 0.0989694i −0.0134817 + 0.00378143i
\(686\) −12.6506 7.30384i −0.483003 0.278862i
\(687\) −10.6131 6.12750i −0.404917 0.233779i
\(688\) −0.975731 + 1.69002i −0.0371994 + 0.0644312i
\(689\) 32.7441i 1.24745i
\(690\) 1.36375 0.382511i 0.0519169 0.0145620i
\(691\) −24.3436 + 42.1643i −0.926073 + 1.60401i −0.136247 + 0.990675i \(0.543504\pi\)
−0.789826 + 0.613331i \(0.789829\pi\)
\(692\) 23.9168i 0.909181i
\(693\) 1.84617i 0.0701303i
\(694\) −12.0908 + 20.9418i −0.458959 + 0.794940i
\(695\) −3.50484 0.895455i −0.132946 0.0339665i
\(696\) −2.86950 4.97011i −0.108768 0.188392i
\(697\) 52.6739 1.99517
\(698\) −3.22778 5.59068i −0.122173 0.211610i
\(699\) −6.23228 10.7946i −0.235727 0.408290i
\(700\) 5.76268 0.134404i 0.217809 0.00507999i
\(701\) −26.2855 15.1759i −0.992788 0.573186i −0.0866814 0.996236i \(-0.527626\pi\)
−0.906106 + 0.423050i \(0.860960\pi\)
\(702\) 3.79425i 0.143205i
\(703\) −1.08683 + 0.565382i −0.0409906 + 0.0213238i
\(704\) 1.60140 0.0603550
\(705\) 7.27285 7.44446i 0.273912 0.280375i
\(706\) −5.33390 9.23859i −0.200744 0.347699i
\(707\) −14.8517 + 8.57465i −0.558557 + 0.322483i
\(708\) −5.99970 10.3918i −0.225482 0.390547i
\(709\) 12.2106i 0.458577i 0.973358 + 0.229289i \(0.0736400\pi\)
−0.973358 + 0.229289i \(0.926360\pi\)
\(710\) 6.66882 + 23.7760i 0.250276 + 0.892296i
\(711\) 7.98033i 0.299286i
\(712\) 15.6356 + 9.02723i 0.585970 + 0.338310i
\(713\) 5.28852i 0.198057i
\(714\) 7.58437 0.283838
\(715\) −9.49450 + 9.71853i −0.355074 + 0.363452i
\(716\) −14.0520 + 8.11294i −0.525149 + 0.303195i
\(717\) −16.1332 −0.602505
\(718\) 3.66314 6.34474i 0.136707 0.236784i
\(719\) −6.58657 + 11.4083i −0.245637 + 0.425457i −0.962311 0.271953i \(-0.912331\pi\)
0.716673 + 0.697409i \(0.245664\pi\)
\(720\) −1.56260 + 1.59947i −0.0582345 + 0.0596086i
\(721\) −2.82423 + 1.63057i −0.105180 + 0.0607256i
\(722\) −9.47972 16.4194i −0.352799 0.611065i
\(723\) −0.267013 + 0.462479i −0.00993031 + 0.0171998i
\(724\) −2.06172 + 3.57100i −0.0766232 + 0.132715i
\(725\) 14.9230 + 24.5093i 0.554227 + 0.910251i
\(726\) 8.43552i 0.313071i
\(727\) 4.14865 + 7.18568i 0.153865 + 0.266502i 0.932645 0.360795i \(-0.117495\pi\)
−0.778780 + 0.627297i \(0.784161\pi\)
\(728\) 3.78816 + 2.18710i 0.140399 + 0.0810592i
\(729\) −1.00000 −0.0370370
\(730\) 2.39325 9.36726i 0.0885782 0.346698i
\(731\) 6.41915 11.1183i 0.237421 0.411225i
\(732\) 13.0969 0.484076
\(733\) 25.5218 14.7350i 0.942669 0.544250i 0.0518729 0.998654i \(-0.483481\pi\)
0.890796 + 0.454404i \(0.150148\pi\)
\(734\) 4.31801i 0.159381i
\(735\) −12.2094 + 3.42457i −0.450352 + 0.126317i
\(736\) 0.316711 + 0.548560i 0.0116741 + 0.0202202i
\(737\) 14.9424 8.62703i 0.550412 0.317781i
\(738\) −4.00330 + 6.93392i −0.147364 + 0.255241i
\(739\) 45.4776 1.67292 0.836461 0.548027i \(-0.184621\pi\)
0.836461 + 0.548027i \(0.184621\pi\)
\(740\) 9.92285 9.30253i 0.364771 0.341968i
\(741\) −0.764179 −0.0280728
\(742\) 4.97450 8.61609i 0.182620 0.316307i
\(743\) −19.0245 + 10.9838i −0.697941 + 0.402957i −0.806580 0.591125i \(-0.798684\pi\)
0.108639 + 0.994081i \(0.465351\pi\)
\(744\) 4.17456 + 7.23055i 0.153047 + 0.265085i
\(745\) −9.72161 34.6599i −0.356172 1.26984i
\(746\) 0.190388i 0.00697058i
\(747\) 12.4882 7.21006i 0.456919 0.263802i
\(748\) −10.5353 −0.385209
\(749\) −5.43568 + 9.41488i −0.198616 + 0.344012i
\(750\) 7.62439 8.17733i 0.278403 0.298594i
\(751\) 20.1290 0.734517 0.367258 0.930119i \(-0.380296\pi\)
0.367258 + 0.930119i \(0.380296\pi\)
\(752\) 4.03078 + 2.32717i 0.146987 + 0.0848631i
\(753\) −8.54760 14.8049i −0.311492 0.539520i
\(754\) 21.7752i 0.793004i
\(755\) −9.82930 + 10.0612i −0.357725 + 0.366165i
\(756\) −0.576424 + 0.998396i −0.0209643 + 0.0363113i
\(757\) −9.99404 + 17.3102i −0.363239 + 0.629149i −0.988492 0.151273i \(-0.951663\pi\)
0.625253 + 0.780422i \(0.284996\pi\)
\(758\) −15.9392 27.6075i −0.578938 1.00275i
\(759\) −0.878464 + 0.507181i −0.0318862 + 0.0184095i
\(760\) −0.322140 0.314714i −0.0116852 0.0114159i
\(761\) −3.62729 + 6.28264i −0.131489 + 0.227746i −0.924251 0.381786i \(-0.875309\pi\)
0.792762 + 0.609532i \(0.208642\pi\)
\(762\) −6.20405 + 10.7457i −0.224749 + 0.389277i
\(763\) −15.8243 −0.572877
\(764\) 3.81053 2.20001i 0.137860 0.0795935i
\(765\) 10.2800 10.5226i 0.371675 0.380445i
\(766\) 23.8982 0.863475
\(767\) 45.5287i 1.64394i
\(768\) −0.866025 0.500000i −0.0312500 0.0180422i
\(769\) 17.8233i 0.642724i −0.946956 0.321362i \(-0.895859\pi\)
0.946956 0.321362i \(-0.104141\pi\)
\(770\) −3.97477 + 1.11487i −0.143241 + 0.0401770i
\(771\) 5.71778i 0.205921i
\(772\) −0.576502 0.998530i −0.0207487 0.0359379i
\(773\) 40.0301 23.1114i 1.43978 0.831260i 0.441950 0.897040i \(-0.354287\pi\)
0.997834 + 0.0657804i \(0.0209537\pi\)
\(774\) 0.975731 + 1.69002i 0.0350719 + 0.0607464i
\(775\) −21.7101 35.6562i −0.779849 1.28081i
\(776\) 2.93176 0.105244