Properties

Label 1110.2.ba.a.529.6
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.6
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.a.619.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.21345 - 0.317246i) q^{5} +1.00000i q^{6} +(-1.17143 - 0.676327i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.21345 - 0.317246i) q^{5} +1.00000i q^{6} +(-1.17143 - 0.676327i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(0.831981 + 2.07553i) q^{10} +3.00191 q^{11} +(0.866025 - 0.500000i) q^{12} +(-1.12218 + 1.94367i) q^{13} +1.35265i q^{14} +(1.75828 + 1.38147i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.19396 + 2.06800i) q^{17} +(0.500000 - 0.866025i) q^{18} +(4.57549 + 2.64166i) q^{19} +(1.38147 - 1.75828i) q^{20} +(0.676327 + 1.17143i) q^{21} +(-1.50095 - 2.59973i) q^{22} -6.77962 q^{23} +(-0.866025 - 0.500000i) q^{24} +(4.79871 + 1.40441i) q^{25} +2.24436 q^{26} -1.00000i q^{27} +(1.17143 - 0.676327i) q^{28} -4.07927i q^{29} +(0.317246 - 2.21345i) q^{30} +4.41998i q^{31} +(-0.500000 + 0.866025i) q^{32} +(-2.59973 - 1.50095i) q^{33} +(1.19396 - 2.06800i) q^{34} +(2.37834 + 1.86865i) q^{35} -1.00000 q^{36} +(3.29819 - 5.11096i) q^{37} -5.28332i q^{38} +(1.94367 - 1.12218i) q^{39} +(-2.21345 - 0.317246i) q^{40} +(2.30168 - 3.98662i) q^{41} +(0.676327 - 1.17143i) q^{42} -3.19094 q^{43} +(-1.50095 + 2.59973i) q^{44} +(-0.831981 - 2.07553i) q^{45} +(3.38981 + 5.87132i) q^{46} -12.9161i q^{47} +1.00000i q^{48} +(-2.58516 - 4.47763i) q^{49} +(-1.18310 - 4.85801i) q^{50} -2.38792i q^{51} +(-1.12218 - 1.94367i) q^{52} +(5.39612 - 3.11545i) q^{53} +(-0.866025 + 0.500000i) q^{54} +(-6.64457 - 0.952343i) q^{55} +(-1.17143 - 0.676327i) q^{56} +(-2.64166 - 4.57549i) q^{57} +(-3.53275 + 2.03964i) q^{58} +(4.19055 - 2.41941i) q^{59} +(-2.07553 + 0.831981i) q^{60} +(9.20129 + 5.31237i) q^{61} +(3.82781 - 2.20999i) q^{62} -1.35265i q^{63} +1.00000 q^{64} +(3.10051 - 3.94621i) q^{65} +3.00191i q^{66} +(-3.05897 - 1.76610i) q^{67} -2.38792 q^{68} +(5.87132 + 3.38981i) q^{69} +(0.429124 - 2.99403i) q^{70} +(6.08437 - 10.5384i) q^{71} +(0.500000 + 0.866025i) q^{72} +7.06413i q^{73} +(-6.07532 - 0.300839i) q^{74} +(-3.45360 - 3.61561i) q^{75} +(-4.57549 + 2.64166i) q^{76} +(-3.51653 - 2.03027i) q^{77} +(-1.94367 - 1.12218i) q^{78} +(0.509669 + 0.294257i) q^{79} +(0.831981 + 2.07553i) q^{80} +(-0.500000 + 0.866025i) q^{81} -4.60335 q^{82} +(3.56360 - 2.05745i) q^{83} -1.35265 q^{84} +(-1.98671 - 4.95619i) q^{85} +(1.59547 + 2.76343i) q^{86} +(-2.03964 + 3.53275i) q^{87} +3.00191 q^{88} +(14.4684 - 8.35333i) q^{89} +(-1.38147 + 1.75828i) q^{90} +(2.62912 - 1.51792i) q^{91} +(3.38981 - 5.87132i) q^{92} +(2.20999 - 3.82781i) q^{93} +(-11.1857 + 6.45806i) q^{94} +(-9.28956 - 7.29873i) q^{95} +(0.866025 - 0.500000i) q^{96} +9.59790 q^{97} +(-2.58516 + 4.47763i) q^{98} +(1.50095 + 2.59973i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} - 14q^{13} - 2q^{15} - 18q^{16} + 18q^{18} + 6q^{19} - 4q^{20} - 2q^{22} - 20q^{23} + 4q^{25} + 28q^{26} - 2q^{30} - 18q^{32} - 6q^{33} - 40q^{35} - 36q^{36} + 20q^{37} + 6q^{39} + 2q^{40} + 10q^{41} - 2q^{44} - 2q^{45} + 10q^{46} + 10q^{49} - 2q^{50} - 14q^{52} - 12q^{53} + 56q^{55} + 8q^{57} + 30q^{58} + 18q^{59} + 4q^{60} - 6q^{61} - 12q^{62} + 36q^{64} + 40q^{65} + 36q^{67} + 12q^{69} + 20q^{70} - 24q^{71} + 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} - 24q^{77} - 6q^{78} + 2q^{80} - 18q^{81} - 20q^{82} + 36q^{83} + 26q^{85} - 10q^{87} + 4q^{88} + 4q^{90} - 36q^{91} + 10q^{92} + 12q^{93} + 12q^{94} - 30q^{95} + 52q^{97} + 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −2.21345 0.317246i −0.989884 0.141877i
\(6\) 1.00000i 0.408248i
\(7\) −1.17143 0.676327i −0.442760 0.255628i 0.262008 0.965066i \(-0.415615\pi\)
−0.704768 + 0.709438i \(0.748949\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0.831981 + 2.07553i 0.263096 + 0.656339i
\(11\) 3.00191 0.905109 0.452555 0.891737i \(-0.350513\pi\)
0.452555 + 0.891737i \(0.350513\pi\)
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) −1.12218 + 1.94367i −0.311237 + 0.539078i −0.978630 0.205627i \(-0.934077\pi\)
0.667394 + 0.744705i \(0.267410\pi\)
\(14\) 1.35265i 0.361512i
\(15\) 1.75828 + 1.38147i 0.453986 + 0.356693i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.19396 + 2.06800i 0.289578 + 0.501564i 0.973709 0.227795i \(-0.0731517\pi\)
−0.684131 + 0.729359i \(0.739818\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) 4.57549 + 2.64166i 1.04969 + 0.606038i 0.922562 0.385848i \(-0.126091\pi\)
0.127127 + 0.991886i \(0.459424\pi\)
\(20\) 1.38147 1.75828i 0.308905 0.393163i
\(21\) 0.676327 + 1.17143i 0.147587 + 0.255628i
\(22\) −1.50095 2.59973i −0.320004 0.554264i
\(23\) −6.77962 −1.41365 −0.706824 0.707390i \(-0.749873\pi\)
−0.706824 + 0.707390i \(0.749873\pi\)
\(24\) −0.866025 0.500000i −0.176777 0.102062i
\(25\) 4.79871 + 1.40441i 0.959742 + 0.280883i
\(26\) 2.24436 0.440155
\(27\) 1.00000i 0.192450i
\(28\) 1.17143 0.676327i 0.221380 0.127814i
\(29\) 4.07927i 0.757502i −0.925499 0.378751i \(-0.876354\pi\)
0.925499 0.378751i \(-0.123646\pi\)
\(30\) 0.317246 2.21345i 0.0579209 0.404119i
\(31\) 4.41998i 0.793851i 0.917851 + 0.396926i \(0.129923\pi\)
−0.917851 + 0.396926i \(0.870077\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −2.59973 1.50095i −0.452555 0.261283i
\(34\) 1.19396 2.06800i 0.204763 0.354659i
\(35\) 2.37834 + 1.86865i 0.402014 + 0.315859i
\(36\) −1.00000 −0.166667
\(37\) 3.29819 5.11096i 0.542220 0.840237i
\(38\) 5.28332i 0.857068i
\(39\) 1.94367 1.12218i 0.311237 0.179693i
\(40\) −2.21345 0.317246i −0.349977 0.0501610i
\(41\) 2.30168 3.98662i 0.359462 0.622606i −0.628409 0.777883i \(-0.716294\pi\)
0.987871 + 0.155277i \(0.0496271\pi\)
\(42\) 0.676327 1.17143i 0.104360 0.180756i
\(43\) −3.19094 −0.486614 −0.243307 0.969949i \(-0.578232\pi\)
−0.243307 + 0.969949i \(0.578232\pi\)
\(44\) −1.50095 + 2.59973i −0.226277 + 0.391924i
\(45\) −0.831981 2.07553i −0.124024 0.309401i
\(46\) 3.38981 + 5.87132i 0.499800 + 0.865679i
\(47\) 12.9161i 1.88401i −0.335600 0.942005i \(-0.608939\pi\)
0.335600 0.942005i \(-0.391061\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.58516 4.47763i −0.369309 0.639662i
\(50\) −1.18310 4.85801i −0.167315 0.687027i
\(51\) 2.38792i 0.334376i
\(52\) −1.12218 1.94367i −0.155618 0.269539i
\(53\) 5.39612 3.11545i 0.741213 0.427940i −0.0812969 0.996690i \(-0.525906\pi\)
0.822510 + 0.568750i \(0.192573\pi\)
\(54\) −0.866025 + 0.500000i −0.117851 + 0.0680414i
\(55\) −6.64457 0.952343i −0.895954 0.128414i
\(56\) −1.17143 0.676327i −0.156539 0.0903780i
\(57\) −2.64166 4.57549i −0.349896 0.606038i
\(58\) −3.53275 + 2.03964i −0.463873 + 0.267817i
\(59\) 4.19055 2.41941i 0.545563 0.314981i −0.201768 0.979433i \(-0.564669\pi\)
0.747330 + 0.664453i \(0.231335\pi\)
\(60\) −2.07553 + 0.831981i −0.267949 + 0.107408i
\(61\) 9.20129 + 5.31237i 1.17810 + 0.680179i 0.955575 0.294747i \(-0.0952355\pi\)
0.222529 + 0.974926i \(0.428569\pi\)
\(62\) 3.82781 2.20999i 0.486132 0.280669i
\(63\) 1.35265i 0.170418i
\(64\) 1.00000 0.125000
\(65\) 3.10051 3.94621i 0.384571 0.489467i
\(66\) 3.00191i 0.369509i
\(67\) −3.05897 1.76610i −0.373712 0.215763i 0.301367 0.953508i \(-0.402557\pi\)
−0.675079 + 0.737745i \(0.735891\pi\)
\(68\) −2.38792 −0.289578
\(69\) 5.87132 + 3.38981i 0.706824 + 0.408085i
\(70\) 0.429124 2.99403i 0.0512901 0.357855i
\(71\) 6.08437 10.5384i 0.722082 1.25068i −0.238081 0.971245i \(-0.576519\pi\)
0.960164 0.279438i \(-0.0901481\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 7.06413i 0.826794i 0.910551 + 0.413397i \(0.135658\pi\)
−0.910551 + 0.413397i \(0.864342\pi\)
\(74\) −6.07532 0.300839i −0.706241 0.0349718i
\(75\) −3.45360 3.61561i −0.398787 0.417495i
\(76\) −4.57549 + 2.64166i −0.524845 + 0.303019i
\(77\) −3.51653 2.03027i −0.400746 0.231371i
\(78\) −1.94367 1.12218i −0.220078 0.127062i
\(79\) 0.509669 + 0.294257i 0.0573422 + 0.0331066i 0.528397 0.848997i \(-0.322793\pi\)
−0.471055 + 0.882104i \(0.656127\pi\)
\(80\) 0.831981 + 2.07553i 0.0930184 + 0.232051i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −4.60335 −0.508355
\(83\) 3.56360 2.05745i 0.391156 0.225834i −0.291505 0.956569i \(-0.594156\pi\)
0.682661 + 0.730735i \(0.260823\pi\)
\(84\) −1.35265 −0.147587
\(85\) −1.98671 4.95619i −0.215489 0.537575i
\(86\) 1.59547 + 2.76343i 0.172044 + 0.297989i
\(87\) −2.03964 + 3.53275i −0.218672 + 0.378751i
\(88\) 3.00191 0.320004
\(89\) 14.4684 8.35333i 1.53365 0.885451i 0.534457 0.845195i \(-0.320516\pi\)
0.999189 0.0402561i \(-0.0128174\pi\)
\(90\) −1.38147 + 1.75828i −0.145619 + 0.185339i
\(91\) 2.62912 1.51792i 0.275606 0.159121i
\(92\) 3.38981 5.87132i 0.353412 0.612127i
\(93\) 2.20999 3.82781i 0.229165 0.396926i
\(94\) −11.1857 + 6.45806i −1.15372 + 0.666098i
\(95\) −9.28956 7.29873i −0.953088 0.748834i
\(96\) 0.866025 0.500000i 0.0883883 0.0510310i
\(97\) 9.59790 0.974519 0.487260 0.873257i \(-0.337997\pi\)
0.487260 + 0.873257i \(0.337997\pi\)
\(98\) −2.58516 + 4.47763i −0.261141 + 0.452309i
\(99\) 1.50095 + 2.59973i 0.150852 + 0.261283i
\(100\) −3.61561 + 3.45360i −0.361561 + 0.345360i
\(101\) −16.6462 −1.65636 −0.828180 0.560462i \(-0.810624\pi\)
−0.828180 + 0.560462i \(0.810624\pi\)
\(102\) −2.06800 + 1.19396i −0.204763 + 0.118220i
\(103\) 6.71339 0.661490 0.330745 0.943720i \(-0.392700\pi\)
0.330745 + 0.943720i \(0.392700\pi\)
\(104\) −1.12218 + 1.94367i −0.110039 + 0.190593i
\(105\) −1.12538 2.80747i −0.109826 0.273981i
\(106\) −5.39612 3.11545i −0.524117 0.302599i
\(107\) −0.170274 0.0983076i −0.0164610 0.00950376i 0.491747 0.870738i \(-0.336359\pi\)
−0.508208 + 0.861234i \(0.669692\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −11.6161 + 6.70656i −1.11262 + 0.642372i −0.939507 0.342530i \(-0.888716\pi\)
−0.173114 + 0.984902i \(0.555383\pi\)
\(110\) 2.49753 + 6.23054i 0.238130 + 0.594058i
\(111\) −5.41180 + 2.77713i −0.513665 + 0.263593i
\(112\) 1.35265i 0.127814i
\(113\) 7.24481 + 12.5484i 0.681535 + 1.18045i 0.974512 + 0.224333i \(0.0720204\pi\)
−0.292978 + 0.956119i \(0.594646\pi\)
\(114\) −2.64166 + 4.57549i −0.247414 + 0.428534i
\(115\) 15.0063 + 2.15080i 1.39935 + 0.200564i
\(116\) 3.53275 + 2.03964i 0.328008 + 0.189375i
\(117\) −2.24436 −0.207491
\(118\) −4.19055 2.41941i −0.385771 0.222725i
\(119\) 3.23003i 0.296096i
\(120\) 1.75828 + 1.38147i 0.160508 + 0.126110i
\(121\) −1.98855 −0.180777
\(122\) 10.6247i 0.961918i
\(123\) −3.98662 + 2.30168i −0.359462 + 0.207535i
\(124\) −3.82781 2.20999i −0.343748 0.198463i
\(125\) −10.1762 4.63097i −0.910183 0.414207i
\(126\) −1.17143 + 0.676327i −0.104360 + 0.0602520i
\(127\) 8.91376 5.14636i 0.790968 0.456666i −0.0493351 0.998782i \(-0.515710\pi\)
0.840303 + 0.542117i \(0.182377\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 2.76343 + 1.59547i 0.243307 + 0.140473i
\(130\) −4.96778 0.712014i −0.435703 0.0624477i
\(131\) 3.29183 1.90054i 0.287608 0.166051i −0.349255 0.937028i \(-0.613565\pi\)
0.636863 + 0.770977i \(0.280232\pi\)
\(132\) 2.59973 1.50095i 0.226277 0.130641i
\(133\) −3.57325 6.18905i −0.309840 0.536659i
\(134\) 3.53219i 0.305135i
\(135\) −0.317246 + 2.21345i −0.0273042 + 0.190503i
\(136\) 1.19396 + 2.06800i 0.102381 + 0.177330i
\(137\) 10.1698i 0.868862i 0.900705 + 0.434431i \(0.143050\pi\)
−0.900705 + 0.434431i \(0.856950\pi\)
\(138\) 6.77962i 0.577119i
\(139\) 0.463646 + 0.803059i 0.0393260 + 0.0681146i 0.885018 0.465556i \(-0.154146\pi\)
−0.845692 + 0.533671i \(0.820812\pi\)
\(140\) −2.80747 + 1.12538i −0.237274 + 0.0951122i
\(141\) −6.45806 + 11.1857i −0.543867 + 0.942005i
\(142\) −12.1687 −1.02118
\(143\) −3.36868 + 5.83473i −0.281703 + 0.487924i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −1.29413 + 9.02926i −0.107472 + 0.749839i
\(146\) 6.11771 3.53206i 0.506306 0.292316i
\(147\) 5.17033i 0.426441i
\(148\) 2.77713 + 5.41180i 0.228278 + 0.444847i
\(149\) −9.05684 −0.741965 −0.370983 0.928640i \(-0.620979\pi\)
−0.370983 + 0.928640i \(0.620979\pi\)
\(150\) −1.40441 + 4.79871i −0.114670 + 0.391813i
\(151\) 5.73747 9.93758i 0.466908 0.808709i −0.532377 0.846507i \(-0.678701\pi\)
0.999285 + 0.0377983i \(0.0120344\pi\)
\(152\) 4.57549 + 2.64166i 0.371121 + 0.214267i
\(153\) −1.19396 + 2.06800i −0.0965260 + 0.167188i
\(154\) 4.06054i 0.327208i
\(155\) 1.40222 9.78339i 0.112629 0.785821i
\(156\) 2.24436i 0.179693i
\(157\) 5.04062 2.91020i 0.402285 0.232259i −0.285184 0.958473i \(-0.592055\pi\)
0.687469 + 0.726213i \(0.258722\pi\)
\(158\) 0.588515i 0.0468197i
\(159\) −6.23090 −0.494142
\(160\) 1.38147 1.75828i 0.109215 0.139004i
\(161\) 7.94187 + 4.58524i 0.625907 + 0.361367i
\(162\) 1.00000 0.0785674
\(163\) 2.20296 + 3.81563i 0.172549 + 0.298863i 0.939310 0.343069i \(-0.111466\pi\)
−0.766761 + 0.641932i \(0.778133\pi\)
\(164\) 2.30168 + 3.98662i 0.179731 + 0.311303i
\(165\) 5.27819 + 4.14704i 0.410907 + 0.322846i
\(166\) −3.56360 2.05745i −0.276589 0.159689i
\(167\) 10.8349 18.7666i 0.838431 1.45221i −0.0527743 0.998606i \(-0.516806\pi\)
0.891206 0.453599i \(-0.149860\pi\)
\(168\) 0.676327 + 1.17143i 0.0521798 + 0.0903780i
\(169\) 3.98142 + 6.89603i 0.306263 + 0.530464i
\(170\) −3.29884 + 4.19863i −0.253009 + 0.322021i
\(171\) 5.28332i 0.404026i
\(172\) 1.59547 2.76343i 0.121653 0.210710i
\(173\) −14.2574 + 8.23149i −1.08397 + 0.625829i −0.931964 0.362551i \(-0.881906\pi\)
−0.152003 + 0.988380i \(0.548572\pi\)
\(174\) 4.07927 0.309249
\(175\) −4.67152 4.89067i −0.353134 0.369700i
\(176\) −1.50095 2.59973i −0.113139 0.195962i
\(177\) −4.83883 −0.363709
\(178\) −14.4684 8.35333i −1.08445 0.626109i
\(179\) 21.2532i 1.58854i −0.607566 0.794269i \(-0.707854\pi\)
0.607566 0.794269i \(-0.292146\pi\)
\(180\) 2.21345 + 0.317246i 0.164981 + 0.0236461i
\(181\) 9.22354 15.9756i 0.685580 1.18746i −0.287674 0.957728i \(-0.592882\pi\)
0.973254 0.229731i \(-0.0737847\pi\)
\(182\) −2.62912 1.51792i −0.194883 0.112516i
\(183\) −5.31237 9.20129i −0.392701 0.680179i
\(184\) −6.77962 −0.499800
\(185\) −8.92181 + 10.2665i −0.655945 + 0.754809i
\(186\) −4.41998 −0.324088
\(187\) 3.58416 + 6.20795i 0.262100 + 0.453970i
\(188\) 11.1857 + 6.45806i 0.815800 + 0.471002i
\(189\) −0.676327 + 1.17143i −0.0491956 + 0.0852092i
\(190\) −1.67611 + 11.6944i −0.121598 + 0.848398i
\(191\) 8.76184i 0.633985i 0.948428 + 0.316992i \(0.102673\pi\)
−0.948428 + 0.316992i \(0.897327\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 13.2262 0.952041 0.476020 0.879434i \(-0.342079\pi\)
0.476020 + 0.879434i \(0.342079\pi\)
\(194\) −4.79895 8.31202i −0.344545 0.596769i
\(195\) −4.65823 + 1.86727i −0.333583 + 0.133718i
\(196\) 5.17033 0.369309
\(197\) 7.32681 4.23013i 0.522013 0.301385i −0.215745 0.976450i \(-0.569218\pi\)
0.737758 + 0.675065i \(0.235885\pi\)
\(198\) 1.50095 2.59973i 0.106668 0.184755i
\(199\) 7.72653i 0.547719i 0.961770 + 0.273860i \(0.0883004\pi\)
−0.961770 + 0.273860i \(0.911700\pi\)
\(200\) 4.79871 + 1.40441i 0.339320 + 0.0993071i
\(201\) 1.76610 + 3.05897i 0.124571 + 0.215763i
\(202\) 8.32311 + 14.4160i 0.585612 + 1.01431i
\(203\) −2.75892 + 4.77859i −0.193638 + 0.335391i
\(204\) 2.06800 + 1.19396i 0.144789 + 0.0835940i
\(205\) −6.35938 + 8.09398i −0.444159 + 0.565308i
\(206\) −3.35670 5.81397i −0.233872 0.405078i
\(207\) −3.38981 5.87132i −0.235608 0.408085i
\(208\) 2.24436 0.155618
\(209\) 13.7352 + 7.93002i 0.950084 + 0.548531i
\(210\) −1.86865 + 2.37834i −0.128949 + 0.164121i
\(211\) −14.0101 −0.964494 −0.482247 0.876035i \(-0.660179\pi\)
−0.482247 + 0.876035i \(0.660179\pi\)
\(212\) 6.23090i 0.427940i
\(213\) −10.5384 + 6.08437i −0.722082 + 0.416894i
\(214\) 0.196615i 0.0134403i
\(215\) 7.06298 + 1.01231i 0.481691 + 0.0690391i
\(216\) 1.00000i 0.0680414i
\(217\) 2.98935 5.17770i 0.202930 0.351485i
\(218\) 11.6161 + 6.70656i 0.786742 + 0.454226i
\(219\) 3.53206 6.11771i 0.238675 0.413397i
\(220\) 4.14704 5.27819i 0.279593 0.355856i
\(221\) −5.35935 −0.360509
\(222\) 5.11096 + 3.29819i 0.343025 + 0.221360i
\(223\) 3.10337i 0.207817i 0.994587 + 0.103908i \(0.0331349\pi\)
−0.994587 + 0.103908i \(0.966865\pi\)
\(224\) 1.17143 0.676327i 0.0782696 0.0451890i
\(225\) 1.18310 + 4.85801i 0.0788731 + 0.323867i
\(226\) 7.24481 12.5484i 0.481918 0.834706i
\(227\) 7.97179 13.8076i 0.529107 0.916439i −0.470317 0.882497i \(-0.655860\pi\)
0.999424 0.0339421i \(-0.0108062\pi\)
\(228\) 5.28332 0.349896
\(229\) −6.73382 + 11.6633i −0.444983 + 0.770733i −0.998051 0.0624027i \(-0.980124\pi\)
0.553068 + 0.833136i \(0.313457\pi\)
\(230\) −5.64052 14.0713i −0.371925 0.927832i
\(231\) 2.03027 + 3.51653i 0.133582 + 0.231371i
\(232\) 4.07927i 0.267817i
\(233\) 27.6386i 1.81067i 0.424703 + 0.905333i \(0.360378\pi\)
−0.424703 + 0.905333i \(0.639622\pi\)
\(234\) 1.12218 + 1.94367i 0.0733592 + 0.127062i
\(235\) −4.09758 + 28.5892i −0.267297 + 1.86495i
\(236\) 4.83883i 0.314981i
\(237\) −0.294257 0.509669i −0.0191141 0.0331066i
\(238\) −2.79729 + 1.61502i −0.181321 + 0.104686i
\(239\) 11.3747 6.56719i 0.735768 0.424796i −0.0847604 0.996401i \(-0.527012\pi\)
0.820529 + 0.571605i \(0.193679\pi\)
\(240\) 0.317246 2.21345i 0.0204781 0.142877i
\(241\) 24.8544 + 14.3497i 1.60101 + 0.924346i 0.991285 + 0.131736i \(0.0420553\pi\)
0.609730 + 0.792610i \(0.291278\pi\)
\(242\) 0.994274 + 1.72213i 0.0639143 + 0.110703i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) −9.20129 + 5.31237i −0.589052 + 0.340089i
\(245\) 4.30162 + 10.7311i 0.274820 + 0.685588i
\(246\) 3.98662 + 2.30168i 0.254178 + 0.146750i
\(247\) −10.2690 + 5.92884i −0.653404 + 0.377243i
\(248\) 4.41998i 0.280669i
\(249\) −4.11489 −0.260771
\(250\) 1.07754 + 11.1283i 0.0681496 + 0.703815i
\(251\) 7.61640i 0.480743i −0.970681 0.240372i \(-0.922731\pi\)
0.970681 0.240372i \(-0.0772693\pi\)
\(252\) 1.17143 + 0.676327i 0.0737933 + 0.0426046i
\(253\) −20.3518 −1.27951
\(254\) −8.91376 5.14636i −0.559299 0.322911i
\(255\) −0.757558 + 5.28554i −0.0474401 + 0.330993i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 5.86850 + 10.1645i 0.366067 + 0.634046i 0.988947 0.148271i \(-0.0473708\pi\)
−0.622880 + 0.782317i \(0.714037\pi\)
\(258\) 3.19094i 0.198659i
\(259\) −7.32029 + 3.75649i −0.454861 + 0.233417i
\(260\) 1.86727 + 4.65823i 0.115803 + 0.288891i
\(261\) 3.53275 2.03964i 0.218672 0.126250i
\(262\) −3.29183 1.90054i −0.203370 0.117416i
\(263\) 12.8963 + 7.44568i 0.795219 + 0.459120i 0.841797 0.539795i \(-0.181498\pi\)
−0.0465775 + 0.998915i \(0.514831\pi\)
\(264\) −2.59973 1.50095i −0.160002 0.0923773i
\(265\) −12.9324 + 5.18399i −0.794430 + 0.318450i
\(266\) −3.57325 + 6.18905i −0.219090 + 0.379475i
\(267\) −16.7067 −1.02243
\(268\) 3.05897 1.76610i 0.186856 0.107881i
\(269\) 11.5433 0.703807 0.351904 0.936036i \(-0.385534\pi\)
0.351904 + 0.936036i \(0.385534\pi\)
\(270\) 2.07553 0.831981i 0.126312 0.0506328i
\(271\) 0.336417 + 0.582692i 0.0204359 + 0.0353960i 0.876062 0.482198i \(-0.160161\pi\)
−0.855627 + 0.517594i \(0.826828\pi\)
\(272\) 1.19396 2.06800i 0.0723945 0.125391i
\(273\) −3.03584 −0.183738
\(274\) 8.80728 5.08488i 0.532067 0.307189i
\(275\) 14.4053 + 4.21592i 0.868672 + 0.254230i
\(276\) −5.87132 + 3.38981i −0.353412 + 0.204042i
\(277\) 14.1902 24.5782i 0.852607 1.47676i −0.0262400 0.999656i \(-0.508353\pi\)
0.878847 0.477103i \(-0.158313\pi\)
\(278\) 0.463646 0.803059i 0.0278077 0.0481643i
\(279\) −3.82781 + 2.20999i −0.229165 + 0.132309i
\(280\) 2.37834 + 1.86865i 0.142133 + 0.111673i
\(281\) −17.3856 + 10.0376i −1.03714 + 0.598791i −0.919021 0.394209i \(-0.871018\pi\)
−0.118115 + 0.993000i \(0.537685\pi\)
\(282\) 12.9161 0.769144
\(283\) 4.39309 7.60906i 0.261142 0.452312i −0.705404 0.708806i \(-0.749234\pi\)
0.966546 + 0.256494i \(0.0825675\pi\)
\(284\) 6.08437 + 10.5384i 0.361041 + 0.625342i
\(285\) 4.39562 + 10.9657i 0.260374 + 0.649550i
\(286\) 6.73736 0.398389
\(287\) −5.39252 + 3.11337i −0.318310 + 0.183777i
\(288\) −1.00000 −0.0589256
\(289\) 5.64892 9.78421i 0.332289 0.575542i
\(290\) 8.46663 3.39388i 0.497178 0.199295i
\(291\) −8.31202 4.79895i −0.487260 0.281319i
\(292\) −6.11771 3.53206i −0.358012 0.206698i
\(293\) 18.1855 + 10.4994i 1.06241 + 0.613380i 0.926097 0.377286i \(-0.123143\pi\)
0.136309 + 0.990666i \(0.456476\pi\)
\(294\) 4.47763 2.58516i 0.261141 0.150770i
\(295\) −10.0431 + 4.02582i −0.584733 + 0.234392i
\(296\) 3.29819 5.11096i 0.191704 0.297069i
\(297\) 3.00191i 0.174188i
\(298\) 4.52842 + 7.84345i 0.262324 + 0.454359i
\(299\) 7.60795 13.1774i 0.439979 0.762066i
\(300\) 4.85801 1.18310i 0.280477 0.0683061i
\(301\) 3.73797 + 2.15812i 0.215453 + 0.124392i
\(302\) −11.4749 −0.660308
\(303\) 14.4160 + 8.32311i 0.828180 + 0.478150i
\(304\) 5.28332i 0.303019i
\(305\) −18.6813 14.6777i −1.06969 0.840444i
\(306\) 2.38792 0.136508
\(307\) 16.2086i 0.925073i −0.886600 0.462537i \(-0.846939\pi\)
0.886600 0.462537i \(-0.153061\pi\)
\(308\) 3.51653 2.03027i 0.200373 0.115685i
\(309\) −5.81397 3.35670i −0.330745 0.190956i
\(310\) −9.17377 + 3.67734i −0.521035 + 0.208859i
\(311\) 2.58380 1.49176i 0.146514 0.0845899i −0.424951 0.905216i \(-0.639709\pi\)
0.571465 + 0.820626i \(0.306375\pi\)
\(312\) 1.94367 1.12218i 0.110039 0.0635309i
\(313\) 2.25748 + 3.91006i 0.127600 + 0.221010i 0.922746 0.385408i \(-0.125939\pi\)
−0.795146 + 0.606418i \(0.792606\pi\)
\(314\) −5.04062 2.91020i −0.284458 0.164232i
\(315\) −0.429124 + 2.99403i −0.0241784 + 0.168694i
\(316\) −0.509669 + 0.294257i −0.0286711 + 0.0165533i
\(317\) 5.91704 3.41620i 0.332334 0.191873i −0.324543 0.945871i \(-0.605210\pi\)
0.656877 + 0.753998i \(0.271877\pi\)
\(318\) 3.11545 + 5.39612i 0.174706 + 0.302599i
\(319\) 12.2456i 0.685622i
\(320\) −2.21345 0.317246i −0.123736 0.0177346i
\(321\) 0.0983076 + 0.170274i 0.00548700 + 0.00950376i
\(322\) 9.17048i 0.511051i
\(323\) 12.6162i 0.701982i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −8.11474 + 7.75112i −0.450125 + 0.429955i
\(326\) 2.20296 3.81563i 0.122010 0.211328i
\(327\) 13.4131 0.741747
\(328\) 2.30168 3.98662i 0.127089 0.220124i
\(329\) −8.73552 + 15.1304i −0.481605 + 0.834164i
\(330\) 0.952343 6.64457i 0.0524247 0.365772i
\(331\) −8.89801 + 5.13727i −0.489079 + 0.282370i −0.724192 0.689598i \(-0.757787\pi\)
0.235113 + 0.971968i \(0.424454\pi\)
\(332\) 4.11489i 0.225834i
\(333\) 6.07532 + 0.300839i 0.332925 + 0.0164859i
\(334\) −21.6698 −1.18572
\(335\) 6.21058 + 4.87961i 0.339320 + 0.266601i
\(336\) 0.676327 1.17143i 0.0368967 0.0639069i
\(337\) −17.6489 10.1896i −0.961395 0.555062i −0.0647931 0.997899i \(-0.520639\pi\)
−0.896602 + 0.442837i \(0.853972\pi\)
\(338\) 3.98142 6.89603i 0.216561 0.375095i
\(339\) 14.4896i 0.786968i
\(340\) 5.28554 + 0.757558i 0.286649 + 0.0410843i
\(341\) 13.2684i 0.718522i
\(342\) 4.57549 2.64166i 0.247414 0.142845i
\(343\) 16.4622i 0.888878i
\(344\) −3.19094 −0.172044
\(345\) −11.9205 9.36582i −0.641776 0.504239i
\(346\) 14.2574 + 8.23149i 0.766480 + 0.442528i
\(347\) 2.73199 0.146661 0.0733304 0.997308i \(-0.476637\pi\)
0.0733304 + 0.997308i \(0.476637\pi\)
\(348\) −2.03964 3.53275i −0.109336 0.189375i
\(349\) 6.08918 + 10.5468i 0.325946 + 0.564556i 0.981703 0.190416i \(-0.0609838\pi\)
−0.655757 + 0.754972i \(0.727650\pi\)
\(350\) −1.89969 + 6.49099i −0.101543 + 0.346958i
\(351\) 1.94367 + 1.12218i 0.103746 + 0.0598975i
\(352\) −1.50095 + 2.59973i −0.0800011 + 0.138566i
\(353\) −12.4776 21.6118i −0.664115 1.15028i −0.979525 0.201325i \(-0.935475\pi\)
0.315410 0.948956i \(-0.397858\pi\)
\(354\) 2.41941 + 4.19055i 0.128590 + 0.222725i
\(355\) −16.8107 + 21.3961i −0.892221 + 1.13559i
\(356\) 16.7067i 0.885451i
\(357\) −1.61502 + 2.79729i −0.0854757 + 0.148048i
\(358\) −18.4058 + 10.6266i −0.972777 + 0.561633i
\(359\) −32.9716 −1.74018 −0.870088 0.492897i \(-0.835938\pi\)
−0.870088 + 0.492897i \(0.835938\pi\)
\(360\) −0.831981 2.07553i −0.0438493 0.109390i
\(361\) 4.45674 + 7.71930i 0.234565 + 0.406279i
\(362\) −18.4471 −0.969557
\(363\) 1.72213 + 0.994274i 0.0903885 + 0.0521858i
\(364\) 3.03584i 0.159121i
\(365\) 2.24106 15.6361i 0.117303 0.818430i
\(366\) −5.31237 + 9.20129i −0.277682 + 0.480959i
\(367\) 25.6297 + 14.7973i 1.33786 + 0.772413i 0.986490 0.163824i \(-0.0523830\pi\)
0.351369 + 0.936237i \(0.385716\pi\)
\(368\) 3.38981 + 5.87132i 0.176706 + 0.306064i
\(369\) 4.60335 0.239641
\(370\) 13.3520 + 2.59326i 0.694136 + 0.134817i
\(371\) −8.42825 −0.437573
\(372\) 2.20999 + 3.82781i 0.114583 + 0.198463i
\(373\) 1.28458 + 0.741651i 0.0665129 + 0.0384012i 0.532888 0.846186i \(-0.321107\pi\)
−0.466375 + 0.884587i \(0.654440\pi\)
\(374\) 3.58416 6.20795i 0.185333 0.321005i
\(375\) 6.49732 + 9.09861i 0.335520 + 0.469850i
\(376\) 12.9161i 0.666098i
\(377\) 7.92877 + 4.57768i 0.408352 + 0.235762i
\(378\) 1.35265 0.0695730
\(379\) −6.13208 10.6211i −0.314984 0.545568i 0.664450 0.747333i \(-0.268666\pi\)
−0.979434 + 0.201764i \(0.935332\pi\)
\(380\) 10.9657 4.39562i 0.562527 0.225491i
\(381\) −10.2927 −0.527312
\(382\) 7.58798 4.38092i 0.388235 0.224147i
\(383\) −6.12268 + 10.6048i −0.312855 + 0.541880i −0.978979 0.203961i \(-0.934619\pi\)
0.666125 + 0.745841i \(0.267952\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 7.13957 + 5.60951i 0.363866 + 0.285887i
\(386\) −6.61309 11.4542i −0.336597 0.583003i
\(387\) −1.59547 2.76343i −0.0811023 0.140473i
\(388\) −4.79895 + 8.31202i −0.243630 + 0.421979i
\(389\) 3.72965 + 2.15332i 0.189101 + 0.109177i 0.591562 0.806260i \(-0.298512\pi\)
−0.402461 + 0.915437i \(0.631845\pi\)
\(390\) 3.94621 + 3.10051i 0.199824 + 0.157000i
\(391\) −8.09460 14.0203i −0.409361 0.709035i
\(392\) −2.58516 4.47763i −0.130570 0.226155i
\(393\) −3.80107 −0.191739
\(394\) −7.32681 4.23013i −0.369119 0.213111i
\(395\) −1.03477 0.813014i −0.0520651 0.0409072i
\(396\) −3.00191 −0.150852
\(397\) 3.36805i 0.169038i 0.996422 + 0.0845189i \(0.0269353\pi\)
−0.996422 + 0.0845189i \(0.973065\pi\)
\(398\) 6.69137 3.86326i 0.335408 0.193648i
\(399\) 7.14651i 0.357773i
\(400\) −1.18310 4.85801i −0.0591548 0.242901i
\(401\) 23.8277i 1.18990i 0.803763 + 0.594950i \(0.202828\pi\)
−0.803763 + 0.594950i \(0.797172\pi\)
\(402\) 1.76610 3.05897i 0.0880849 0.152567i
\(403\) −8.59099 4.96001i −0.427947 0.247076i
\(404\) 8.32311 14.4160i 0.414090 0.717225i
\(405\) 1.38147 1.75828i 0.0686457 0.0873696i
\(406\) 5.51784 0.273846
\(407\) 9.90087 15.3426i 0.490768 0.760506i
\(408\) 2.38792i 0.118220i
\(409\) 29.8037 17.2072i 1.47370 0.850840i 0.474136 0.880452i \(-0.342761\pi\)
0.999561 + 0.0296121i \(0.00942722\pi\)
\(410\) 10.1893 + 1.46039i 0.503213 + 0.0721237i
\(411\) 5.08488 8.80728i 0.250819 0.434431i
\(412\) −3.35670 + 5.81397i −0.165373 + 0.286434i
\(413\) −6.54526 −0.322071
\(414\) −3.38981 + 5.87132i −0.166600 + 0.288560i
\(415\) −8.54057 + 3.42351i −0.419240 + 0.168054i
\(416\) −1.12218 1.94367i −0.0550194 0.0952964i
\(417\) 0.927293i 0.0454097i
\(418\) 15.8600i 0.775740i
\(419\) 8.20896 + 14.2183i 0.401034 + 0.694611i 0.993851 0.110726i \(-0.0353176\pi\)
−0.592817 + 0.805337i \(0.701984\pi\)
\(420\) 2.99403 + 0.429124i 0.146094 + 0.0209391i
\(421\) 16.8650i 0.821952i −0.911646 0.410976i \(-0.865188\pi\)
0.911646 0.410976i \(-0.134812\pi\)
\(422\) 7.00504 + 12.1331i 0.341000 + 0.590630i
\(423\) 11.1857 6.45806i 0.543867 0.314002i
\(424\) 5.39612 3.11545i 0.262059 0.151300i
\(425\) 2.82514 + 11.6006i 0.137039 + 0.562709i
\(426\) 10.5384 + 6.08437i 0.510589 + 0.294789i
\(427\) −7.18579 12.4462i −0.347745 0.602312i
\(428\) 0.170274 0.0983076i 0.00823049 0.00475188i
\(429\) 5.83473 3.36868i 0.281703 0.162641i
\(430\) −2.65480 6.62288i −0.128026 0.319384i
\(431\) −20.9618 12.1023i −1.00969 0.582946i −0.0985911 0.995128i \(-0.531434\pi\)
−0.911102 + 0.412182i \(0.864767\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 27.2175i 1.30799i −0.756499 0.653995i \(-0.773092\pi\)
0.756499 0.653995i \(-0.226908\pi\)
\(434\) −5.97870 −0.286987
\(435\) 5.63538 7.17250i 0.270196 0.343895i
\(436\) 13.4131i 0.642372i
\(437\) −31.0201 17.9094i −1.48389 0.856725i
\(438\) −7.06413 −0.337537
\(439\) −0.303940 0.175480i −0.0145063 0.00837519i 0.492729 0.870183i \(-0.335999\pi\)
−0.507236 + 0.861807i \(0.669333\pi\)
\(440\) −6.64457 0.952343i −0.316767 0.0454012i
\(441\) 2.58516 4.47763i 0.123103 0.213221i
\(442\) 2.67968 + 4.64134i 0.127459 + 0.220766i
\(443\) 29.6858i 1.41042i −0.709001 0.705208i \(-0.750854\pi\)
0.709001 0.705208i \(-0.249146\pi\)
\(444\) 0.300839 6.07532i 0.0142772 0.288322i
\(445\) −34.6751 + 13.8996i −1.64376 + 0.658906i
\(446\) 2.68760 1.55168i 0.127261 0.0734744i
\(447\) 7.84345 + 4.52842i 0.370983 + 0.214187i
\(448\) −1.17143 0.676327i −0.0553450 0.0319534i
\(449\) 17.7164 + 10.2286i 0.836090 + 0.482717i 0.855933 0.517086i \(-0.172983\pi\)
−0.0198434 + 0.999803i \(0.506317\pi\)
\(450\) 3.61561 3.45360i 0.170442 0.162804i
\(451\) 6.90942 11.9675i 0.325352 0.563526i
\(452\) −14.4896 −0.681535
\(453\) −9.93758 + 5.73747i −0.466908 + 0.269570i
\(454\) −15.9436 −0.748270
\(455\) −6.30097 + 2.52576i −0.295394 + 0.118410i
\(456\) −2.64166 4.57549i −0.123707 0.214267i
\(457\) −16.1935 + 28.0480i −0.757502 + 1.31203i 0.186619 + 0.982432i \(0.440247\pi\)
−0.944121 + 0.329599i \(0.893086\pi\)
\(458\) 13.4676 0.629301
\(459\) 2.06800 1.19396i 0.0965260 0.0557293i
\(460\) −9.36582 + 11.9205i −0.436684 + 0.555795i
\(461\) −16.5318 + 9.54466i −0.769964 + 0.444539i −0.832862 0.553481i \(-0.813299\pi\)
0.0628977 + 0.998020i \(0.479966\pi\)
\(462\) 2.03027 3.51653i 0.0944568 0.163604i
\(463\) 9.39427 16.2714i 0.436589 0.756194i −0.560835 0.827928i \(-0.689520\pi\)
0.997424 + 0.0717334i \(0.0228531\pi\)
\(464\) −3.53275 + 2.03964i −0.164004 + 0.0946877i
\(465\) −6.10605 + 7.77155i −0.283161 + 0.360397i
\(466\) 23.9357 13.8193i 1.10880 0.640167i
\(467\) −2.97790 −0.137801 −0.0689004 0.997624i \(-0.521949\pi\)
−0.0689004 + 0.997624i \(0.521949\pi\)
\(468\) 1.12218 1.94367i 0.0518728 0.0898463i
\(469\) 2.38892 + 4.13773i 0.110310 + 0.191062i
\(470\) 26.8077 10.7460i 1.23655 0.495675i
\(471\) −5.82040 −0.268190
\(472\) 4.19055 2.41941i 0.192886 0.111363i
\(473\) −9.57891 −0.440439
\(474\) −0.294257 + 0.509669i −0.0135157 + 0.0234099i
\(475\) 18.2465 + 19.1024i 0.837205 + 0.876480i
\(476\) 2.79729 + 1.61502i 0.128214 + 0.0740241i
\(477\) 5.39612 + 3.11545i 0.247071 + 0.142647i
\(478\) −11.3747 6.56719i −0.520267 0.300376i
\(479\) 28.9748 16.7286i 1.32389 0.764350i 0.339546 0.940589i \(-0.389727\pi\)
0.984347 + 0.176239i \(0.0563932\pi\)
\(480\) −2.07553 + 0.831981i −0.0947344 + 0.0379746i
\(481\) 6.23287 + 12.1460i 0.284194 + 0.553811i
\(482\) 28.6994i 1.30722i
\(483\) −4.58524 7.94187i −0.208636 0.361367i
\(484\) 0.994274 1.72213i 0.0451943 0.0782788i
\(485\) −21.2445 3.04489i −0.964661 0.138261i
\(486\) −0.866025 0.500000i −0.0392837 0.0226805i
\(487\) −3.98263 −0.180470 −0.0902350 0.995920i \(-0.528762\pi\)
−0.0902350 + 0.995920i \(0.528762\pi\)
\(488\) 9.20129 + 5.31237i 0.416523 + 0.240479i
\(489\) 4.40591i 0.199242i
\(490\) 7.14264 9.09088i 0.322671 0.410684i
\(491\) −39.2680 −1.77214 −0.886070 0.463551i \(-0.846575\pi\)
−0.886070 + 0.463551i \(0.846575\pi\)
\(492\) 4.60335i 0.207535i
\(493\) 8.43593 4.87049i 0.379935 0.219356i
\(494\) 10.2690 + 5.92884i 0.462026 + 0.266751i
\(495\) −2.49753 6.23054i −0.112256 0.280042i
\(496\) 3.82781 2.20999i 0.171874 0.0992314i
\(497\) −14.2549 + 8.23005i −0.639418 + 0.369168i
\(498\) 2.05745 + 3.56360i 0.0921964 + 0.159689i
\(499\) −11.2105 6.47239i −0.501851 0.289744i 0.227627 0.973749i \(-0.426903\pi\)
−0.729478 + 0.684005i \(0.760237\pi\)
\(500\) 9.09861 6.49732i 0.406902 0.290569i
\(501\) −18.7666 + 10.8349i −0.838431 + 0.484069i
\(502\) −6.59600 + 3.80820i −0.294394 + 0.169968i
\(503\) −3.46336 5.99871i −0.154424 0.267469i 0.778425 0.627737i \(-0.216019\pi\)
−0.932849 + 0.360268i \(0.882685\pi\)
\(504\) 1.35265i 0.0602520i
\(505\) 36.8455 + 5.28094i 1.63961 + 0.234999i
\(506\) 10.1759 + 17.6252i 0.452374 + 0.783534i
\(507\) 7.96285i 0.353643i
\(508\) 10.2927i 0.456666i
\(509\) −11.5336 19.9767i −0.511216 0.885452i −0.999916 0.0129996i \(-0.995862\pi\)
0.488700 0.872452i \(-0.337471\pi\)
\(510\) 4.95619 1.98671i 0.219464 0.0879728i
\(511\) 4.77766 8.27515i 0.211351 0.366071i
\(512\) 1.00000 0.0441942
\(513\) 2.64166 4.57549i 0.116632 0.202013i
\(514\) 5.86850 10.1645i 0.258848 0.448338i
\(515\) −14.8598 2.12980i −0.654799 0.0938500i
\(516\) −2.76343 + 1.59547i −0.121653 + 0.0702366i
\(517\) 38.7730i 1.70523i
\(518\) 6.91336 + 4.46131i 0.303756 + 0.196019i
\(519\) 16.4630 0.722645
\(520\) 3.10051 3.94621i 0.135966 0.173053i
\(521\) −14.6787 + 25.4242i −0.643084 + 1.11385i 0.341657 + 0.939825i \(0.389012\pi\)
−0.984741 + 0.174029i \(0.944321\pi\)
\(522\) −3.53275 2.03964i −0.154624 0.0892724i
\(523\) 3.65507 6.33077i 0.159825 0.276825i −0.774980 0.631985i \(-0.782240\pi\)
0.934806 + 0.355160i \(0.115574\pi\)
\(524\) 3.80107i 0.166051i
\(525\) 1.60032 + 6.57121i 0.0698437 + 0.286791i
\(526\) 14.8914i 0.649294i
\(527\) −9.14051 + 5.27728i −0.398167 + 0.229882i
\(528\) 3.00191i 0.130641i
\(529\) 22.9632 0.998400
\(530\) 10.9557 + 8.60778i 0.475884 + 0.373898i
\(531\) 4.19055 + 2.41941i 0.181854 + 0.104994i
\(532\) 7.14651 0.309840
\(533\) 5.16579 + 8.94741i 0.223755 + 0.387555i
\(534\) 8.35333 + 14.4684i 0.361484 + 0.626109i
\(535\) 0.345705 + 0.271618i 0.0149461 + 0.0117430i
\(536\) −3.05897 1.76610i −0.132127 0.0762837i
\(537\) −10.6266 + 18.4058i −0.458571 + 0.794269i
\(538\) −5.77165 9.99679i −0.248833 0.430992i
\(539\) −7.76042 13.4414i −0.334265 0.578964i
\(540\) −1.75828 1.38147i −0.0756643 0.0594489i
\(541\) 20.4675i 0.879965i 0.898006 + 0.439982i \(0.145015\pi\)
−0.898006 + 0.439982i \(0.854985\pi\)
\(542\) 0.336417 0.582692i 0.0144504 0.0250288i
\(543\) −15.9756 + 9.22354i −0.685580 + 0.395820i
\(544\) −2.38792 −0.102381
\(545\) 27.8393 11.1595i 1.19250 0.478019i
\(546\) 1.51792 + 2.62912i 0.0649610 + 0.112516i
\(547\) −11.7724 −0.503352 −0.251676 0.967812i \(-0.580982\pi\)
−0.251676 + 0.967812i \(0.580982\pi\)
\(548\) −8.80728 5.08488i −0.376228 0.217215i
\(549\) 10.6247i 0.453452i
\(550\) −3.55155 14.5833i −0.151438 0.621834i
\(551\) 10.7760 18.6647i 0.459075 0.795141i
\(552\) 5.87132 + 3.38981i 0.249900 + 0.144280i
\(553\) −0.398029 0.689406i −0.0169259 0.0293165i
\(554\) −28.3804 −1.20577
\(555\) 12.8598 4.43015i 0.545867 0.188050i
\(556\) −0.927293 −0.0393260
\(557\) 2.72821 + 4.72539i 0.115598 + 0.200221i 0.918019 0.396537i \(-0.129788\pi\)
−0.802421 + 0.596759i \(0.796455\pi\)
\(558\) 3.82781 + 2.20999i 0.162044 + 0.0935562i
\(559\) 3.58081 6.20214i 0.151452 0.262323i
\(560\) 0.429124 2.99403i 0.0181338 0.126521i
\(561\) 7.16832i 0.302647i
\(562\) 17.3856 + 10.0376i 0.733366 + 0.423409i
\(563\) −14.7884 −0.623255 −0.311627 0.950204i \(-0.600874\pi\)
−0.311627 + 0.950204i \(0.600874\pi\)
\(564\) −6.45806 11.1857i −0.271933 0.471002i
\(565\) −12.0551 30.0736i −0.507162 1.26521i
\(566\) −8.78618 −0.369311
\(567\) 1.17143 0.676327i 0.0491956 0.0284031i
\(568\) 6.08437 10.5384i 0.255295 0.442183i
\(569\) 7.17981i 0.300993i −0.988611 0.150497i \(-0.951913\pi\)
0.988611 0.150497i \(-0.0480873\pi\)
\(570\) 7.29873 9.28956i 0.305710 0.389097i
\(571\) −7.05703 12.2231i −0.295328 0.511523i 0.679733 0.733459i \(-0.262096\pi\)
−0.975061 + 0.221937i \(0.928762\pi\)
\(572\) −3.36868 5.83473i −0.140852 0.243962i
\(573\) 4.38092 7.58798i 0.183016 0.316992i
\(574\) 5.39252 + 3.11337i 0.225079 + 0.129950i
\(575\) −32.5334 9.52139i −1.35674 0.397070i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −6.70480 11.6130i −0.279124 0.483458i 0.692043 0.721856i \(-0.256711\pi\)
−0.971167 + 0.238399i \(0.923378\pi\)
\(578\) −11.2978 −0.469928
\(579\) −11.4542 6.61309i −0.476020 0.274830i
\(580\) −7.17250 5.63538i −0.297822 0.233996i
\(581\) −5.56603 −0.230918
\(582\) 9.59790i 0.397846i
\(583\) 16.1986 9.35229i 0.670879 0.387332i
\(584\) 7.06413i 0.292316i
\(585\) 4.96778 + 0.712014i 0.205392 + 0.0294381i
\(586\) 20.9988i 0.867451i
\(587\) 11.2829 19.5426i 0.465697 0.806611i −0.533536 0.845777i \(-0.679137\pi\)
0.999233 + 0.0391668i \(0.0124704\pi\)
\(588\) −4.47763 2.58516i −0.184655 0.106610i
\(589\) −11.6761 + 20.2236i −0.481104 + 0.833297i
\(590\) 8.50801 + 6.68468i 0.350269 + 0.275204i
\(591\) −8.46027 −0.348009
\(592\) −6.07532 0.300839i −0.249694 0.0123644i
\(593\) 1.74844i 0.0717997i −0.999355 0.0358998i \(-0.988570\pi\)
0.999355 0.0358998i \(-0.0114297\pi\)
\(594\) −2.59973 + 1.50095i −0.106668 + 0.0615849i
\(595\) −1.02471 + 7.14951i −0.0420092 + 0.293101i
\(596\) 4.52842 7.84345i 0.185491 0.321280i
\(597\) 3.86326 6.69137i 0.158113 0.273860i
\(598\) −15.2159 −0.622224
\(599\) −14.3049 + 24.7768i −0.584481 + 1.01235i 0.410459 + 0.911879i \(0.365369\pi\)
−0.994940 + 0.100472i \(0.967965\pi\)
\(600\) −3.45360 3.61561i −0.140993 0.147607i
\(601\) −6.17497 10.6954i −0.251882 0.436273i 0.712162 0.702015i \(-0.247716\pi\)
−0.964044 + 0.265743i \(0.914383\pi\)
\(602\) 4.31624i 0.175917i
\(603\) 3.53219i 0.143842i
\(604\) 5.73747 + 9.93758i 0.233454 + 0.404355i
\(605\) 4.40155 + 0.630858i 0.178948 + 0.0256480i
\(606\) 16.6462i 0.676206i
\(607\) −18.1702 31.4717i −0.737505 1.27740i −0.953616 0.301027i \(-0.902671\pi\)
0.216111 0.976369i \(-0.430663\pi\)
\(608\) −4.57549 + 2.64166i −0.185561 + 0.107133i
\(609\) 4.77859 2.75892i 0.193638 0.111797i
\(610\) −3.37065 + 23.5173i −0.136474 + 0.952187i
\(611\) 25.1047 + 14.4942i 1.01563 + 0.586373i
\(612\) −1.19396 2.06800i −0.0482630 0.0835940i
\(613\) 0.816507 0.471410i 0.0329784 0.0190401i −0.483420 0.875388i \(-0.660606\pi\)
0.516399 + 0.856348i \(0.327272\pi\)
\(614\) −14.0371 + 8.10430i −0.566489 + 0.327063i
\(615\) 9.55438 3.82990i 0.385270 0.154437i
\(616\) −3.51653 2.03027i −0.141685 0.0818020i
\(617\) 8.06384 4.65566i 0.324638 0.187430i −0.328820 0.944393i \(-0.606651\pi\)
0.653458 + 0.756963i \(0.273318\pi\)
\(618\) 6.71339i 0.270052i
\(619\) −0.187571 −0.00753912 −0.00376956 0.999993i \(-0.501200\pi\)
−0.00376956 + 0.999993i \(0.501200\pi\)
\(620\) 7.77155 + 6.10605i 0.312113 + 0.245225i
\(621\) 6.77962i 0.272057i
\(622\) −2.58380 1.49176i −0.103601 0.0598141i
\(623\) −22.5983 −0.905383
\(624\) −1.94367 1.12218i −0.0778092 0.0449232i
\(625\) 21.0552 + 13.4788i 0.842210 + 0.539150i
\(626\) 2.25748 3.91006i 0.0902269 0.156278i
\(627\) −7.93002 13.7352i −0.316695 0.548531i
\(628\) 5.82040i 0.232259i
\(629\) 14.5074 + 0.718380i 0.578447 + 0.0286437i
\(630\) 2.80747 1.12538i 0.111852 0.0448363i
\(631\) 24.8688 14.3580i 0.990013 0.571584i 0.0847345 0.996404i \(-0.472996\pi\)
0.905278 + 0.424820i \(0.139662\pi\)
\(632\) 0.509669 + 0.294257i 0.0202735 + 0.0117049i
\(633\) 12.1331 + 7.00504i 0.482247 + 0.278425i
\(634\) −5.91704 3.41620i −0.234995 0.135675i
\(635\) −21.3628 + 8.56335i −0.847757 + 0.339826i
\(636\) 3.11545 5.39612i 0.123536 0.213970i
\(637\) 11.6041 0.459770
\(638\) −10.6050 + 6.12280i −0.419856 + 0.242404i
\(639\) 12.1687 0.481388
\(640\) 0.831981 + 2.07553i 0.0328870 + 0.0820424i
\(641\) 4.13811 + 7.16743i 0.163446 + 0.283096i 0.936102 0.351728i \(-0.114406\pi\)
−0.772657 + 0.634824i \(0.781072\pi\)
\(642\) 0.0983076 0.170274i 0.00387989 0.00672017i
\(643\) 14.4839 0.571189 0.285595 0.958351i \(-0.407809\pi\)
0.285595 + 0.958351i \(0.407809\pi\)
\(644\) −7.94187 + 4.58524i −0.312953 + 0.180684i
\(645\) −5.61057 4.40818i −0.220916 0.173572i
\(646\) 10.9259 6.30808i 0.429874 0.248188i
\(647\) 17.3434 30.0396i 0.681839 1.18098i −0.292581 0.956241i \(-0.594514\pi\)
0.974419 0.224738i \(-0.0721527\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) 12.5796 7.26286i 0.493794 0.285092i
\(650\) 10.7700 + 3.15201i 0.422435 + 0.123632i
\(651\) −5.17770 + 2.98935i −0.202930 + 0.117162i
\(652\) −4.40591 −0.172549
\(653\) −11.4681 + 19.8634i −0.448783 + 0.777315i −0.998307 0.0581630i \(-0.981476\pi\)
0.549524 + 0.835478i \(0.314809\pi\)
\(654\) −6.70656 11.6161i −0.262247 0.454226i
\(655\) −7.88922 + 3.16242i −0.308257 + 0.123566i
\(656\) −4.60335 −0.179731
\(657\) −6.11771 + 3.53206i −0.238675 + 0.137799i
\(658\) 17.4710 0.681092
\(659\) −19.8771 + 34.4282i −0.774303 + 1.34113i 0.160883 + 0.986974i \(0.448566\pi\)
−0.935186 + 0.354158i \(0.884767\pi\)
\(660\) −6.23054 + 2.49753i −0.242523 + 0.0972163i
\(661\) −24.3780 14.0746i −0.948194 0.547440i −0.0556746 0.998449i \(-0.517731\pi\)
−0.892519 + 0.451009i \(0.851064\pi\)
\(662\) 8.89801 + 5.13727i 0.345831 + 0.199666i
\(663\) 4.64134 + 2.67968i 0.180255 + 0.104070i
\(664\) 3.56360 2.05745i 0.138295 0.0798444i
\(665\) 5.94576 + 14.8328i 0.230567 + 0.575190i
\(666\) −2.77713 5.41180i −0.107611 0.209703i
\(667\) 27.6559i 1.07084i
\(668\) 10.8349 + 18.7666i 0.419216 + 0.726103i
\(669\) 1.55168 2.68760i 0.0599916 0.103908i
\(670\) 1.12057 7.81833i 0.0432915 0.302048i
\(671\) 27.6214 + 15.9472i 1.06631 + 0.615636i
\(672\) −1.35265 −0.0521798
\(673\) −10.4568 6.03721i −0.403078 0.232717i 0.284733 0.958607i \(-0.408095\pi\)
−0.687811 + 0.725890i \(0.741428\pi\)
\(674\) 20.3792i 0.784976i
\(675\) 1.40441 4.79871i 0.0540559 0.184702i
\(676\) −7.96285 −0.306263
\(677\) 32.2867i 1.24088i 0.784254 + 0.620440i \(0.213046\pi\)
−0.784254 + 0.620440i \(0.786954\pi\)
\(678\) −12.5484 + 7.24481i −0.481918 + 0.278235i
\(679\) −11.2433 6.49132i −0.431478 0.249114i
\(680\) −1.98671 4.95619i −0.0761867 0.190061i
\(681\) −13.8076 + 7.97179i −0.529107 + 0.305480i
\(682\) 11.4907 6.63418i 0.440003 0.254036i
\(683\) 12.6798 + 21.9620i 0.485178 + 0.840353i 0.999855 0.0170311i \(-0.00542143\pi\)
−0.514677 + 0.857384i \(0.672088\pi\)
\(684\) −4.57549 2.64166i −0.174948 0.101006i
\(685\) 3.22632 22.5103i 0.123271 0.860073i
\(686\) 14.2567 8.23112i 0.544324 0.314266i
\(687\) 11.6633 6.73382i 0.444983 0.256911i
\(688\) 1.59547 + 2.76343i 0.0608267 + 0.105355i
\(689\) 13.9844i 0.532762i
\(690\) −2.15080 + 15.0063i −0.0818797 + 0.571281i
\(691\) −17.4719 30.2623i −0.664664 1.15123i −0.979376 0.202045i \(-0.935241\pi\)
0.314712 0.949187i \(-0.398092\pi\)
\(692\) 16.4630i 0.625829i
\(693\) 4.06054i 0.154247i
\(694\) −1.36599 2.36597i −0.0518524 0.0898110i
\(695\) −0.771490 1.92462i −0.0292643 0.0730050i
\(696\) −2.03964 + 3.53275i −0.0773122 + 0.133909i
\(697\) 10.9924 0.416369
\(698\) 6.08918 10.5468i 0.230479 0.399201i
\(699\) 13.8193 23.9357i 0.522694 0.905333i
\(700\) 6.57121 1.60032i 0.248368 0.0604864i
\(701\) −18.2155 + 10.5167i −0.687990 + 0.397211i −0.802859 0.596169i \(-0.796689\pi\)
0.114868 + 0.993381i \(0.463355\pi\)
\(702\) 2.24436i 0.0847079i
\(703\) 28.5923 14.6724i 1.07838 0.553382i
\(704\) 3.00191 0.113139
\(705\) 17.8432 22.7101i 0.672013 0.855314i
\(706\) −12.4776 + 21.6118i −0.469600 + 0.813371i
\(707\) 19.4999 + 11.2583i 0.733370 + 0.423411i
\(708\) 2.41941 4.19055i 0.0909271 0.157490i
\(709\) 40.1656i 1.50845i 0.656615 + 0.754226i \(0.271988\pi\)
−0.656615 + 0.754226i \(0.728012\pi\)
\(710\) 26.9349 + 3.86048i 1.01085 + 0.144881i
\(711\) 0.588515i 0.0220710i
\(712\) 14.4684 8.35333i 0.542226 0.313054i
\(713\) 29.9657i 1.12223i
\(714\) 3.23003 0.120881
\(715\) 9.30745 11.8462i 0.348079 0.443022i
\(716\) 18.4058 + 10.6266i 0.687857 + 0.397134i
\(717\) −13.1344 −0.490512
\(718\) 16.4858 + 28.5543i 0.615245 + 1.06564i
\(719\) 26.0199 + 45.0677i 0.970377 + 1.68074i 0.694416 + 0.719574i \(0.255663\pi\)
0.275962 + 0.961169i \(0.411004\pi\)
\(720\) −1.38147 + 1.75828i −0.0514842 + 0.0655272i
\(721\) −7.86429 4.54045i −0.292881 0.169095i
\(722\) 4.45674 7.71930i 0.165863 0.287283i
\(723\) −14.3497 24.8544i −0.533671 0.924346i
\(724\) 9.22354 + 15.9756i 0.342790 + 0.593730i
\(725\) 5.72899 19.5752i 0.212769 0.727006i
\(726\) 1.98855i 0.0738019i
\(727\) −11.3516 + 19.6615i −0.421008 + 0.729206i −0.996038 0.0889253i \(-0.971657\pi\)
0.575031 + 0.818132i \(0.304990\pi\)
\(728\) 2.62912 1.51792i 0.0974415 0.0562579i
\(729\) −1.00000 −0.0370370
\(730\) −14.6618 + 5.87722i −0.542657 + 0.217526i
\(731\) −3.80986 6.59887i −0.140913 0.244068i
\(732\) 10.6247 0.392701
\(733\) −26.1668 15.1074i −0.966494 0.558005i −0.0683283 0.997663i \(-0.521767\pi\)
−0.898166 + 0.439657i \(0.855100\pi\)
\(734\) 29.5946i 1.09236i
\(735\) 1.64026 11.4443i 0.0605021 0.422128i
\(736\) 3.38981 5.87132i 0.124950 0.216420i
\(737\) −9.18274 5.30166i −0.338251 0.195289i
\(738\) −2.30168 3.98662i −0.0847259 0.146750i
\(739\) −20.1078 −0.739676 −0.369838 0.929096i \(-0.620587\pi\)
−0.369838 + 0.929096i \(0.620587\pi\)
\(740\) −4.43015 12.8598i −0.162856 0.472735i
\(741\) 11.8577 0.435602
\(742\) 4.21412 + 7.29908i 0.154705 + 0.267958i
\(743\) −8.93959 5.16128i −0.327962 0.189349i 0.326974 0.945033i \(-0.393971\pi\)
−0.654936 + 0.755684i \(0.727304\pi\)
\(744\) 2.20999 3.82781i 0.0810221 0.140334i
\(745\) 20.0468 + 2.87324i 0.734460 + 0.105268i
\(746\) 1.48330i 0.0543075i
\(747\) 3.56360 + 2.05745i 0.130385 + 0.0752780i
\(748\) −7.16832 −0.262100
\(749\) 0.132976 + 0.230322i 0.00485884 + 0.00841577i
\(750\) 4.63097 10.1762i 0.169099 0.371581i
\(751\) 15.2700 0.557208 0.278604 0.960406i \(-0.410128\pi\)
0.278604 + 0.960406i \(0.410128\pi\)
\(752\) −11.1857 + 6.45806i −0.407900 + 0.235501i
\(753\) −3.80820 + 6.59600i −0.138779 + 0.240372i
\(754\) 9.15535i 0.333418i
\(755\) −15.8522 + 20.1761i −0.576922 + 0.734285i
\(756\) −0.676327 1.17143i −0.0245978 0.0426046i
\(757\) 2.93517 + 5.08386i 0.106680 + 0.184776i 0.914424 0.404759i \(-0.132644\pi\)
−0.807743 + 0.589535i \(0.799311\pi\)
\(758\) −6.13208 + 10.6211i −0.222727 + 0.385775i
\(759\) 17.6252 + 10.1759i 0.639753 + 0.369362i
\(760\) −9.28956 7.29873i −0.336968 0.264753i
\(761\) −13.7631 23.8384i −0.498911 0.864140i 0.501088 0.865396i \(-0.332933\pi\)
−0.999999 + 0.00125666i \(0.999600\pi\)
\(762\) 5.14636 + 8.91376i 0.186433 + 0.322911i
\(763\) 18.1433 0.656832
\(764\) −7.58798 4.38092i −0.274523 0.158496i
\(765\) 3.29884 4.19863i 0.119270 0.151802i
\(766\) 12.2454 0.442443
\(767\) 10.8601i 0.392134i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 27.2786i 0.983692i 0.870682 + 0.491846i \(0.163678\pi\)
−0.870682 + 0.491846i \(0.836322\pi\)
\(770\) 1.28819 8.98780i 0.0464232 0.323898i
\(771\) 11.7370i 0.422698i
\(772\) −6.61309 + 11.4542i −0.238010 + 0.412246i
\(773\) −34.4624 19.8969i −1.23953 0.715642i −0.270530 0.962711i \(-0.587199\pi\)
−0.968998 + 0.247070i \(0.920532\pi\)
\(774\) −1.59547 + 2.76343i −0.0573480 + 0.0993296i
\(775\) −6.20748 + 21.2102i −0.222979 + 0.761892i
\(776\) 9.59790 0.344545
\(777\) 8.21780