Properties

Label 1110.2.ba.a.529.8
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.8
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.a.619.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.03441 - 1.98242i) q^{5} +1.00000i q^{6} +(-3.17295 - 1.83190i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.03441 - 1.98242i) q^{5} +1.00000i q^{6} +(-3.17295 - 1.83190i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-2.23403 + 0.0953865i) q^{10} +4.74886 q^{11} +(0.866025 - 0.500000i) q^{12} +(-1.59526 + 2.76307i) q^{13} +3.66381i q^{14} +(-1.88704 + 1.19962i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.99127 - 5.18104i) q^{17} +(0.500000 - 0.866025i) q^{18} +(-4.87068 - 2.81209i) q^{19} +(1.19962 + 1.88704i) q^{20} +(1.83190 + 3.17295i) q^{21} +(-2.37443 - 4.11264i) q^{22} -2.02051 q^{23} +(-0.866025 - 0.500000i) q^{24} +(-2.86000 - 4.10127i) q^{25} +3.19052 q^{26} -1.00000i q^{27} +(3.17295 - 1.83190i) q^{28} -3.80747i q^{29} +(1.98242 + 1.03441i) q^{30} +6.38718i q^{31} +(-0.500000 + 0.866025i) q^{32} +(-4.11264 - 2.37443i) q^{33} +(-2.99127 + 5.18104i) q^{34} +(-6.91373 + 4.39519i) q^{35} -1.00000 q^{36} +(5.81681 - 1.77896i) q^{37} +5.62418i q^{38} +(2.76307 - 1.59526i) q^{39} +(1.03441 - 1.98242i) q^{40} +(0.175565 - 0.304088i) q^{41} +(1.83190 - 3.17295i) q^{42} +3.71753 q^{43} +(-2.37443 + 4.11264i) q^{44} +(2.23403 - 0.0953865i) q^{45} +(1.01025 + 1.74981i) q^{46} +10.1274i q^{47} +1.00000i q^{48} +(3.21173 + 5.56289i) q^{49} +(-2.12181 + 4.52746i) q^{50} +5.98255i q^{51} +(-1.59526 - 2.76307i) q^{52} +(-6.59610 + 3.80826i) q^{53} +(-0.866025 + 0.500000i) q^{54} +(4.91227 - 9.41425i) q^{55} +(-3.17295 - 1.83190i) q^{56} +(2.81209 + 4.87068i) q^{57} +(-3.29737 + 1.90374i) q^{58} +(-8.74371 + 5.04818i) q^{59} +(-0.0953865 - 2.23403i) q^{60} +(-13.3043 - 7.68125i) q^{61} +(5.53146 - 3.19359i) q^{62} -3.66381i q^{63} +1.00000 q^{64} +(3.82742 + 6.02062i) q^{65} +4.74886i q^{66} +(-0.485927 - 0.280550i) q^{67} +5.98255 q^{68} +(1.74981 + 1.01025i) q^{69} +(7.26321 + 3.78987i) q^{70} +(-6.31722 + 10.9417i) q^{71} +(0.500000 + 0.866025i) q^{72} +2.67482i q^{73} +(-4.44903 - 4.14803i) q^{74} +(0.426193 + 4.98180i) q^{75} +(4.87068 - 2.81209i) q^{76} +(-15.0679 - 8.69945i) q^{77} +(-2.76307 - 1.59526i) q^{78} +(1.65563 + 0.955880i) q^{79} +(-2.23403 + 0.0953865i) q^{80} +(-0.500000 + 0.866025i) q^{81} -0.351130 q^{82} +(-4.66513 + 2.69342i) q^{83} -3.66381 q^{84} +(-13.3652 + 0.570654i) q^{85} +(-1.85877 - 3.21948i) q^{86} +(-1.90374 + 3.29737i) q^{87} +4.74886 q^{88} +(10.8009 - 6.23589i) q^{89} +(-1.19962 - 1.88704i) q^{90} +(10.1233 - 5.84471i) q^{91} +(1.01025 - 1.74981i) q^{92} +(3.19359 - 5.53146i) q^{93} +(8.77054 - 5.06368i) q^{94} +(-10.6130 + 6.74689i) q^{95} +(0.866025 - 0.500000i) q^{96} -3.07545 q^{97} +(3.21173 - 5.56289i) q^{98} +(2.37443 + 4.11264i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} - 14q^{13} - 2q^{15} - 18q^{16} + 18q^{18} + 6q^{19} - 4q^{20} - 2q^{22} - 20q^{23} + 4q^{25} + 28q^{26} - 2q^{30} - 18q^{32} - 6q^{33} - 40q^{35} - 36q^{36} + 20q^{37} + 6q^{39} + 2q^{40} + 10q^{41} - 2q^{44} - 2q^{45} + 10q^{46} + 10q^{49} - 2q^{50} - 14q^{52} - 12q^{53} + 56q^{55} + 8q^{57} + 30q^{58} + 18q^{59} + 4q^{60} - 6q^{61} - 12q^{62} + 36q^{64} + 40q^{65} + 36q^{67} + 12q^{69} + 20q^{70} - 24q^{71} + 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} - 24q^{77} - 6q^{78} + 2q^{80} - 18q^{81} - 20q^{82} + 36q^{83} + 26q^{85} - 10q^{87} + 4q^{88} + 4q^{90} - 36q^{91} + 10q^{92} + 12q^{93} + 12q^{94} - 30q^{95} + 52q^{97} + 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.03441 1.98242i 0.462602 0.886566i
\(6\) 1.00000i 0.408248i
\(7\) −3.17295 1.83190i −1.19926 0.692394i −0.238871 0.971051i \(-0.576777\pi\)
−0.960391 + 0.278657i \(0.910111\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −2.23403 + 0.0953865i −0.706463 + 0.0301639i
\(11\) 4.74886 1.43184 0.715918 0.698184i \(-0.246008\pi\)
0.715918 + 0.698184i \(0.246008\pi\)
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) −1.59526 + 2.76307i −0.442445 + 0.766337i −0.997870 0.0652294i \(-0.979222\pi\)
0.555425 + 0.831566i \(0.312555\pi\)
\(14\) 3.66381i 0.979193i
\(15\) −1.88704 + 1.19962i −0.487231 + 0.309741i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.99127 5.18104i −0.725490 1.25659i −0.958772 0.284177i \(-0.908280\pi\)
0.233282 0.972409i \(-0.425054\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) −4.87068 2.81209i −1.11741 0.645137i −0.176672 0.984270i \(-0.556533\pi\)
−0.940739 + 0.339133i \(0.889866\pi\)
\(20\) 1.19962 + 1.88704i 0.268244 + 0.421954i
\(21\) 1.83190 + 3.17295i 0.399754 + 0.692394i
\(22\) −2.37443 4.11264i −0.506230 0.876817i
\(23\) −2.02051 −0.421305 −0.210652 0.977561i \(-0.567559\pi\)
−0.210652 + 0.977561i \(0.567559\pi\)
\(24\) −0.866025 0.500000i −0.176777 0.102062i
\(25\) −2.86000 4.10127i −0.571999 0.820254i
\(26\) 3.19052 0.625712
\(27\) 1.00000i 0.192450i
\(28\) 3.17295 1.83190i 0.599631 0.346197i
\(29\) 3.80747i 0.707030i −0.935429 0.353515i \(-0.884986\pi\)
0.935429 0.353515i \(-0.115014\pi\)
\(30\) 1.98242 + 1.03441i 0.361939 + 0.188856i
\(31\) 6.38718i 1.14717i 0.819146 + 0.573585i \(0.194448\pi\)
−0.819146 + 0.573585i \(0.805552\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −4.11264 2.37443i −0.715918 0.413335i
\(34\) −2.99127 + 5.18104i −0.512999 + 0.888540i
\(35\) −6.91373 + 4.39519i −1.16863 + 0.742922i
\(36\) −1.00000 −0.166667
\(37\) 5.81681 1.77896i 0.956278 0.292458i
\(38\) 5.62418i 0.912362i
\(39\) 2.76307 1.59526i 0.442445 0.255446i
\(40\) 1.03441 1.98242i 0.163554 0.313448i
\(41\) 0.175565 0.304088i 0.0274187 0.0474905i −0.851990 0.523557i \(-0.824605\pi\)
0.879409 + 0.476067i \(0.157938\pi\)
\(42\) 1.83190 3.17295i 0.282669 0.489597i
\(43\) 3.71753 0.566918 0.283459 0.958984i \(-0.408518\pi\)
0.283459 + 0.958984i \(0.408518\pi\)
\(44\) −2.37443 + 4.11264i −0.357959 + 0.620003i
\(45\) 2.23403 0.0953865i 0.333030 0.0142194i
\(46\) 1.01025 + 1.74981i 0.148954 + 0.257995i
\(47\) 10.1274i 1.47723i 0.674130 + 0.738613i \(0.264519\pi\)
−0.674130 + 0.738613i \(0.735481\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 3.21173 + 5.56289i 0.458819 + 0.794698i
\(50\) −2.12181 + 4.52746i −0.300069 + 0.640280i
\(51\) 5.98255i 0.837724i
\(52\) −1.59526 2.76307i −0.221222 0.383168i
\(53\) −6.59610 + 3.80826i −0.906044 + 0.523105i −0.879156 0.476534i \(-0.841893\pi\)
−0.0268878 + 0.999638i \(0.508560\pi\)
\(54\) −0.866025 + 0.500000i −0.117851 + 0.0680414i
\(55\) 4.91227 9.41425i 0.662370 1.26942i
\(56\) −3.17295 1.83190i −0.424003 0.244798i
\(57\) 2.81209 + 4.87068i 0.372470 + 0.645137i
\(58\) −3.29737 + 1.90374i −0.432966 + 0.249973i
\(59\) −8.74371 + 5.04818i −1.13833 + 0.657217i −0.946018 0.324116i \(-0.894933\pi\)
−0.192316 + 0.981333i \(0.561600\pi\)
\(60\) −0.0953865 2.23403i −0.0123143 0.288412i
\(61\) −13.3043 7.68125i −1.70344 0.983483i −0.942222 0.334990i \(-0.891267\pi\)
−0.761220 0.648493i \(-0.775399\pi\)
\(62\) 5.53146 3.19359i 0.702496 0.405586i
\(63\) 3.66381i 0.461596i
\(64\) 1.00000 0.125000
\(65\) 3.82742 + 6.02062i 0.474733 + 0.746766i
\(66\) 4.74886i 0.584545i
\(67\) −0.485927 0.280550i −0.0593654 0.0342746i 0.470024 0.882654i \(-0.344245\pi\)
−0.529389 + 0.848379i \(0.677579\pi\)
\(68\) 5.98255 0.725490
\(69\) 1.74981 + 1.01025i 0.210652 + 0.121620i
\(70\) 7.26321 + 3.78987i 0.868119 + 0.452977i
\(71\) −6.31722 + 10.9417i −0.749716 + 1.29855i 0.198243 + 0.980153i \(0.436477\pi\)
−0.947959 + 0.318393i \(0.896857\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 2.67482i 0.313064i 0.987673 + 0.156532i \(0.0500315\pi\)
−0.987673 + 0.156532i \(0.949969\pi\)
\(74\) −4.44903 4.14803i −0.517189 0.482199i
\(75\) 0.426193 + 4.98180i 0.0492126 + 0.575249i
\(76\) 4.87068 2.81209i 0.558705 0.322569i
\(77\) −15.0679 8.69945i −1.71715 0.991395i
\(78\) −2.76307 1.59526i −0.312856 0.180627i
\(79\) 1.65563 + 0.955880i 0.186273 + 0.107545i 0.590237 0.807230i \(-0.299034\pi\)
−0.403964 + 0.914775i \(0.632368\pi\)
\(80\) −2.23403 + 0.0953865i −0.249772 + 0.0106645i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −0.351130 −0.0387759
\(83\) −4.66513 + 2.69342i −0.512065 + 0.295641i −0.733682 0.679493i \(-0.762200\pi\)
0.221617 + 0.975134i \(0.428866\pi\)
\(84\) −3.66381 −0.399754
\(85\) −13.3652 + 0.570654i −1.44966 + 0.0618961i
\(86\) −1.85877 3.21948i −0.200436 0.347165i
\(87\) −1.90374 + 3.29737i −0.204102 + 0.353515i
\(88\) 4.74886 0.506230
\(89\) 10.8009 6.23589i 1.14489 0.661003i 0.197254 0.980352i \(-0.436798\pi\)
0.947637 + 0.319349i \(0.103464\pi\)
\(90\) −1.19962 1.88704i −0.126451 0.198911i
\(91\) 10.1233 5.84471i 1.06121 0.612692i
\(92\) 1.01025 1.74981i 0.105326 0.182430i
\(93\) 3.19359 5.53146i 0.331160 0.573585i
\(94\) 8.77054 5.06368i 0.904612 0.522278i
\(95\) −10.6130 + 6.74689i −1.08887 + 0.692217i
\(96\) 0.866025 0.500000i 0.0883883 0.0510310i
\(97\) −3.07545 −0.312265 −0.156133 0.987736i \(-0.549903\pi\)
−0.156133 + 0.987736i \(0.549903\pi\)
\(98\) 3.21173 5.56289i 0.324434 0.561936i
\(99\) 2.37443 + 4.11264i 0.238639 + 0.413335i
\(100\) 4.98180 0.426193i 0.498180 0.0426193i
\(101\) 3.88128 0.386202 0.193101 0.981179i \(-0.438146\pi\)
0.193101 + 0.981179i \(0.438146\pi\)
\(102\) 5.18104 2.99127i 0.512999 0.296180i
\(103\) −0.530142 −0.0522364 −0.0261182 0.999659i \(-0.508315\pi\)
−0.0261182 + 0.999659i \(0.508315\pi\)
\(104\) −1.59526 + 2.76307i −0.156428 + 0.270941i
\(105\) 8.18506 0.349478i 0.798780 0.0341055i
\(106\) 6.59610 + 3.80826i 0.640670 + 0.369891i
\(107\) −9.43365 5.44652i −0.911986 0.526535i −0.0309161 0.999522i \(-0.509842\pi\)
−0.881069 + 0.472987i \(0.843176\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) 4.73143 2.73169i 0.453188 0.261648i −0.255987 0.966680i \(-0.582401\pi\)
0.709176 + 0.705032i \(0.249067\pi\)
\(110\) −10.6091 + 0.452978i −1.01154 + 0.0431897i
\(111\) −5.92699 1.36779i −0.562565 0.129825i
\(112\) 3.66381i 0.346197i
\(113\) 5.15391 + 8.92683i 0.484839 + 0.839766i 0.999848 0.0174187i \(-0.00554482\pi\)
−0.515009 + 0.857185i \(0.672211\pi\)
\(114\) 2.81209 4.87068i 0.263376 0.456181i
\(115\) −2.09003 + 4.00550i −0.194896 + 0.373514i
\(116\) 3.29737 + 1.90374i 0.306153 + 0.176758i
\(117\) −3.19052 −0.294963
\(118\) 8.74371 + 5.04818i 0.804924 + 0.464723i
\(119\) 21.9189i 2.00930i
\(120\) −1.88704 + 1.19962i −0.172262 + 0.109510i
\(121\) 11.5517 1.05015
\(122\) 15.3625i 1.39085i
\(123\) −0.304088 + 0.175565i −0.0274187 + 0.0158302i
\(124\) −5.53146 3.19359i −0.496739 0.286793i
\(125\) −11.0889 + 1.42733i −0.991817 + 0.127664i
\(126\) −3.17295 + 1.83190i −0.282669 + 0.163199i
\(127\) −11.4248 + 6.59611i −1.01379 + 0.585310i −0.912298 0.409527i \(-0.865694\pi\)
−0.101488 + 0.994837i \(0.532360\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −3.21948 1.85877i −0.283459 0.163655i
\(130\) 3.30030 6.32495i 0.289455 0.554735i
\(131\) −9.50083 + 5.48531i −0.830092 + 0.479254i −0.853884 0.520463i \(-0.825759\pi\)
0.0237925 + 0.999717i \(0.492426\pi\)
\(132\) 4.11264 2.37443i 0.357959 0.206668i
\(133\) 10.3029 + 17.8452i 0.893378 + 1.54738i
\(134\) 0.561100i 0.0484717i
\(135\) −1.98242 1.03441i −0.170620 0.0890278i
\(136\) −2.99127 5.18104i −0.256500 0.444270i
\(137\) 6.13407i 0.524069i −0.965059 0.262034i \(-0.915607\pi\)
0.965059 0.262034i \(-0.0843934\pi\)
\(138\) 2.02051i 0.171997i
\(139\) −8.14444 14.1066i −0.690802 1.19650i −0.971575 0.236731i \(-0.923924\pi\)
0.280773 0.959774i \(-0.409409\pi\)
\(140\) −0.349478 8.18506i −0.0295363 0.691764i
\(141\) 5.06368 8.77054i 0.426438 0.738613i
\(142\) 12.6344 1.06026
\(143\) −7.57566 + 13.1214i −0.633508 + 1.09727i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −7.54802 3.93849i −0.626829 0.327073i
\(146\) 2.31646 1.33741i 0.191712 0.110685i
\(147\) 6.42347i 0.529799i
\(148\) −1.36779 + 5.92699i −0.112431 + 0.487195i
\(149\) 10.4656 0.857375 0.428688 0.903453i \(-0.358976\pi\)
0.428688 + 0.903453i \(0.358976\pi\)
\(150\) 4.10127 2.86000i 0.334867 0.233518i
\(151\) 1.36743 2.36845i 0.111280 0.192742i −0.805007 0.593266i \(-0.797838\pi\)
0.916286 + 0.400524i \(0.131172\pi\)
\(152\) −4.87068 2.81209i −0.395064 0.228090i
\(153\) 2.99127 5.18104i 0.241830 0.418862i
\(154\) 17.3989i 1.40204i
\(155\) 12.6621 + 6.60695i 1.01704 + 0.530683i
\(156\) 3.19052i 0.255446i
\(157\) 8.43062 4.86742i 0.672837 0.388462i −0.124314 0.992243i \(-0.539673\pi\)
0.797151 + 0.603781i \(0.206340\pi\)
\(158\) 1.91176i 0.152091i
\(159\) 7.61652 0.604029
\(160\) 1.19962 + 1.88704i 0.0948386 + 0.149183i
\(161\) 6.41096 + 3.70137i 0.505255 + 0.291709i
\(162\) 1.00000 0.0785674
\(163\) −4.42804 7.66959i −0.346831 0.600728i 0.638854 0.769328i \(-0.279409\pi\)
−0.985685 + 0.168600i \(0.946075\pi\)
\(164\) 0.175565 + 0.304088i 0.0137093 + 0.0237453i
\(165\) −8.96127 + 5.69685i −0.697634 + 0.443499i
\(166\) 4.66513 + 2.69342i 0.362085 + 0.209050i
\(167\) 0.842814 1.45980i 0.0652189 0.112962i −0.831572 0.555417i \(-0.812559\pi\)
0.896791 + 0.442454i \(0.145892\pi\)
\(168\) 1.83190 + 3.17295i 0.141334 + 0.244798i
\(169\) 1.41031 + 2.44272i 0.108485 + 0.187902i
\(170\) 7.17680 + 11.2893i 0.550436 + 0.865848i
\(171\) 5.62418i 0.430092i
\(172\) −1.85877 + 3.21948i −0.141730 + 0.245483i
\(173\) 2.61050 1.50717i 0.198473 0.114588i −0.397470 0.917615i \(-0.630112\pi\)
0.595943 + 0.803027i \(0.296778\pi\)
\(174\) 3.80747 0.288644
\(175\) 1.56149 + 18.2524i 0.118037 + 1.37975i
\(176\) −2.37443 4.11264i −0.178979 0.310002i
\(177\) 10.0964 0.758889
\(178\) −10.8009 6.23589i −0.809560 0.467400i
\(179\) 15.9241i 1.19022i −0.803643 0.595112i \(-0.797108\pi\)
0.803643 0.595112i \(-0.202892\pi\)
\(180\) −1.03441 + 1.98242i −0.0771003 + 0.147761i
\(181\) 7.78303 13.4806i 0.578508 1.00201i −0.417143 0.908841i \(-0.636968\pi\)
0.995651 0.0931645i \(-0.0296982\pi\)
\(182\) −10.1233 5.84471i −0.750392 0.433239i
\(183\) 7.68125 + 13.3043i 0.567814 + 0.983483i
\(184\) −2.02051 −0.148954
\(185\) 2.49032 13.3715i 0.183092 0.983096i
\(186\) −6.38718 −0.468330
\(187\) −14.2051 24.6040i −1.03878 1.79922i
\(188\) −8.77054 5.06368i −0.639658 0.369306i
\(189\) −1.83190 + 3.17295i −0.133251 + 0.230798i
\(190\) 11.1495 + 5.81770i 0.808869 + 0.422060i
\(191\) 24.7512i 1.79094i −0.445125 0.895469i \(-0.646841\pi\)
0.445125 0.895469i \(-0.353159\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 1.35323 0.0974077 0.0487038 0.998813i \(-0.484491\pi\)
0.0487038 + 0.998813i \(0.484491\pi\)
\(194\) 1.53773 + 2.66342i 0.110402 + 0.191223i
\(195\) −0.304332 7.12771i −0.0217937 0.510426i
\(196\) −6.42347 −0.458819
\(197\) 11.5053 6.64261i 0.819721 0.473266i −0.0305992 0.999532i \(-0.509742\pi\)
0.850320 + 0.526266i \(0.176408\pi\)
\(198\) 2.37443 4.11264i 0.168743 0.292272i
\(199\) 2.69300i 0.190902i −0.995434 0.0954509i \(-0.969571\pi\)
0.995434 0.0954509i \(-0.0304293\pi\)
\(200\) −2.86000 4.10127i −0.202232 0.290004i
\(201\) 0.280550 + 0.485927i 0.0197885 + 0.0342746i
\(202\) −1.94064 3.36129i −0.136543 0.236499i
\(203\) −6.97492 + 12.0809i −0.489544 + 0.847914i
\(204\) −5.18104 2.99127i −0.362745 0.209431i
\(205\) −0.421224 0.662595i −0.0294196 0.0462777i
\(206\) 0.265071 + 0.459116i 0.0184684 + 0.0319881i
\(207\) −1.01025 1.74981i −0.0702174 0.121620i
\(208\) 3.19052 0.221222
\(209\) −23.1302 13.3542i −1.59995 0.923731i
\(210\) −4.39519 6.91373i −0.303297 0.477093i
\(211\) 2.39058 0.164575 0.0822873 0.996609i \(-0.473777\pi\)
0.0822873 + 0.996609i \(0.473777\pi\)
\(212\) 7.61652i 0.523105i
\(213\) 10.9417 6.31722i 0.749716 0.432849i
\(214\) 10.8930i 0.744633i
\(215\) 3.84545 7.36972i 0.262257 0.502611i
\(216\) 1.00000i 0.0680414i
\(217\) 11.7007 20.2662i 0.794294 1.37576i
\(218\) −4.73143 2.73169i −0.320453 0.185013i
\(219\) 1.33741 2.31646i 0.0903739 0.156532i
\(220\) 5.69685 + 8.96127i 0.384081 + 0.604169i
\(221\) 19.0874 1.28396
\(222\) 1.77896 + 5.81681i 0.119396 + 0.390399i
\(223\) 8.66496i 0.580249i 0.956989 + 0.290124i \(0.0936966\pi\)
−0.956989 + 0.290124i \(0.906303\pi\)
\(224\) 3.17295 1.83190i 0.212002 0.122399i
\(225\) 2.12181 4.52746i 0.141454 0.301831i
\(226\) 5.15391 8.92683i 0.342833 0.593804i
\(227\) −6.39535 + 11.0771i −0.424474 + 0.735211i −0.996371 0.0851142i \(-0.972874\pi\)
0.571897 + 0.820326i \(0.306208\pi\)
\(228\) −5.62418 −0.372470
\(229\) −7.44705 + 12.8987i −0.492115 + 0.852368i −0.999959 0.00908146i \(-0.997109\pi\)
0.507844 + 0.861449i \(0.330443\pi\)
\(230\) 4.51388 0.192729i 0.297636 0.0127082i
\(231\) 8.69945 + 15.0679i 0.572382 + 0.991395i
\(232\) 3.80747i 0.249973i
\(233\) 25.2493i 1.65414i −0.562103 0.827068i \(-0.690007\pi\)
0.562103 0.827068i \(-0.309993\pi\)
\(234\) 1.59526 + 2.76307i 0.104285 + 0.180627i
\(235\) 20.0767 + 10.4758i 1.30966 + 0.683367i
\(236\) 10.0964i 0.657217i
\(237\) −0.955880 1.65563i −0.0620911 0.107545i
\(238\) 18.9823 10.9594i 1.23044 0.710395i
\(239\) 25.7697 14.8781i 1.66690 0.962386i 0.697608 0.716479i \(-0.254248\pi\)
0.969293 0.245907i \(-0.0790858\pi\)
\(240\) 1.98242 + 1.03441i 0.127965 + 0.0667708i
\(241\) −18.8752 10.8976i −1.21586 0.701978i −0.251831 0.967771i \(-0.581033\pi\)
−0.964030 + 0.265793i \(0.914366\pi\)
\(242\) −5.77585 10.0041i −0.371286 0.643086i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 13.3043 7.68125i 0.851721 0.491741i
\(245\) 14.3502 0.612712i 0.916803 0.0391448i
\(246\) 0.304088 + 0.175565i 0.0193879 + 0.0111936i
\(247\) 15.5400 8.97201i 0.988785 0.570875i
\(248\) 6.38718i 0.405586i
\(249\) 5.38683 0.341377
\(250\) 6.78053 + 8.88957i 0.428838 + 0.562226i
\(251\) 19.4874i 1.23003i 0.788514 + 0.615017i \(0.210851\pi\)
−0.788514 + 0.615017i \(0.789149\pi\)
\(252\) 3.17295 + 1.83190i 0.199877 + 0.115399i
\(253\) −9.59511 −0.603239
\(254\) 11.4248 + 6.59611i 0.716855 + 0.413877i
\(255\) 11.8599 + 6.18840i 0.742698 + 0.387533i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −15.5721 26.9717i −0.971363 1.68245i −0.691450 0.722425i \(-0.743028\pi\)
−0.279913 0.960025i \(-0.590306\pi\)
\(258\) 3.71753i 0.231443i
\(259\) −21.7153 5.01130i −1.34932 0.311387i
\(260\) −7.12771 + 0.304332i −0.442042 + 0.0188739i
\(261\) 3.29737 1.90374i 0.204102 0.117838i
\(262\) 9.50083 + 5.48531i 0.586963 + 0.338883i
\(263\) −1.99559 1.15216i −0.123053 0.0710449i 0.437210 0.899360i \(-0.355967\pi\)
−0.560263 + 0.828315i \(0.689300\pi\)
\(264\) −4.11264 2.37443i −0.253115 0.146136i
\(265\) 0.726513 + 17.0156i 0.0446294 + 1.04526i
\(266\) 10.3029 17.8452i 0.631714 1.09416i
\(267\) −12.4718 −0.763261
\(268\) 0.485927 0.280550i 0.0296827 0.0171373i
\(269\) 18.0246 1.09898 0.549491 0.835500i \(-0.314822\pi\)
0.549491 + 0.835500i \(0.314822\pi\)
\(270\) 0.0953865 + 2.23403i 0.00580504 + 0.135959i
\(271\) −14.7396 25.5297i −0.895365 1.55082i −0.833353 0.552742i \(-0.813582\pi\)
−0.0620119 0.998075i \(-0.519752\pi\)
\(272\) −2.99127 + 5.18104i −0.181373 + 0.314146i
\(273\) −11.6894 −0.707476
\(274\) −5.31226 + 3.06703i −0.320925 + 0.185286i
\(275\) −13.5817 19.4764i −0.819009 1.17447i
\(276\) −1.74981 + 1.01025i −0.105326 + 0.0608101i
\(277\) 1.97273 3.41686i 0.118530 0.205299i −0.800656 0.599125i \(-0.795515\pi\)
0.919185 + 0.393826i \(0.128849\pi\)
\(278\) −8.14444 + 14.1066i −0.488471 + 0.846057i
\(279\) −5.53146 + 3.19359i −0.331160 + 0.191195i
\(280\) −6.91373 + 4.39519i −0.413174 + 0.262663i
\(281\) −27.7360 + 16.0134i −1.65459 + 0.955279i −0.679442 + 0.733729i \(0.737778\pi\)
−0.975149 + 0.221549i \(0.928889\pi\)
\(282\) −10.1274 −0.603075
\(283\) 2.97713 5.15654i 0.176972 0.306524i −0.763870 0.645370i \(-0.776703\pi\)
0.940842 + 0.338846i \(0.110036\pi\)
\(284\) −6.31722 10.9417i −0.374858 0.649273i
\(285\) 12.5646 0.536471i 0.744262 0.0317778i
\(286\) 15.1513 0.895916
\(287\) −1.11412 + 0.643236i −0.0657643 + 0.0379690i
\(288\) −1.00000 −0.0589256
\(289\) −9.39542 + 16.2733i −0.552672 + 0.957256i
\(290\) 0.363182 + 8.50602i 0.0213268 + 0.499491i
\(291\) 2.66342 + 1.53773i 0.156133 + 0.0901432i
\(292\) −2.31646 1.33741i −0.135561 0.0782661i
\(293\) 14.2855 + 8.24771i 0.834565 + 0.481836i 0.855413 0.517946i \(-0.173303\pi\)
−0.0208481 + 0.999783i \(0.506637\pi\)
\(294\) −5.56289 + 3.21173i −0.324434 + 0.187312i
\(295\) 0.963057 + 22.5556i 0.0560714 + 1.31324i
\(296\) 5.81681 1.77896i 0.338095 0.103400i
\(297\) 4.74886i 0.275557i
\(298\) −5.23280 9.06348i −0.303128 0.525033i
\(299\) 3.22323 5.58279i 0.186404 0.322861i
\(300\) −4.52746 2.12181i −0.261393 0.122503i
\(301\) −11.7955 6.81016i −0.679883 0.392531i
\(302\) −2.73485 −0.157373
\(303\) −3.36129 1.94064i −0.193101 0.111487i
\(304\) 5.62418i 0.322569i
\(305\) −28.9896 + 18.4292i −1.65994 + 1.05525i
\(306\) −5.98255 −0.341999
\(307\) 9.90534i 0.565327i −0.959219 0.282664i \(-0.908782\pi\)
0.959219 0.282664i \(-0.0912180\pi\)
\(308\) 15.0679 8.69945i 0.858573 0.495697i
\(309\) 0.459116 + 0.265071i 0.0261182 + 0.0150794i
\(310\) −0.609251 14.2692i −0.0346031 0.810434i
\(311\) −11.4094 + 6.58725i −0.646971 + 0.373529i −0.787295 0.616577i \(-0.788519\pi\)
0.140324 + 0.990106i \(0.455186\pi\)
\(312\) 2.76307 1.59526i 0.156428 0.0903137i
\(313\) −13.1181 22.7212i −0.741478 1.28428i −0.951822 0.306650i \(-0.900792\pi\)
0.210345 0.977627i \(-0.432541\pi\)
\(314\) −8.43062 4.86742i −0.475767 0.274684i
\(315\) −7.26321 3.78987i −0.409235 0.213535i
\(316\) −1.65563 + 0.955880i −0.0931366 + 0.0537724i
\(317\) −16.8690 + 9.73933i −0.947458 + 0.547015i −0.892290 0.451462i \(-0.850903\pi\)
−0.0551676 + 0.998477i \(0.517569\pi\)
\(318\) −3.80826 6.59610i −0.213557 0.369891i
\(319\) 18.0812i 1.01235i
\(320\) 1.03441 1.98242i 0.0578252 0.110821i
\(321\) 5.44652 + 9.43365i 0.303995 + 0.526535i
\(322\) 7.40274i 0.412539i
\(323\) 33.6469i 1.87216i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 15.8945 1.35978i 0.881669 0.0754268i
\(326\) −4.42804 + 7.66959i −0.245246 + 0.424779i
\(327\) −5.46338 −0.302126
\(328\) 0.175565 0.304088i 0.00969396 0.0167904i
\(329\) 18.5523 32.1336i 1.02282 1.77158i
\(330\) 9.41425 + 4.91227i 0.518237 + 0.270411i
\(331\) 19.2273 11.1009i 1.05683 0.610161i 0.132276 0.991213i \(-0.457771\pi\)
0.924554 + 0.381052i \(0.124438\pi\)
\(332\) 5.38683i 0.295641i
\(333\) 4.44903 + 4.14803i 0.243805 + 0.227311i
\(334\) −1.68563 −0.0922334
\(335\) −1.05882 + 0.673109i −0.0578493 + 0.0367759i
\(336\) 1.83190 3.17295i 0.0999385 0.173099i
\(337\) −12.9418 7.47196i −0.704985 0.407024i 0.104216 0.994555i \(-0.466767\pi\)
−0.809202 + 0.587531i \(0.800100\pi\)
\(338\) 1.41031 2.44272i 0.0767105 0.132867i
\(339\) 10.3078i 0.559844i
\(340\) 6.18840 11.8599i 0.335613 0.643195i
\(341\) 30.3318i 1.64256i
\(342\) −4.87068 + 2.81209i −0.263376 + 0.152060i
\(343\) 2.11230i 0.114054i
\(344\) 3.71753 0.200436
\(345\) 3.81277 2.42385i 0.205272 0.130496i
\(346\) −2.61050 1.50717i −0.140341 0.0810261i
\(347\) −24.5558 −1.31823 −0.659113 0.752044i \(-0.729068\pi\)
−0.659113 + 0.752044i \(0.729068\pi\)
\(348\) −1.90374 3.29737i −0.102051 0.176758i
\(349\) −5.68801 9.85192i −0.304472 0.527361i 0.672671 0.739941i \(-0.265147\pi\)
−0.977144 + 0.212580i \(0.931813\pi\)
\(350\) 15.0263 10.4785i 0.803187 0.560098i
\(351\) 2.76307 + 1.59526i 0.147482 + 0.0851486i
\(352\) −2.37443 + 4.11264i −0.126558 + 0.219204i
\(353\) 3.82580 + 6.62648i 0.203627 + 0.352692i 0.949694 0.313178i \(-0.101394\pi\)
−0.746067 + 0.665870i \(0.768060\pi\)
\(354\) −5.04818 8.74371i −0.268308 0.464723i
\(355\) 15.1566 + 23.8416i 0.804427 + 1.26538i
\(356\) 12.4718i 0.661003i
\(357\) 10.9594 18.9823i 0.580035 1.00465i
\(358\) −13.7907 + 7.96205i −0.728860 + 0.420807i
\(359\) 15.6117 0.823952 0.411976 0.911195i \(-0.364839\pi\)
0.411976 + 0.911195i \(0.364839\pi\)
\(360\) 2.23403 0.0953865i 0.117744 0.00502731i
\(361\) 6.31568 + 10.9391i 0.332404 + 0.575741i
\(362\) −15.5661 −0.818134
\(363\) −10.0041 5.77585i −0.525077 0.303153i
\(364\) 11.6894i 0.612692i
\(365\) 5.30263 + 2.76686i 0.277552 + 0.144824i
\(366\) 7.68125 13.3043i 0.401505 0.695427i
\(367\) −15.2460 8.80231i −0.795837 0.459477i 0.0461764 0.998933i \(-0.485296\pi\)
−0.842013 + 0.539457i \(0.818630\pi\)
\(368\) 1.01025 + 1.74981i 0.0526631 + 0.0912151i
\(369\) 0.351130 0.0182791
\(370\) −12.8253 + 4.52909i −0.666754 + 0.235456i
\(371\) 27.9054 1.44878
\(372\) 3.19359 + 5.53146i 0.165580 + 0.286793i
\(373\) 27.8407 + 16.0738i 1.44154 + 0.832272i 0.997952 0.0639612i \(-0.0203734\pi\)
0.443584 + 0.896233i \(0.353707\pi\)
\(374\) −14.2051 + 24.6040i −0.734530 + 1.27224i
\(375\) 10.3169 + 4.30833i 0.532762 + 0.222481i
\(376\) 10.1274i 0.522278i
\(377\) 10.5203 + 6.07390i 0.541823 + 0.312822i
\(378\) 3.66381 0.188446
\(379\) 1.28515 + 2.22595i 0.0660138 + 0.114339i 0.897143 0.441740i \(-0.145639\pi\)
−0.831129 + 0.556079i \(0.812305\pi\)
\(380\) −0.536471 12.5646i −0.0275204 0.644550i
\(381\) 13.1922 0.675858
\(382\) −21.4352 + 12.3756i −1.09672 + 0.633192i
\(383\) 9.81643 17.0025i 0.501596 0.868790i −0.498402 0.866946i \(-0.666080\pi\)
0.999998 0.00184377i \(-0.000586889\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −32.8324 + 20.8721i −1.67329 + 1.06374i
\(386\) −0.676615 1.17193i −0.0344388 0.0596498i
\(387\) 1.85877 + 3.21948i 0.0944864 + 0.163655i
\(388\) 1.53773 2.66342i 0.0780663 0.135215i
\(389\) −18.7903 10.8486i −0.952707 0.550046i −0.0587865 0.998271i \(-0.518723\pi\)
−0.893921 + 0.448225i \(0.852056\pi\)
\(390\) −6.02062 + 3.82742i −0.304866 + 0.193809i
\(391\) 6.04388 + 10.4683i 0.305652 + 0.529405i
\(392\) 3.21173 + 5.56289i 0.162217 + 0.280968i
\(393\) 10.9706 0.553394
\(394\) −11.5053 6.64261i −0.579630 0.334650i
\(395\) 3.60756 2.29339i 0.181516 0.115393i
\(396\) −4.74886 −0.238639
\(397\) 14.8755i 0.746580i 0.927715 + 0.373290i \(0.121770\pi\)
−0.927715 + 0.373290i \(0.878230\pi\)
\(398\) −2.33221 + 1.34650i −0.116903 + 0.0674940i
\(399\) 20.6059i 1.03158i
\(400\) −2.12181 + 4.52746i −0.106090 + 0.226373i
\(401\) 9.50343i 0.474578i 0.971439 + 0.237289i \(0.0762589\pi\)
−0.971439 + 0.237289i \(0.923741\pi\)
\(402\) 0.280550 0.485927i 0.0139926 0.0242358i
\(403\) −17.6482 10.1892i −0.879119 0.507560i
\(404\) −1.94064 + 3.36129i −0.0965504 + 0.167230i
\(405\) 1.19962 + 1.88704i 0.0596098 + 0.0937676i
\(406\) 13.9498 0.692319
\(407\) 27.6232 8.44801i 1.36923 0.418752i
\(408\) 5.98255i 0.296180i
\(409\) 8.91611 5.14772i 0.440873 0.254538i −0.263095 0.964770i \(-0.584743\pi\)
0.703968 + 0.710232i \(0.251410\pi\)
\(410\) −0.363212 + 0.696088i −0.0179378 + 0.0343774i
\(411\) −3.06703 + 5.31226i −0.151286 + 0.262034i
\(412\) 0.265071 0.459116i 0.0130591 0.0226190i
\(413\) 36.9911 1.82021
\(414\) −1.01025 + 1.74981i −0.0496512 + 0.0859984i
\(415\) 0.513831 + 12.0344i 0.0252230 + 0.590743i
\(416\) −1.59526 2.76307i −0.0782139 0.135471i
\(417\) 16.2889i 0.797670i
\(418\) 26.7084i 1.30635i
\(419\) −1.35626 2.34912i −0.0662578 0.114762i 0.830993 0.556282i \(-0.187773\pi\)
−0.897251 + 0.441520i \(0.854439\pi\)
\(420\) −3.78987 + 7.26321i −0.184927 + 0.354408i
\(421\) 39.3859i 1.91955i −0.280770 0.959775i \(-0.590590\pi\)
0.280770 0.959775i \(-0.409410\pi\)
\(422\) −1.19529 2.07031i −0.0581859 0.100781i
\(423\) −8.77054 + 5.06368i −0.426438 + 0.246204i
\(424\) −6.59610 + 3.80826i −0.320335 + 0.184945i
\(425\) −12.6938 + 27.0858i −0.615740 + 1.31385i
\(426\) −10.9417 6.31722i −0.530129 0.306070i
\(427\) 28.1426 + 48.7444i 1.36192 + 2.35891i
\(428\) 9.43365 5.44652i 0.455993 0.263268i
\(429\) 13.1214 7.57566i 0.633508 0.365756i
\(430\) −8.30509 + 0.354602i −0.400507 + 0.0171004i
\(431\) 19.7864 + 11.4237i 0.953079 + 0.550260i 0.894036 0.447995i \(-0.147862\pi\)
0.0590430 + 0.998255i \(0.481195\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 11.6308i 0.558941i 0.960154 + 0.279471i \(0.0901589\pi\)
−0.960154 + 0.279471i \(0.909841\pi\)
\(434\) −23.4014 −1.12330
\(435\) 4.56754 + 7.18484i 0.218997 + 0.344487i
\(436\) 5.46338i 0.261648i
\(437\) 9.84124 + 5.68184i 0.470770 + 0.271799i
\(438\) −2.67482 −0.127808
\(439\) 16.2743 + 9.39600i 0.776732 + 0.448447i 0.835271 0.549839i \(-0.185311\pi\)
−0.0585387 + 0.998285i \(0.518644\pi\)
\(440\) 4.91227 9.41425i 0.234183 0.448807i
\(441\) −3.21173 + 5.56289i −0.152940 + 0.264899i
\(442\) −9.54370 16.5302i −0.453948 0.786260i
\(443\) 6.14048i 0.291743i −0.989304 0.145872i \(-0.953401\pi\)
0.989304 0.145872i \(-0.0465986\pi\)
\(444\) 4.14803 4.44903i 0.196857 0.211141i
\(445\) −1.18964 27.8624i −0.0563943 1.32080i
\(446\) 7.50407 4.33248i 0.355328 0.205149i
\(447\) −9.06348 5.23280i −0.428688 0.247503i
\(448\) −3.17295 1.83190i −0.149908 0.0865493i
\(449\) −9.26368 5.34839i −0.437180 0.252406i 0.265221 0.964188i \(-0.414555\pi\)
−0.702401 + 0.711782i \(0.747889\pi\)
\(450\) −4.98180 + 0.426193i −0.234844 + 0.0200909i
\(451\) 0.833735 1.44407i 0.0392590 0.0679986i
\(452\) −10.3078 −0.484839
\(453\) −2.36845 + 1.36743i −0.111280 + 0.0642473i
\(454\) 12.7907 0.600298
\(455\) −1.11501 26.1146i −0.0522727 1.22427i
\(456\) 2.81209 + 4.87068i 0.131688 + 0.228090i
\(457\) 18.8922 32.7222i 0.883738 1.53068i 0.0365837 0.999331i \(-0.488352\pi\)
0.847154 0.531348i \(-0.178314\pi\)
\(458\) 14.8941 0.695955
\(459\) −5.18104 + 2.99127i −0.241830 + 0.139621i
\(460\) −2.42385 3.81277i −0.113012 0.177771i
\(461\) −30.1115 + 17.3849i −1.40243 + 0.809693i −0.994642 0.103383i \(-0.967033\pi\)
−0.407788 + 0.913076i \(0.633700\pi\)
\(462\) 8.69945 15.0679i 0.404735 0.701022i
\(463\) 13.7935 23.8911i 0.641039 1.11031i −0.344162 0.938910i \(-0.611837\pi\)
0.985201 0.171402i \(-0.0548297\pi\)
\(464\) −3.29737 + 1.90374i −0.153077 + 0.0883788i
\(465\) −7.66221 12.0528i −0.355326 0.558937i
\(466\) −21.8665 + 12.6246i −1.01295 + 0.584825i
\(467\) 6.06099 0.280469 0.140235 0.990118i \(-0.455214\pi\)
0.140235 + 0.990118i \(0.455214\pi\)
\(468\) 1.59526 2.76307i 0.0737408 0.127723i
\(469\) 1.02788 + 1.78034i 0.0474631 + 0.0822085i
\(470\) −0.966013 22.6248i −0.0445588 1.04361i
\(471\) −9.73484 −0.448558
\(472\) −8.74371 + 5.04818i −0.402462 + 0.232361i
\(473\) 17.6540 0.811734
\(474\) −0.955880 + 1.65563i −0.0439050 + 0.0760457i
\(475\) 2.39699 + 28.0185i 0.109981 + 1.28558i
\(476\) −18.9823 10.9594i −0.870053 0.502325i
\(477\) −6.59610 3.80826i −0.302015 0.174368i
\(478\) −25.7697 14.8781i −1.17868 0.680510i
\(479\) −23.5812 + 13.6146i −1.07745 + 0.622068i −0.930208 0.367032i \(-0.880374\pi\)
−0.147245 + 0.989100i \(0.547040\pi\)
\(480\) −0.0953865 2.23403i −0.00435378 0.101969i
\(481\) −4.36394 + 18.9101i −0.198979 + 0.862228i
\(482\) 21.7953i 0.992747i
\(483\) −3.70137 6.41096i −0.168418 0.291709i
\(484\) −5.77585 + 10.0041i −0.262539 + 0.454730i
\(485\) −3.18128 + 6.09685i −0.144454 + 0.276844i
\(486\) −0.866025 0.500000i −0.0392837 0.0226805i
\(487\) −16.4926 −0.747350 −0.373675 0.927560i \(-0.621902\pi\)
−0.373675 + 0.927560i \(0.621902\pi\)
\(488\) −13.3043 7.68125i −0.602258 0.347714i
\(489\) 8.85607i 0.400486i
\(490\) −7.70574 12.1213i −0.348110 0.547585i
\(491\) 18.5050 0.835119 0.417559 0.908650i \(-0.362886\pi\)
0.417559 + 0.908650i \(0.362886\pi\)
\(492\) 0.351130i 0.0158302i
\(493\) −19.7267 + 11.3892i −0.888444 + 0.512943i
\(494\) −15.5400 8.97201i −0.699177 0.403670i
\(495\) 10.6091 0.452978i 0.476844 0.0203598i
\(496\) 5.53146 3.19359i 0.248370 0.143396i
\(497\) 40.0884 23.1451i 1.79821 1.03820i
\(498\) −2.69342 4.66513i −0.120695 0.209050i
\(499\) 22.8459 + 13.1901i 1.02273 + 0.590471i 0.914892 0.403698i \(-0.132275\pi\)
0.107833 + 0.994169i \(0.465609\pi\)
\(500\) 4.30833 10.3169i 0.192674 0.461386i
\(501\) −1.45980 + 0.842814i −0.0652189 + 0.0376541i
\(502\) 16.8766 9.74370i 0.753239 0.434883i
\(503\) 17.0375 + 29.5098i 0.759665 + 1.31578i 0.943021 + 0.332732i \(0.107971\pi\)
−0.183356 + 0.983047i \(0.558696\pi\)
\(504\) 3.66381i 0.163199i
\(505\) 4.01483 7.69433i 0.178658 0.342393i
\(506\) 4.79755 + 8.30961i 0.213277 + 0.369407i
\(507\) 2.82061i 0.125268i
\(508\) 13.1922i 0.585310i
\(509\) 1.88097 + 3.25794i 0.0833727 + 0.144406i 0.904697 0.426056i \(-0.140097\pi\)
−0.821324 + 0.570462i \(0.806764\pi\)
\(510\) −0.570654 13.3652i −0.0252690 0.591821i
\(511\) 4.90001 8.48707i 0.216764 0.375446i
\(512\) 1.00000 0.0441942
\(513\) −2.81209 + 4.87068i −0.124157 + 0.215046i
\(514\) −15.5721 + 26.9717i −0.686857 + 1.18967i
\(515\) −0.548384 + 1.05096i −0.0241647 + 0.0463110i
\(516\) 3.21948 1.85877i 0.141730 0.0818276i
\(517\) 48.0934i 2.11515i
\(518\) 6.51774 + 21.3117i 0.286373 + 0.936381i
\(519\) −3.01434 −0.132315
\(520\) 3.82742 + 6.02062i 0.167843 + 0.264021i
\(521\) −16.2245 + 28.1016i −0.710807 + 1.23115i 0.253748 + 0.967270i \(0.418337\pi\)
−0.964555 + 0.263883i \(0.914997\pi\)
\(522\) −3.29737 1.90374i −0.144322 0.0833243i
\(523\) 14.1760 24.5535i 0.619871 1.07365i −0.369637 0.929176i \(-0.620518\pi\)
0.989509 0.144473i \(-0.0461486\pi\)
\(524\) 10.9706i 0.479254i
\(525\) 7.77389 16.5877i 0.339280 0.723949i
\(526\) 2.30431i 0.100473i
\(527\) 33.0922 19.1058i 1.44152 0.832261i
\(528\) 4.74886i 0.206668i
\(529\) −18.9176 −0.822502
\(530\) 14.3726 9.13696i 0.624308 0.396884i
\(531\) −8.74371 5.04818i −0.379445 0.219072i
\(532\) −20.6059 −0.893378
\(533\) 0.560143 + 0.970197i 0.0242625 + 0.0420239i
\(534\) 6.23589 + 10.8009i 0.269853 + 0.467400i
\(535\) −20.5556 + 13.0676i −0.888694 + 0.564959i
\(536\) −0.485927 0.280550i −0.0209888 0.0121179i
\(537\) −7.96205 + 13.7907i −0.343588 + 0.595112i
\(538\) −9.01232 15.6098i −0.388549 0.672986i
\(539\) 15.2521 + 26.4174i 0.656954 + 1.13788i
\(540\) 1.88704 1.19962i 0.0812051 0.0516236i
\(541\) 16.5176i 0.710146i 0.934839 + 0.355073i \(0.115544\pi\)
−0.934839 + 0.355073i \(0.884456\pi\)
\(542\) −14.7396 + 25.5297i −0.633118 + 1.09659i
\(543\) −13.4806 + 7.78303i −0.578508 + 0.334002i
\(544\) 5.98255 0.256500
\(545\) −0.521133 12.2054i −0.0223229 0.522821i
\(546\) 5.84471 + 10.1233i 0.250131 + 0.433239i
\(547\) −29.1609 −1.24683 −0.623415 0.781891i \(-0.714255\pi\)
−0.623415 + 0.781891i \(0.714255\pi\)
\(548\) 5.31226 + 3.06703i 0.226928 + 0.131017i
\(549\) 15.3625i 0.655655i
\(550\) −10.0762 + 21.5003i −0.429649 + 0.916776i
\(551\) −10.7070 + 18.5450i −0.456132 + 0.790043i
\(552\) 1.74981 + 1.01025i 0.0744768 + 0.0429992i
\(553\) −3.50216 6.06591i −0.148927 0.257949i
\(554\) −3.94545 −0.167626
\(555\) −8.84246 + 10.3349i −0.375341 + 0.438694i
\(556\) 16.2889 0.690802
\(557\) −5.11442 8.85844i −0.216705 0.375344i 0.737094 0.675791i \(-0.236198\pi\)
−0.953799 + 0.300447i \(0.902864\pi\)
\(558\) 5.53146 + 3.19359i 0.234165 + 0.135195i
\(559\) −5.93042 + 10.2718i −0.250830 + 0.434450i
\(560\) 7.26321 + 3.78987i 0.306927 + 0.160151i
\(561\) 28.4103i 1.19948i
\(562\) 27.7360 + 16.0134i 1.16997 + 0.675484i
\(563\) 25.0290 1.05484 0.527422 0.849603i \(-0.323159\pi\)
0.527422 + 0.849603i \(0.323159\pi\)
\(564\) 5.06368 + 8.77054i 0.213219 + 0.369306i
\(565\) 23.0280 0.983227i 0.968796 0.0413647i
\(566\) −5.95426 −0.250276
\(567\) 3.17295 1.83190i 0.133251 0.0769327i
\(568\) −6.31722 + 10.9417i −0.265065 + 0.459105i
\(569\) 2.35883i 0.0988874i 0.998777 + 0.0494437i \(0.0157448\pi\)
−0.998777 + 0.0494437i \(0.984255\pi\)
\(570\) −6.74689 10.6130i −0.282596 0.444531i
\(571\) −20.9518 36.2896i −0.876807 1.51867i −0.854825 0.518916i \(-0.826336\pi\)
−0.0219820 0.999758i \(-0.506998\pi\)
\(572\) −7.57566 13.1214i −0.316754 0.548634i
\(573\) −12.3756 + 21.4352i −0.516999 + 0.895469i
\(574\) 1.11412 + 0.643236i 0.0465024 + 0.0268482i
\(575\) 5.77864 + 8.28664i 0.240986 + 0.345577i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −19.2881 33.4079i −0.802973 1.39079i −0.917651 0.397387i \(-0.869917\pi\)
0.114678 0.993403i \(-0.463416\pi\)
\(578\) 18.7908 0.781596
\(579\) −1.17193 0.676615i −0.0487038 0.0281192i
\(580\) 7.18484 4.56754i 0.298334 0.189657i
\(581\) 19.7363 0.818800
\(582\) 3.07545i 0.127482i
\(583\) −31.3240 + 18.0849i −1.29731 + 0.749000i
\(584\) 2.67482i 0.110685i
\(585\) −3.30030 + 6.32495i −0.136451 + 0.261504i
\(586\) 16.4954i 0.681420i
\(587\) −10.8364 + 18.7692i −0.447266 + 0.774688i −0.998207 0.0598566i \(-0.980936\pi\)
0.550941 + 0.834544i \(0.314269\pi\)
\(588\) 5.56289 + 3.21173i 0.229410 + 0.132450i
\(589\) 17.9613 31.1099i 0.740083 1.28186i
\(590\) 19.0522 12.1118i 0.784367 0.498636i
\(591\) −13.2852 −0.546481
\(592\) −4.44903 4.14803i −0.182854 0.170483i
\(593\) 13.6002i 0.558492i −0.960220 0.279246i \(-0.909916\pi\)
0.960220 0.279246i \(-0.0900844\pi\)
\(594\) −4.11264 + 2.37443i −0.168743 + 0.0974241i
\(595\) 43.4525 + 22.6731i 1.78138 + 0.929506i
\(596\) −5.23280 + 9.06348i −0.214344 + 0.371254i
\(597\) −1.34650 + 2.33221i −0.0551086 + 0.0954509i
\(598\) −6.44646 −0.263615
\(599\) 11.8155 20.4651i 0.482768 0.836179i −0.517036 0.855964i \(-0.672965\pi\)
0.999804 + 0.0197844i \(0.00629798\pi\)
\(600\) 0.426193 + 4.98180i 0.0173993 + 0.203381i
\(601\) −7.39428 12.8073i −0.301619 0.522420i 0.674884 0.737924i \(-0.264194\pi\)
−0.976503 + 0.215504i \(0.930860\pi\)
\(602\) 13.6203i 0.555122i
\(603\) 0.561100i 0.0228498i
\(604\) 1.36743 + 2.36845i 0.0556398 + 0.0963710i
\(605\) 11.9492 22.9003i 0.485803 0.931031i
\(606\) 3.88128i 0.157666i
\(607\) 19.0358 + 32.9710i 0.772639 + 1.33825i 0.936112 + 0.351703i \(0.114397\pi\)
−0.163472 + 0.986548i \(0.552269\pi\)
\(608\) 4.87068 2.81209i 0.197532 0.114045i
\(609\) 12.0809 6.97492i 0.489544 0.282638i
\(610\) 30.4549 + 15.8911i 1.23308 + 0.643412i
\(611\) −27.9825 16.1557i −1.13205 0.653591i
\(612\) 2.99127 + 5.18104i 0.120915 + 0.209431i
\(613\) 41.1280 23.7453i 1.66114 0.959062i 0.688974 0.724786i \(-0.258061\pi\)
0.972170 0.234276i \(-0.0752720\pi\)
\(614\) −8.57827 + 4.95267i −0.346191 + 0.199873i
\(615\) 0.0334931 + 0.784436i 0.00135057 + 0.0316315i
\(616\) −15.0679 8.69945i −0.607103 0.350511i
\(617\) 0.872159 0.503541i 0.0351118 0.0202718i −0.482341 0.875983i \(-0.660214\pi\)
0.517453 + 0.855712i \(0.326880\pi\)
\(618\) 0.530142i 0.0213254i
\(619\) 32.2683 1.29697 0.648486 0.761226i \(-0.275402\pi\)
0.648486 + 0.761226i \(0.275402\pi\)
\(620\) −12.0528 + 7.66221i −0.484053 + 0.307722i
\(621\) 2.02051i 0.0810801i
\(622\) 11.4094 + 6.58725i 0.457477 + 0.264125i
\(623\) −45.6942 −1.83070
\(624\) −2.76307 1.59526i −0.110611 0.0638614i
\(625\) −8.64085 + 23.4592i −0.345634 + 0.938369i
\(626\) −13.1181 + 22.7212i −0.524304 + 0.908121i
\(627\) 13.3542 + 23.1302i 0.533316 + 0.923731i
\(628\) 9.73484i 0.388462i
\(629\) −26.6165 24.8158i −1.06127 0.989470i
\(630\) 0.349478 + 8.18506i 0.0139235 + 0.326101i
\(631\) −40.4578 + 23.3583i −1.61060 + 0.929879i −0.621367 + 0.783520i \(0.713422\pi\)
−0.989231 + 0.146359i \(0.953244\pi\)
\(632\) 1.65563 + 0.955880i 0.0658575 + 0.0380229i
\(633\) −2.07031 1.19529i −0.0822873 0.0475086i
\(634\) 16.8690 + 9.73933i 0.669954 + 0.386798i
\(635\) 1.25836 + 29.4718i 0.0499365 + 1.16955i
\(636\) −3.80826 + 6.59610i −0.151007 + 0.261552i
\(637\) −20.4942 −0.812009
\(638\) −15.6588 + 9.04059i −0.619936 + 0.357920i
\(639\) −12.6344 −0.499811
\(640\) −2.23403 + 0.0953865i −0.0883079 + 0.00377048i
\(641\) 0.387440 + 0.671065i 0.0153029 + 0.0265055i 0.873575 0.486689i \(-0.161795\pi\)
−0.858273 + 0.513194i \(0.828462\pi\)
\(642\) 5.44652 9.43365i 0.214957 0.372317i
\(643\) 2.59452 0.102318 0.0511590 0.998691i \(-0.483708\pi\)
0.0511590 + 0.998691i \(0.483708\pi\)
\(644\) −6.41096 + 3.70137i −0.252627 + 0.145854i
\(645\) −7.01512 + 4.45964i −0.276220 + 0.175598i
\(646\) 29.1391 16.8234i 1.14646 0.661910i
\(647\) 22.2693 38.5716i 0.875497 1.51641i 0.0192646 0.999814i \(-0.493868\pi\)
0.856232 0.516591i \(-0.172799\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −41.5227 + 23.9731i −1.62991 + 0.941028i
\(650\) −9.12486 13.0852i −0.357906 0.513243i
\(651\) −20.2662 + 11.7007i −0.794294 + 0.458586i
\(652\) 8.85607 0.346831
\(653\) −6.19754 + 10.7345i −0.242529 + 0.420072i −0.961434 0.275036i \(-0.911310\pi\)
0.718905 + 0.695108i \(0.244643\pi\)
\(654\) 2.73169 + 4.73143i 0.106818 + 0.185013i
\(655\) 1.04645 + 24.5087i 0.0408881 + 0.957635i
\(656\) −0.351130 −0.0137093
\(657\) −2.31646 + 1.33741i −0.0903739 + 0.0521774i
\(658\) −37.1046 −1.44649
\(659\) −11.5002 + 19.9190i −0.447985 + 0.775932i −0.998255 0.0590544i \(-0.981191\pi\)
0.550270 + 0.834987i \(0.314525\pi\)
\(660\) −0.452978 10.6091i −0.0176321 0.412959i
\(661\) −16.4180 9.47891i −0.638585 0.368687i 0.145484 0.989361i \(-0.453526\pi\)
−0.784069 + 0.620674i \(0.786859\pi\)
\(662\) −19.2273 11.1009i −0.747292 0.431449i
\(663\) −16.5302 9.54370i −0.641979 0.370647i
\(664\) −4.66513 + 2.69342i −0.181042 + 0.104525i
\(665\) 46.0342 1.96552i 1.78513 0.0762197i
\(666\) 1.36779 5.92699i 0.0530006 0.229666i
\(667\) 7.69302i 0.297875i
\(668\) 0.842814 + 1.45980i 0.0326094 + 0.0564812i
\(669\) 4.33248 7.50407i 0.167503 0.290124i
\(670\) 1.11234 + 0.580407i 0.0429733 + 0.0224231i
\(671\) −63.1803 36.4772i −2.43905 1.40819i
\(672\) −3.66381 −0.141334
\(673\) −9.11651 5.26342i −0.351416 0.202890i 0.313893 0.949458i \(-0.398367\pi\)
−0.665309 + 0.746568i \(0.731700\pi\)
\(674\) 14.9439i 0.575618i
\(675\) −4.10127 + 2.86000i −0.157858 + 0.110081i
\(676\) −2.82061 −0.108485
\(677\) 29.3822i 1.12925i −0.825348 0.564625i \(-0.809021\pi\)
0.825348 0.564625i \(-0.190979\pi\)
\(678\) −8.92683 + 5.15391i −0.342833 + 0.197935i
\(679\) 9.75826 + 5.63393i 0.374488 + 0.216210i
\(680\) −13.3652 + 0.570654i −0.512532 + 0.0218836i
\(681\) 11.0771 6.39535i 0.424474 0.245070i
\(682\) 26.2681 15.1659i 1.00586 0.580733i
\(683\) 15.2768 + 26.4602i 0.584551 + 1.01247i 0.994931 + 0.100557i \(0.0320626\pi\)
−0.410380 + 0.911914i \(0.634604\pi\)
\(684\) 4.87068 + 2.81209i 0.186235 + 0.107523i
\(685\) −12.1603 6.34514i −0.464622 0.242435i
\(686\) 1.82931 1.05615i 0.0698433 0.0403240i
\(687\) 12.8987 7.44705i 0.492115 0.284123i
\(688\) −1.85877 3.21948i −0.0708648 0.122741i
\(689\) 24.3006i 0.925780i
\(690\) −4.00550 2.09003i −0.152487 0.0795661i
\(691\) −15.2286 26.3766i −0.579322 1.00341i −0.995557 0.0941578i \(-0.969984\pi\)
0.416236 0.909257i \(-0.363349\pi\)
\(692\) 3.01434i 0.114588i
\(693\) 17.3989i 0.660930i
\(694\) 12.2779 + 21.2660i 0.466063 + 0.807246i
\(695\) −36.3899 + 1.55374i −1.38035 + 0.0589367i
\(696\) −1.90374 + 3.29737i −0.0721610 + 0.124986i
\(697\) −2.10065 −0.0795679
\(698\) −5.68801 + 9.85192i −0.215294 + 0.372901i
\(699\) −12.6246 + 21.8665i −0.477508 + 0.827068i
\(700\) −16.5877 7.77389i −0.626958 0.293825i
\(701\) 33.3613 19.2611i 1.26004 0.727483i 0.286956 0.957944i \(-0.407357\pi\)
0.973082 + 0.230461i \(0.0740233\pi\)
\(702\) 3.19052i 0.120418i
\(703\) −33.3344 7.69267i −1.25723 0.290135i
\(704\) 4.74886 0.178979
\(705\) −12.1490 19.1107i −0.457558 0.719750i
\(706\) 3.82580 6.62648i 0.143986 0.249391i
\(707\) −12.3151 7.11012i −0.463157 0.267404i
\(708\) −5.04818 + 8.74371i −0.189722 + 0.328609i
\(709\) 38.2108i 1.43504i 0.696540 + 0.717518i \(0.254722\pi\)
−0.696540 + 0.717518i \(0.745278\pi\)
\(710\) 13.0692 25.0468i 0.490478 0.939989i
\(711\) 1.91176i 0.0716966i
\(712\) 10.8009 6.23589i 0.404780 0.233700i
\(713\) 12.9053i 0.483308i
\(714\) −21.9189 −0.820293
\(715\) 18.1759 + 28.5911i 0.679739 + 1.06925i
\(716\) 13.7907 + 7.96205i 0.515382 + 0.297556i
\(717\) −29.7563 −1.11127
\(718\) −7.80583 13.5201i −0.291311 0.504565i
\(719\) 13.7643 + 23.8404i 0.513321 + 0.889099i 0.999881 + 0.0154510i \(0.00491840\pi\)
−0.486559 + 0.873648i \(0.661748\pi\)
\(720\) −1.19962 1.88704i −0.0447073 0.0703257i
\(721\) 1.68211 + 0.971168i 0.0626451 + 0.0361682i
\(722\) 6.31568 10.9391i 0.235045 0.407110i
\(723\) 10.8976 + 18.8752i 0.405287 + 0.701978i
\(724\) 7.78303 + 13.4806i 0.289254 + 0.501003i
\(725\) −15.6155 + 10.8894i −0.579945 + 0.404421i
\(726\) 11.5517i 0.428724i
\(727\) −21.7742 + 37.7140i −0.807560 + 1.39874i 0.106988 + 0.994260i \(0.465879\pi\)
−0.914549 + 0.404476i \(0.867454\pi\)
\(728\) 10.1233 5.84471i 0.375196 0.216619i
\(729\) −1.00000 −0.0370370
\(730\) −0.255142 5.97564i −0.00944323 0.221168i
\(731\) −11.1202 19.2607i −0.411294 0.712382i
\(732\) −15.3625 −0.567814
\(733\) 12.3778 + 7.14631i 0.457183 + 0.263955i 0.710859 0.703334i \(-0.248306\pi\)
−0.253676 + 0.967289i \(0.581640\pi\)
\(734\) 17.6046i 0.649798i
\(735\) −12.7340 6.64449i −0.469702 0.245086i
\(736\) 1.01025 1.74981i 0.0372384 0.0644988i
\(737\) −2.30760 1.33229i −0.0850016 0.0490757i
\(738\) −0.175565 0.304088i −0.00646264 0.0111936i
\(739\) −42.6664 −1.56951 −0.784755 0.619807i \(-0.787211\pi\)
−0.784755 + 0.619807i \(0.787211\pi\)
\(740\) 10.3349 + 8.84246i 0.379920 + 0.325055i
\(741\) −17.9440 −0.659190
\(742\) −13.9527 24.1668i −0.512221 0.887192i
\(743\) 21.8263 + 12.6014i 0.800728 + 0.462301i 0.843726 0.536774i \(-0.180357\pi\)
−0.0429974 + 0.999075i \(0.513691\pi\)
\(744\) 3.19359 5.53146i 0.117083 0.202793i
\(745\) 10.8257 20.7472i 0.396623 0.760120i
\(746\) 32.1477i 1.17701i
\(747\) −4.66513 2.69342i −0.170688 0.0985469i
\(748\) 28.4103 1.03878
\(749\) 19.9550 + 34.5631i 0.729140 + 1.26291i
\(750\) −1.42733 11.0889i −0.0521186 0.404908i
\(751\) −5.81907 −0.212341 −0.106170 0.994348i \(-0.533859\pi\)
−0.106170 + 0.994348i \(0.533859\pi\)
\(752\) 8.77054 5.06368i 0.319829 0.184653i
\(753\) 9.74370 16.8766i 0.355080 0.615017i
\(754\) 12.1478i 0.442397i
\(755\) −3.28080 5.16077i −0.119400 0.187820i
\(756\) −1.83190 3.17295i −0.0666257 0.115399i
\(757\) 18.4252 + 31.9134i 0.669675 + 1.15991i 0.977995 + 0.208628i \(0.0668998\pi\)
−0.308320 + 0.951283i \(0.599767\pi\)
\(758\) 1.28515 2.22595i 0.0466788 0.0808501i
\(759\) 8.30961 + 4.79755i 0.301620 + 0.174140i
\(760\) −10.6130 + 6.74689i −0.384975 + 0.244736i
\(761\) −0.855195 1.48124i −0.0310008 0.0536950i 0.850109 0.526607i \(-0.176536\pi\)
−0.881110 + 0.472912i \(0.843203\pi\)
\(762\) −6.59611 11.4248i −0.238952 0.413877i
\(763\) −20.0168 −0.724655
\(764\) 21.4352 + 12.3756i 0.775499 + 0.447734i
\(765\) −7.17680 11.2893i −0.259478 0.408165i
\(766\) −19.6329 −0.709364
\(767\) 32.2126i 1.16313i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 8.99578i 0.324396i −0.986758 0.162198i \(-0.948142\pi\)
0.986758 0.162198i \(-0.0518584\pi\)
\(770\) 34.4920 + 17.9976i 1.24300 + 0.648588i
\(771\) 31.1443i 1.12163i
\(772\) −0.676615 + 1.17193i −0.0243519 + 0.0421788i
\(773\) −27.7028 15.9942i −0.996400 0.575272i −0.0892191 0.996012i \(-0.528437\pi\)
−0.907181 + 0.420740i \(0.861770\pi\)
\(774\) 1.85877 3.21948i 0.0668120 0.115722i
\(775\) 26.1955 18.2673i 0.940972 0.656181i
\(776\) −3.07545 −0.110402