Properties

Label 1110.2.ba.a.529.5
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.5
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.a.619.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.51023 - 1.64901i) q^{5} +1.00000i q^{6} +(0.0701099 + 0.0404780i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.51023 - 1.64901i) q^{5} +1.00000i q^{6} +(0.0701099 + 0.0404780i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-2.18319 - 0.483391i) q^{10} -3.93468 q^{11} +(0.866025 - 0.500000i) q^{12} +(1.78579 - 3.09309i) q^{13} -0.0809559i q^{14} +(-2.13240 + 0.672968i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.563300 + 0.975664i) q^{17} +(0.500000 - 0.866025i) q^{18} +(-1.70412 - 0.983874i) q^{19} +(0.672968 + 2.13240i) q^{20} +(-0.0404780 - 0.0701099i) q^{21} +(1.96734 + 3.40754i) q^{22} -2.93551 q^{23} +(-0.866025 - 0.500000i) q^{24} +(-0.438440 - 4.98074i) q^{25} -3.57159 q^{26} -1.00000i q^{27} +(-0.0701099 + 0.0404780i) q^{28} +2.65993i q^{29} +(1.64901 + 1.51023i) q^{30} -6.08031i q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.40754 + 1.96734i) q^{33} +(0.563300 - 0.975664i) q^{34} +(0.172630 - 0.0544808i) q^{35} -1.00000 q^{36} +(1.49939 - 5.89507i) q^{37} +1.96775i q^{38} +(-3.09309 + 1.78579i) q^{39} +(1.51023 - 1.64901i) q^{40} +(-3.72081 + 6.44463i) q^{41} +(-0.0404780 + 0.0701099i) q^{42} -5.69104 q^{43} +(1.96734 - 3.40754i) q^{44} +(2.18319 + 0.483391i) q^{45} +(1.46775 + 2.54222i) q^{46} -10.7878i q^{47} +1.00000i q^{48} +(-3.49672 - 6.05650i) q^{49} +(-4.09423 + 2.87007i) q^{50} -1.12660i q^{51} +(1.78579 + 3.09309i) q^{52} +(-0.118647 + 0.0685008i) q^{53} +(-0.866025 + 0.500000i) q^{54} +(-5.94226 + 6.48832i) q^{55} +(0.0701099 + 0.0404780i) q^{56} +(0.983874 + 1.70412i) q^{57} +(2.30357 - 1.32997i) q^{58} +(-2.46559 + 1.42351i) q^{59} +(0.483391 - 2.18319i) q^{60} +(8.34607 + 4.81861i) q^{61} +(-5.26570 + 3.04016i) q^{62} +0.0809559i q^{63} +1.00000 q^{64} +(-2.40357 - 7.61604i) q^{65} -3.93468i q^{66} +(-3.06184 - 1.76776i) q^{67} -1.12660 q^{68} +(2.54222 + 1.46775i) q^{69} +(-0.133497 - 0.122262i) q^{70} +(-3.49001 + 6.04487i) q^{71} +(0.500000 + 0.866025i) q^{72} +5.98563i q^{73} +(-5.85497 + 1.64903i) q^{74} +(-2.11067 + 4.53267i) q^{75} +(1.70412 - 0.983874i) q^{76} +(-0.275860 - 0.159268i) q^{77} +(3.09309 + 1.78579i) q^{78} +(-3.95064 - 2.28090i) q^{79} +(-2.18319 - 0.483391i) q^{80} +(-0.500000 + 0.866025i) q^{81} +7.44162 q^{82} +(-10.6365 + 6.14100i) q^{83} +0.0809559 q^{84} +(2.45959 + 0.544588i) q^{85} +(2.84552 + 4.92859i) q^{86} +(1.32997 - 2.30357i) q^{87} -3.93468 q^{88} +(-11.3025 + 6.52551i) q^{89} +(-0.672968 - 2.13240i) q^{90} +(0.250404 - 0.144571i) q^{91} +(1.46775 - 2.54222i) q^{92} +(-3.04016 + 5.26570i) q^{93} +(-9.34248 + 5.39388i) q^{94} +(-4.19602 + 1.32423i) q^{95} +(0.866025 - 0.500000i) q^{96} +0.882847 q^{97} +(-3.49672 + 6.05650i) q^{98} +(-1.96734 - 3.40754i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} - 14q^{13} - 2q^{15} - 18q^{16} + 18q^{18} + 6q^{19} - 4q^{20} - 2q^{22} - 20q^{23} + 4q^{25} + 28q^{26} - 2q^{30} - 18q^{32} - 6q^{33} - 40q^{35} - 36q^{36} + 20q^{37} + 6q^{39} + 2q^{40} + 10q^{41} - 2q^{44} - 2q^{45} + 10q^{46} + 10q^{49} - 2q^{50} - 14q^{52} - 12q^{53} + 56q^{55} + 8q^{57} + 30q^{58} + 18q^{59} + 4q^{60} - 6q^{61} - 12q^{62} + 36q^{64} + 40q^{65} + 36q^{67} + 12q^{69} + 20q^{70} - 24q^{71} + 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} - 24q^{77} - 6q^{78} + 2q^{80} - 18q^{81} - 20q^{82} + 36q^{83} + 26q^{85} - 10q^{87} + 4q^{88} + 4q^{90} - 36q^{91} + 10q^{92} + 12q^{93} + 12q^{94} - 30q^{95} + 52q^{97} + 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.51023 1.64901i 0.675393 0.737458i
\(6\) 1.00000i 0.408248i
\(7\) 0.0701099 + 0.0404780i 0.0264990 + 0.0152992i 0.513191 0.858274i \(-0.328463\pi\)
−0.486692 + 0.873574i \(0.661797\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −2.18319 0.483391i −0.690386 0.152862i
\(11\) −3.93468 −1.18635 −0.593176 0.805073i \(-0.702126\pi\)
−0.593176 + 0.805073i \(0.702126\pi\)
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) 1.78579 3.09309i 0.495290 0.857868i −0.504695 0.863298i \(-0.668395\pi\)
0.999985 + 0.00542977i \(0.00172836\pi\)
\(14\) 0.0809559i 0.0216364i
\(15\) −2.13240 + 0.672968i −0.550582 + 0.173760i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.563300 + 0.975664i 0.136620 + 0.236633i 0.926215 0.376995i \(-0.123043\pi\)
−0.789595 + 0.613628i \(0.789709\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) −1.70412 0.983874i −0.390952 0.225716i 0.291621 0.956534i \(-0.405805\pi\)
−0.682572 + 0.730818i \(0.739139\pi\)
\(20\) 0.672968 + 2.13240i 0.150480 + 0.476818i
\(21\) −0.0404780 0.0701099i −0.00883302 0.0152992i
\(22\) 1.96734 + 3.40754i 0.419439 + 0.726489i
\(23\) −2.93551 −0.612096 −0.306048 0.952016i \(-0.599007\pi\)
−0.306048 + 0.952016i \(0.599007\pi\)
\(24\) −0.866025 0.500000i −0.176777 0.102062i
\(25\) −0.438440 4.98074i −0.0876879 0.996148i
\(26\) −3.57159 −0.700446
\(27\) 1.00000i 0.192450i
\(28\) −0.0701099 + 0.0404780i −0.0132495 + 0.00764962i
\(29\) 2.65993i 0.493937i 0.969023 + 0.246969i \(0.0794345\pi\)
−0.969023 + 0.246969i \(0.920566\pi\)
\(30\) 1.64901 + 1.51023i 0.301066 + 0.275728i
\(31\) 6.08031i 1.09206i −0.837767 0.546028i \(-0.816139\pi\)
0.837767 0.546028i \(-0.183861\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 3.40754 + 1.96734i 0.593176 + 0.342470i
\(34\) 0.563300 0.975664i 0.0966051 0.167325i
\(35\) 0.172630 0.0544808i 0.0291798 0.00920893i
\(36\) −1.00000 −0.166667
\(37\) 1.49939 5.89507i 0.246498 0.969143i
\(38\) 1.96775i 0.319211i
\(39\) −3.09309 + 1.78579i −0.495290 + 0.285956i
\(40\) 1.51023 1.64901i 0.238788 0.260731i
\(41\) −3.72081 + 6.44463i −0.581093 + 1.00648i 0.414257 + 0.910160i \(0.364041\pi\)
−0.995350 + 0.0963225i \(0.969292\pi\)
\(42\) −0.0404780 + 0.0701099i −0.00624589 + 0.0108182i
\(43\) −5.69104 −0.867876 −0.433938 0.900943i \(-0.642876\pi\)
−0.433938 + 0.900943i \(0.642876\pi\)
\(44\) 1.96734 3.40754i 0.296588 0.513705i
\(45\) 2.18319 + 0.483391i 0.325451 + 0.0720596i
\(46\) 1.46775 + 2.54222i 0.216409 + 0.374831i
\(47\) 10.7878i 1.57356i −0.617235 0.786779i \(-0.711747\pi\)
0.617235 0.786779i \(-0.288253\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −3.49672 6.05650i −0.499532 0.865215i
\(50\) −4.09423 + 2.87007i −0.579011 + 0.405889i
\(51\) 1.12660i 0.157756i
\(52\) 1.78579 + 3.09309i 0.247645 + 0.428934i
\(53\) −0.118647 + 0.0685008i −0.0162974 + 0.00940931i −0.508127 0.861282i \(-0.669662\pi\)
0.491829 + 0.870692i \(0.336328\pi\)
\(54\) −0.866025 + 0.500000i −0.117851 + 0.0680414i
\(55\) −5.94226 + 6.48832i −0.801254 + 0.874885i
\(56\) 0.0701099 + 0.0404780i 0.00936883 + 0.00540910i
\(57\) 0.983874 + 1.70412i 0.130317 + 0.225716i
\(58\) 2.30357 1.32997i 0.302474 0.174633i
\(59\) −2.46559 + 1.42351i −0.320992 + 0.185325i −0.651835 0.758361i \(-0.726000\pi\)
0.330842 + 0.943686i \(0.392667\pi\)
\(60\) 0.483391 2.18319i 0.0624054 0.281849i
\(61\) 8.34607 + 4.81861i 1.06861 + 0.616960i 0.927800 0.373078i \(-0.121698\pi\)
0.140805 + 0.990037i \(0.455031\pi\)
\(62\) −5.26570 + 3.04016i −0.668745 + 0.386100i
\(63\) 0.0809559i 0.0101995i
\(64\) 1.00000 0.125000
\(65\) −2.40357 7.61604i −0.298126 0.944654i
\(66\) 3.93468i 0.484326i
\(67\) −3.06184 1.76776i −0.374064 0.215966i 0.301169 0.953571i \(-0.402623\pi\)
−0.675232 + 0.737605i \(0.735957\pi\)
\(68\) −1.12660 −0.136620
\(69\) 2.54222 + 1.46775i 0.306048 + 0.176697i
\(70\) −0.133497 0.122262i −0.0159559 0.0146131i
\(71\) −3.49001 + 6.04487i −0.414188 + 0.717394i −0.995343 0.0963986i \(-0.969268\pi\)
0.581155 + 0.813793i \(0.302601\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 5.98563i 0.700565i 0.936644 + 0.350282i \(0.113914\pi\)
−0.936644 + 0.350282i \(0.886086\pi\)
\(74\) −5.85497 + 1.64903i −0.680627 + 0.191696i
\(75\) −2.11067 + 4.53267i −0.243719 + 0.523387i
\(76\) 1.70412 0.983874i 0.195476 0.112858i
\(77\) −0.275860 0.159268i −0.0314372 0.0181503i
\(78\) 3.09309 + 1.78579i 0.350223 + 0.202201i
\(79\) −3.95064 2.28090i −0.444481 0.256621i 0.261015 0.965335i \(-0.415943\pi\)
−0.705497 + 0.708713i \(0.749276\pi\)
\(80\) −2.18319 0.483391i −0.244088 0.0540447i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 7.44162 0.821789
\(83\) −10.6365 + 6.14100i −1.16751 + 0.674062i −0.953092 0.302680i \(-0.902119\pi\)
−0.214418 + 0.976742i \(0.568785\pi\)
\(84\) 0.0809559 0.00883302
\(85\) 2.45959 + 0.544588i 0.266779 + 0.0590688i
\(86\) 2.84552 + 4.92859i 0.306840 + 0.531463i
\(87\) 1.32997 2.30357i 0.142587 0.246969i
\(88\) −3.93468 −0.419439
\(89\) −11.3025 + 6.52551i −1.19806 + 0.691703i −0.960123 0.279577i \(-0.909806\pi\)
−0.237941 + 0.971280i \(0.576473\pi\)
\(90\) −0.672968 2.13240i −0.0709371 0.224774i
\(91\) 0.250404 0.144571i 0.0262494 0.0151551i
\(92\) 1.46775 2.54222i 0.153024 0.265045i
\(93\) −3.04016 + 5.26570i −0.315249 + 0.546028i
\(94\) −9.34248 + 5.39388i −0.963603 + 0.556337i
\(95\) −4.19602 + 1.32423i −0.430502 + 0.135863i
\(96\) 0.866025 0.500000i 0.0883883 0.0510310i
\(97\) 0.882847 0.0896396 0.0448198 0.998995i \(-0.485729\pi\)
0.0448198 + 0.998995i \(0.485729\pi\)
\(98\) −3.49672 + 6.05650i −0.353222 + 0.611799i
\(99\) −1.96734 3.40754i −0.197725 0.342470i
\(100\) 4.53267 + 2.11067i 0.453267 + 0.211067i
\(101\) −5.69660 −0.566833 −0.283417 0.958997i \(-0.591468\pi\)
−0.283417 + 0.958997i \(0.591468\pi\)
\(102\) −0.975664 + 0.563300i −0.0966051 + 0.0557750i
\(103\) −6.74171 −0.664280 −0.332140 0.943230i \(-0.607771\pi\)
−0.332140 + 0.943230i \(0.607771\pi\)
\(104\) 1.78579 3.09309i 0.175112 0.303302i
\(105\) −0.176742 0.0391333i −0.0172483 0.00381902i
\(106\) 0.118647 + 0.0685008i 0.0115240 + 0.00665339i
\(107\) −0.309869 0.178903i −0.0299562 0.0172952i 0.484947 0.874543i \(-0.338839\pi\)
−0.514903 + 0.857248i \(0.672172\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −1.10002 + 0.635097i −0.105363 + 0.0608312i −0.551755 0.834006i \(-0.686042\pi\)
0.446393 + 0.894837i \(0.352708\pi\)
\(110\) 8.59018 + 1.90199i 0.819041 + 0.181348i
\(111\) −4.24604 + 4.35559i −0.403016 + 0.413414i
\(112\) 0.0809559i 0.00764962i
\(113\) −7.99299 13.8443i −0.751917 1.30236i −0.946892 0.321551i \(-0.895796\pi\)
0.194975 0.980808i \(-0.437537\pi\)
\(114\) 0.983874 1.70412i 0.0921482 0.159605i
\(115\) −4.43328 + 4.84067i −0.413405 + 0.451395i
\(116\) −2.30357 1.32997i −0.213881 0.123484i
\(117\) 3.57159 0.330194
\(118\) 2.46559 + 1.42351i 0.226976 + 0.131045i
\(119\) 0.0912049i 0.00836074i
\(120\) −2.13240 + 0.672968i −0.194660 + 0.0614333i
\(121\) 4.48174 0.407431
\(122\) 9.63722i 0.872513i
\(123\) 6.44463 3.72081i 0.581093 0.335494i
\(124\) 5.26570 + 3.04016i 0.472874 + 0.273014i
\(125\) −8.87541 6.79905i −0.793841 0.608125i
\(126\) 0.0701099 0.0404780i 0.00624589 0.00360606i
\(127\) 14.2361 8.21923i 1.26325 0.729339i 0.289550 0.957163i \(-0.406494\pi\)
0.973702 + 0.227824i \(0.0731611\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 4.92859 + 2.84552i 0.433938 + 0.250534i
\(130\) −5.39390 + 5.88957i −0.473077 + 0.516550i
\(131\) 1.69785 0.980254i 0.148342 0.0856452i −0.423992 0.905666i \(-0.639372\pi\)
0.572334 + 0.820021i \(0.306038\pi\)
\(132\) −3.40754 + 1.96734i −0.296588 + 0.171235i
\(133\) −0.0796504 0.137959i −0.00690657 0.0119625i
\(134\) 3.53551i 0.305422i
\(135\) −1.64901 1.51023i −0.141924 0.129979i
\(136\) 0.563300 + 0.975664i 0.0483026 + 0.0836625i
\(137\) 20.5579i 1.75638i −0.478314 0.878189i \(-0.658752\pi\)
0.478314 0.878189i \(-0.341248\pi\)
\(138\) 2.93551i 0.249887i
\(139\) 6.49951 + 11.2575i 0.551281 + 0.954848i 0.998182 + 0.0602641i \(0.0191943\pi\)
−0.446901 + 0.894583i \(0.647472\pi\)
\(140\) −0.0391333 + 0.176742i −0.00330737 + 0.0149375i
\(141\) −5.39388 + 9.34248i −0.454247 + 0.786779i
\(142\) 6.98002 0.585750
\(143\) −7.02654 + 12.1703i −0.587589 + 1.01773i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) 4.38625 + 4.01710i 0.364258 + 0.333602i
\(146\) 5.18371 2.99281i 0.429007 0.247687i
\(147\) 6.99345i 0.576810i
\(148\) 4.35559 + 4.24604i 0.358027 + 0.349022i
\(149\) 22.5829 1.85006 0.925031 0.379891i \(-0.124039\pi\)
0.925031 + 0.379891i \(0.124039\pi\)
\(150\) 4.98074 0.438440i 0.406676 0.0357985i
\(151\) 3.99191 6.91418i 0.324857 0.562668i −0.656627 0.754216i \(-0.728017\pi\)
0.981483 + 0.191547i \(0.0613506\pi\)
\(152\) −1.70412 0.983874i −0.138222 0.0798027i
\(153\) −0.563300 + 0.975664i −0.0455401 + 0.0788778i
\(154\) 0.318536i 0.0256684i
\(155\) −10.0265 9.18264i −0.805345 0.737567i
\(156\) 3.57159i 0.285956i
\(157\) −4.93908 + 2.85158i −0.394182 + 0.227581i −0.683970 0.729510i \(-0.739748\pi\)
0.289789 + 0.957091i \(0.406415\pi\)
\(158\) 4.56180i 0.362917i
\(159\) 0.137002 0.0108649
\(160\) 0.672968 + 2.13240i 0.0532028 + 0.168581i
\(161\) −0.205808 0.118823i −0.0162200 0.00936460i
\(162\) 1.00000 0.0785674
\(163\) 5.46907 + 9.47271i 0.428371 + 0.741960i 0.996729 0.0808216i \(-0.0257544\pi\)
−0.568358 + 0.822781i \(0.692421\pi\)
\(164\) −3.72081 6.44463i −0.290546 0.503241i
\(165\) 8.39031 2.64792i 0.653184 0.206140i
\(166\) 10.6365 + 6.14100i 0.825554 + 0.476634i
\(167\) 4.59649 7.96135i 0.355687 0.616068i −0.631548 0.775337i \(-0.717580\pi\)
0.987235 + 0.159268i \(0.0509135\pi\)
\(168\) −0.0404780 0.0701099i −0.00312294 0.00540910i
\(169\) 0.121875 + 0.211094i 0.00937502 + 0.0162380i
\(170\) −0.758166 2.40236i −0.0581487 0.184252i
\(171\) 1.96775i 0.150477i
\(172\) 2.84552 4.92859i 0.216969 0.375801i
\(173\) −4.32016 + 2.49425i −0.328456 + 0.189634i −0.655155 0.755494i \(-0.727397\pi\)
0.326700 + 0.945128i \(0.394063\pi\)
\(174\) −2.65993 −0.201649
\(175\) 0.170871 0.366946i 0.0129167 0.0277385i
\(176\) 1.96734 + 3.40754i 0.148294 + 0.256853i
\(177\) 2.84702 0.213995
\(178\) 11.3025 + 6.52551i 0.847160 + 0.489108i
\(179\) 9.29758i 0.694934i 0.937692 + 0.347467i \(0.112958\pi\)
−0.937692 + 0.347467i \(0.887042\pi\)
\(180\) −1.51023 + 1.64901i −0.112566 + 0.122910i
\(181\) 3.79019 6.56480i 0.281722 0.487958i −0.690087 0.723727i \(-0.742428\pi\)
0.971809 + 0.235769i \(0.0757609\pi\)
\(182\) −0.250404 0.144571i −0.0185612 0.0107163i
\(183\) −4.81861 8.34607i −0.356202 0.616960i
\(184\) −2.93551 −0.216409
\(185\) −7.45659 11.3754i −0.548219 0.836335i
\(186\) 6.08031 0.445830
\(187\) −2.21641 3.83893i −0.162080 0.280730i
\(188\) 9.34248 + 5.39388i 0.681370 + 0.393389i
\(189\) 0.0404780 0.0701099i 0.00294434 0.00509974i
\(190\) 3.24483 + 2.97174i 0.235404 + 0.215593i
\(191\) 0.0853502i 0.00617573i 0.999995 + 0.00308786i \(0.000982899\pi\)
−0.999995 + 0.00308786i \(0.999017\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 5.16516 0.371796 0.185898 0.982569i \(-0.440481\pi\)
0.185898 + 0.982569i \(0.440481\pi\)
\(194\) −0.441424 0.764568i −0.0316924 0.0548928i
\(195\) −1.72647 + 7.79747i −0.123635 + 0.558388i
\(196\) 6.99345 0.499532
\(197\) 9.34387 5.39468i 0.665723 0.384355i −0.128731 0.991680i \(-0.541090\pi\)
0.794454 + 0.607324i \(0.207757\pi\)
\(198\) −1.96734 + 3.40754i −0.139813 + 0.242163i
\(199\) 7.93361i 0.562399i −0.959649 0.281200i \(-0.909268\pi\)
0.959649 0.281200i \(-0.0907323\pi\)
\(200\) −0.438440 4.98074i −0.0310024 0.352192i
\(201\) 1.76776 + 3.06184i 0.124688 + 0.215966i
\(202\) 2.84830 + 4.93340i 0.200406 + 0.347113i
\(203\) −0.107669 + 0.186488i −0.00755686 + 0.0130889i
\(204\) 0.975664 + 0.563300i 0.0683101 + 0.0394389i
\(205\) 5.00797 + 15.8685i 0.349772 + 1.10830i
\(206\) 3.37085 + 5.83849i 0.234858 + 0.406787i
\(207\) −1.46775 2.54222i −0.102016 0.176697i
\(208\) −3.57159 −0.247645
\(209\) 6.70517 + 3.87123i 0.463806 + 0.267779i
\(210\) 0.0544808 + 0.172630i 0.00375953 + 0.0119126i
\(211\) 24.3190 1.67419 0.837093 0.547060i \(-0.184253\pi\)
0.837093 + 0.547060i \(0.184253\pi\)
\(212\) 0.137002i 0.00940931i
\(213\) 6.04487 3.49001i 0.414188 0.239131i
\(214\) 0.357806i 0.0244591i
\(215\) −8.59476 + 9.38456i −0.586158 + 0.640022i
\(216\) 1.00000i 0.0680414i
\(217\) 0.246119 0.426290i 0.0167076 0.0289384i
\(218\) 1.10002 + 0.635097i 0.0745027 + 0.0430142i
\(219\) 2.99281 5.18371i 0.202236 0.350282i
\(220\) −2.64792 8.39031i −0.178523 0.565674i
\(221\) 4.02375 0.270667
\(222\) 5.89507 + 1.49939i 0.395651 + 0.100632i
\(223\) 18.2474i 1.22193i −0.791656 0.610967i \(-0.790781\pi\)
0.791656 0.610967i \(-0.209219\pi\)
\(224\) −0.0701099 + 0.0404780i −0.00468441 + 0.00270455i
\(225\) 4.09423 2.87007i 0.272948 0.191338i
\(226\) −7.99299 + 13.8443i −0.531686 + 0.920907i
\(227\) 4.95426 8.58102i 0.328826 0.569543i −0.653454 0.756967i \(-0.726681\pi\)
0.982279 + 0.187424i \(0.0600138\pi\)
\(228\) −1.96775 −0.130317
\(229\) 12.8080 22.1841i 0.846376 1.46597i −0.0380447 0.999276i \(-0.512113\pi\)
0.884421 0.466690i \(-0.154554\pi\)
\(230\) 6.40878 + 1.41900i 0.422583 + 0.0935659i
\(231\) 0.159268 + 0.275860i 0.0104791 + 0.0181503i
\(232\) 2.65993i 0.174633i
\(233\) 3.44779i 0.225872i 0.993602 + 0.112936i \(0.0360256\pi\)
−0.993602 + 0.112936i \(0.963974\pi\)
\(234\) −1.78579 3.09309i −0.116741 0.202201i
\(235\) −17.7891 16.2920i −1.16043 1.06277i
\(236\) 2.84702i 0.185325i
\(237\) 2.28090 + 3.95064i 0.148160 + 0.256621i
\(238\) 0.0789858 0.0456025i 0.00511989 0.00295597i
\(239\) 12.3341 7.12108i 0.797824 0.460624i −0.0448854 0.998992i \(-0.514292\pi\)
0.842710 + 0.538368i \(0.180959\pi\)
\(240\) 1.64901 + 1.51023i 0.106443 + 0.0974846i
\(241\) −17.9025 10.3360i −1.15320 0.665801i −0.203536 0.979067i \(-0.565244\pi\)
−0.949665 + 0.313266i \(0.898577\pi\)
\(242\) −2.24087 3.88130i −0.144049 0.249500i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) −8.34607 + 4.81861i −0.534303 + 0.308480i
\(245\) −15.2680 3.38057i −0.975440 0.215976i
\(246\) −6.44463 3.72081i −0.410895 0.237230i
\(247\) −6.08641 + 3.51399i −0.387269 + 0.223590i
\(248\) 6.08031i 0.386100i
\(249\) 12.2820 0.778340
\(250\) −1.45044 + 11.0859i −0.0917341 + 0.701131i
\(251\) 8.24545i 0.520448i 0.965548 + 0.260224i \(0.0837965\pi\)
−0.965548 + 0.260224i \(0.916204\pi\)
\(252\) −0.0701099 0.0404780i −0.00441651 0.00254987i
\(253\) 11.5503 0.726161
\(254\) −14.2361 8.21923i −0.893254 0.515721i
\(255\) −1.85777 1.70142i −0.116338 0.106547i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 3.41974 + 5.92316i 0.213317 + 0.369476i 0.952751 0.303753i \(-0.0982399\pi\)
−0.739433 + 0.673230i \(0.764907\pi\)
\(258\) 5.69104i 0.354309i
\(259\) 0.343742 0.352611i 0.0213591 0.0219102i
\(260\) 7.79747 + 1.72647i 0.483579 + 0.107071i
\(261\) −2.30357 + 1.32997i −0.142587 + 0.0823229i
\(262\) −1.69785 0.980254i −0.104894 0.0605603i
\(263\) −12.7454 7.35858i −0.785917 0.453750i 0.0526059 0.998615i \(-0.483247\pi\)
−0.838523 + 0.544866i \(0.816581\pi\)
\(264\) 3.40754 + 1.96734i 0.209719 + 0.121082i
\(265\) −0.0662253 + 0.299101i −0.00406819 + 0.0183736i
\(266\) −0.0796504 + 0.137959i −0.00488368 + 0.00845878i
\(267\) 13.0510 0.798710
\(268\) 3.06184 1.76776i 0.187032 0.107983i
\(269\) 26.5270 1.61738 0.808691 0.588234i \(-0.200177\pi\)
0.808691 + 0.588234i \(0.200177\pi\)
\(270\) −0.483391 + 2.18319i −0.0294182 + 0.132865i
\(271\) 6.61234 + 11.4529i 0.401671 + 0.695715i 0.993928 0.110035i \(-0.0350962\pi\)
−0.592257 + 0.805749i \(0.701763\pi\)
\(272\) 0.563300 0.975664i 0.0341551 0.0591583i
\(273\) −0.289141 −0.0174996
\(274\) −17.8036 + 10.2789i −1.07556 + 0.620973i
\(275\) 1.72512 + 19.5976i 0.104029 + 1.18178i
\(276\) −2.54222 + 1.46775i −0.153024 + 0.0883484i
\(277\) 6.30776 10.9254i 0.378997 0.656442i −0.611920 0.790920i \(-0.709602\pi\)
0.990917 + 0.134478i \(0.0429358\pi\)
\(278\) 6.49951 11.2575i 0.389815 0.675179i
\(279\) 5.26570 3.04016i 0.315249 0.182009i
\(280\) 0.172630 0.0544808i 0.0103166 0.00325585i
\(281\) −10.1405 + 5.85462i −0.604931 + 0.349257i −0.770979 0.636860i \(-0.780233\pi\)
0.166048 + 0.986118i \(0.446899\pi\)
\(282\) 10.7878 0.642402
\(283\) −8.13334 + 14.0874i −0.483477 + 0.837406i −0.999820 0.0189756i \(-0.993960\pi\)
0.516343 + 0.856382i \(0.327293\pi\)
\(284\) −3.49001 6.04487i −0.207094 0.358697i
\(285\) 4.29597 + 0.951190i 0.254471 + 0.0563437i
\(286\) 14.0531 0.830976
\(287\) −0.521731 + 0.301222i −0.0307968 + 0.0177805i
\(288\) −1.00000 −0.0589256
\(289\) 7.86539 13.6232i 0.462670 0.801368i
\(290\) 1.28579 5.80715i 0.0755040 0.341008i
\(291\) −0.764568 0.441424i −0.0448198 0.0258767i
\(292\) −5.18371 2.99281i −0.303354 0.175141i
\(293\) −4.62415 2.66975i −0.270146 0.155969i 0.358808 0.933411i \(-0.383183\pi\)
−0.628954 + 0.777443i \(0.716517\pi\)
\(294\) 6.05650 3.49672i 0.353222 0.203933i
\(295\) −1.37622 + 6.21559i −0.0801267 + 0.361886i
\(296\) 1.49939 5.89507i 0.0871501 0.342644i
\(297\) 3.93468i 0.228314i
\(298\) −11.2914 19.5574i −0.654096 1.13293i
\(299\) −5.24221 + 9.07978i −0.303165 + 0.525097i
\(300\) −2.87007 4.09423i −0.165704 0.236380i
\(301\) −0.398998 0.230362i −0.0229979 0.0132778i
\(302\) −7.98381 −0.459417
\(303\) 4.93340 + 2.84830i 0.283417 + 0.163631i
\(304\) 1.96775i 0.112858i
\(305\) 20.5504 6.48554i 1.17671 0.371361i
\(306\) 1.12660 0.0644034
\(307\) 23.4241i 1.33689i −0.743763 0.668443i \(-0.766961\pi\)
0.743763 0.668443i \(-0.233039\pi\)
\(308\) 0.275860 0.159268i 0.0157186 0.00907514i
\(309\) 5.83849 + 3.37085i 0.332140 + 0.191761i
\(310\) −2.93916 + 13.2745i −0.166933 + 0.753941i
\(311\) 19.5018 11.2594i 1.10584 0.638460i 0.168095 0.985771i \(-0.446239\pi\)
0.937750 + 0.347311i \(0.112905\pi\)
\(312\) −3.09309 + 1.78579i −0.175112 + 0.101101i
\(313\) −4.65775 8.06746i −0.263272 0.456000i 0.703838 0.710361i \(-0.251468\pi\)
−0.967109 + 0.254361i \(0.918135\pi\)
\(314\) 4.93908 + 2.85158i 0.278729 + 0.160924i
\(315\) 0.133497 + 0.122262i 0.00752169 + 0.00688867i
\(316\) 3.95064 2.28090i 0.222241 0.128311i
\(317\) 18.6912 10.7914i 1.04980 0.606104i 0.127209 0.991876i \(-0.459398\pi\)
0.922594 + 0.385772i \(0.126065\pi\)
\(318\) −0.0685008 0.118647i −0.00384133 0.00665339i
\(319\) 10.4660i 0.585984i
\(320\) 1.51023 1.64901i 0.0844242 0.0921822i
\(321\) 0.178903 + 0.309869i 0.00998540 + 0.0172952i
\(322\) 0.237647i 0.0132435i
\(323\) 2.21686i 0.123350i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −16.1888 7.53845i −0.897994 0.418158i
\(326\) 5.46907 9.47271i 0.302904 0.524645i
\(327\) 1.27019 0.0702419
\(328\) −3.72081 + 6.44463i −0.205447 + 0.355845i
\(329\) 0.436667 0.756329i 0.0240742 0.0416978i
\(330\) −6.48832 5.94226i −0.357170 0.327111i
\(331\) 3.45970 1.99746i 0.190162 0.109790i −0.401896 0.915685i \(-0.631649\pi\)
0.592059 + 0.805895i \(0.298315\pi\)
\(332\) 12.2820i 0.674062i
\(333\) 5.85497 1.64903i 0.320851 0.0903661i
\(334\) −9.19298 −0.503018
\(335\) −7.53911 + 2.37929i −0.411906 + 0.129994i
\(336\) −0.0404780 + 0.0701099i −0.00220825 + 0.00382481i
\(337\) 4.81065 + 2.77743i 0.262053 + 0.151296i 0.625271 0.780408i \(-0.284989\pi\)
−0.363218 + 0.931704i \(0.618322\pi\)
\(338\) 0.121875 0.211094i 0.00662914 0.0114820i
\(339\) 15.9860i 0.868239i
\(340\) −1.70142 + 1.85777i −0.0922724 + 0.100752i
\(341\) 23.9241i 1.29556i
\(342\) −1.70412 + 0.983874i −0.0921482 + 0.0532018i
\(343\) 1.13285i 0.0611683i
\(344\) −5.69104 −0.306840
\(345\) 6.25967 1.97550i 0.337009 0.106358i
\(346\) 4.32016 + 2.49425i 0.232253 + 0.134092i
\(347\) −25.2200 −1.35388 −0.676940 0.736038i \(-0.736694\pi\)
−0.676940 + 0.736038i \(0.736694\pi\)
\(348\) 1.32997 + 2.30357i 0.0712937 + 0.123484i
\(349\) −4.14403 7.17766i −0.221825 0.384211i 0.733537 0.679649i \(-0.237868\pi\)
−0.955362 + 0.295438i \(0.904535\pi\)
\(350\) −0.403220 + 0.0354943i −0.0215530 + 0.00189725i
\(351\) −3.09309 1.78579i −0.165097 0.0953187i
\(352\) 1.96734 3.40754i 0.104860 0.181622i
\(353\) 14.1316 + 24.4767i 0.752150 + 1.30276i 0.946779 + 0.321886i \(0.104317\pi\)
−0.194628 + 0.980877i \(0.562350\pi\)
\(354\) −1.42351 2.46559i −0.0756586 0.131045i
\(355\) 4.69733 + 14.8842i 0.249308 + 0.789969i
\(356\) 13.0510i 0.691703i
\(357\) 0.0456025 0.0789858i 0.00241354 0.00418037i
\(358\) 8.05194 4.64879i 0.425558 0.245696i
\(359\) 4.51937 0.238523 0.119262 0.992863i \(-0.461947\pi\)
0.119262 + 0.992863i \(0.461947\pi\)
\(360\) 2.18319 + 0.483391i 0.115064 + 0.0254769i
\(361\) −7.56399 13.1012i −0.398105 0.689537i
\(362\) −7.58038 −0.398416
\(363\) −3.88130 2.24087i −0.203716 0.117615i
\(364\) 0.289141i 0.0151551i
\(365\) 9.87034 + 9.03965i 0.516637 + 0.473157i
\(366\) −4.81861 + 8.34607i −0.251873 + 0.436256i
\(367\) −13.0478 7.53314i −0.681089 0.393227i 0.119176 0.992873i \(-0.461975\pi\)
−0.800265 + 0.599646i \(0.795308\pi\)
\(368\) 1.46775 + 2.54222i 0.0765120 + 0.132523i
\(369\) −7.44162 −0.387395
\(370\) −6.12307 + 12.1453i −0.318323 + 0.631403i
\(371\) −0.0110911 −0.000575821
\(372\) −3.04016 5.26570i −0.157625 0.273014i
\(373\) 25.0921 + 14.4869i 1.29922 + 0.750105i 0.980269 0.197667i \(-0.0633364\pi\)
0.318950 + 0.947772i \(0.396670\pi\)
\(374\) −2.21641 + 3.83893i −0.114608 + 0.198506i
\(375\) 4.28681 + 10.3259i 0.221370 + 0.533225i
\(376\) 10.7878i 0.556337i
\(377\) 8.22741 + 4.75010i 0.423733 + 0.244642i
\(378\) −0.0809559 −0.00416392
\(379\) 13.4494 + 23.2950i 0.690848 + 1.19658i 0.971560 + 0.236792i \(0.0760959\pi\)
−0.280713 + 0.959792i \(0.590571\pi\)
\(380\) 0.951190 4.29597i 0.0487950 0.220379i
\(381\) −16.4385 −0.842168
\(382\) 0.0739155 0.0426751i 0.00378184 0.00218345i
\(383\) −4.83015 + 8.36606i −0.246809 + 0.427486i −0.962639 0.270789i \(-0.912715\pi\)
0.715830 + 0.698275i \(0.246049\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −0.679245 + 0.214365i −0.0346175 + 0.0109250i
\(386\) −2.58258 4.47316i −0.131450 0.227678i
\(387\) −2.84552 4.92859i −0.144646 0.250534i
\(388\) −0.441424 + 0.764568i −0.0224099 + 0.0388151i
\(389\) −21.6494 12.4993i −1.09767 0.633739i −0.162060 0.986781i \(-0.551814\pi\)
−0.935607 + 0.353042i \(0.885147\pi\)
\(390\) 7.61604 2.40357i 0.385653 0.121709i
\(391\) −1.65357 2.86407i −0.0836247 0.144842i
\(392\) −3.49672 6.05650i −0.176611 0.305900i
\(393\) −1.96051 −0.0988945
\(394\) −9.34387 5.39468i −0.470737 0.271780i
\(395\) −9.72757 + 3.06995i −0.489447 + 0.154466i
\(396\) 3.93468 0.197725
\(397\) 8.82419i 0.442873i 0.975175 + 0.221437i \(0.0710746\pi\)
−0.975175 + 0.221437i \(0.928925\pi\)
\(398\) −6.87071 + 3.96681i −0.344398 + 0.198838i
\(399\) 0.159301i 0.00797501i
\(400\) −4.09423 + 2.87007i −0.204711 + 0.143503i
\(401\) 21.1757i 1.05746i 0.848789 + 0.528732i \(0.177332\pi\)
−0.848789 + 0.528732i \(0.822668\pi\)
\(402\) 1.76776 3.06184i 0.0881676 0.152711i
\(403\) −18.8069 10.8582i −0.936840 0.540885i
\(404\) 2.84830 4.93340i 0.141708 0.245446i
\(405\) 0.672968 + 2.13240i 0.0334401 + 0.105960i
\(406\) 0.215337 0.0106870
\(407\) −5.89961 + 23.1952i −0.292433 + 1.14975i
\(408\) 1.12660i 0.0557750i
\(409\) −19.6743 + 11.3590i −0.972831 + 0.561664i −0.900098 0.435687i \(-0.856505\pi\)
−0.0727331 + 0.997351i \(0.523172\pi\)
\(410\) 11.2385 12.2713i 0.555031 0.606035i
\(411\) −10.2789 + 17.8036i −0.507023 + 0.878189i
\(412\) 3.37085 5.83849i 0.166070 0.287642i
\(413\) −0.230483 −0.0113413
\(414\) −1.46775 + 2.54222i −0.0721362 + 0.124944i
\(415\) −5.93700 + 26.8140i −0.291436 + 1.31625i
\(416\) 1.78579 + 3.09309i 0.0875558 + 0.151651i
\(417\) 12.9990i 0.636565i
\(418\) 7.74246i 0.378696i
\(419\) −3.92133 6.79195i −0.191570 0.331808i 0.754201 0.656644i \(-0.228024\pi\)
−0.945771 + 0.324835i \(0.894691\pi\)
\(420\) 0.122262 0.133497i 0.00596576 0.00651398i
\(421\) 10.2402i 0.499077i 0.968365 + 0.249539i \(0.0802789\pi\)
−0.968365 + 0.249539i \(0.919721\pi\)
\(422\) −12.1595 21.0608i −0.591914 1.02523i
\(423\) 9.34248 5.39388i 0.454247 0.262260i
\(424\) −0.118647 + 0.0685008i −0.00576200 + 0.00332669i
\(425\) 4.61256 3.23342i 0.223742 0.156844i
\(426\) −6.04487 3.49001i −0.292875 0.169091i
\(427\) 0.390095 + 0.675664i 0.0188780 + 0.0326977i
\(428\) 0.309869 0.178903i 0.0149781 0.00864761i
\(429\) 12.1703 7.02654i 0.587589 0.339244i
\(430\) 12.4246 + 2.75100i 0.599170 + 0.132665i
\(431\) −25.4351 14.6850i −1.22517 0.707349i −0.259150 0.965837i \(-0.583443\pi\)
−0.966015 + 0.258488i \(0.916776\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 0.284291i 0.0136621i −0.999977 0.00683107i \(-0.997826\pi\)
0.999977 0.00683107i \(-0.00217441\pi\)
\(434\) −0.492237 −0.0236281
\(435\) −1.79005 5.67203i −0.0858264 0.271953i
\(436\) 1.27019i 0.0608312i
\(437\) 5.00246 + 2.88817i 0.239300 + 0.138160i
\(438\) −5.98563 −0.286004
\(439\) −0.313552 0.181029i −0.0149650 0.00864004i 0.492499 0.870313i \(-0.336084\pi\)
−0.507464 + 0.861673i \(0.669417\pi\)
\(440\) −5.94226 + 6.48832i −0.283286 + 0.309318i
\(441\) 3.49672 6.05650i 0.166511 0.288405i
\(442\) −2.01188 3.48467i −0.0956952 0.165749i
\(443\) 31.7244i 1.50727i 0.657292 + 0.753636i \(0.271702\pi\)
−0.657292 + 0.753636i \(0.728298\pi\)
\(444\) −1.64903 5.85497i −0.0782594 0.277865i
\(445\) −6.30874 + 28.4929i −0.299063 + 1.35069i
\(446\) −15.8027 + 9.12368i −0.748279 + 0.432019i
\(447\) −19.5574 11.2914i −0.925031 0.534067i
\(448\) 0.0701099 + 0.0404780i 0.00331238 + 0.00191240i
\(449\) −4.41326 2.54800i −0.208275 0.120248i 0.392235 0.919865i \(-0.371702\pi\)
−0.600509 + 0.799618i \(0.705035\pi\)
\(450\) −4.53267 2.11067i −0.213672 0.0994979i
\(451\) 14.6402 25.3576i 0.689381 1.19404i
\(452\) 15.9860 0.751917
\(453\) −6.91418 + 3.99191i −0.324857 + 0.187556i
\(454\) −9.90851 −0.465030
\(455\) 0.139768 0.631251i 0.00655243 0.0295935i
\(456\) 0.983874 + 1.70412i 0.0460741 + 0.0798027i
\(457\) 15.4321 26.7292i 0.721885 1.25034i −0.238359 0.971177i \(-0.576610\pi\)
0.960244 0.279164i \(-0.0900572\pi\)
\(458\) −25.6160 −1.19696
\(459\) 0.975664 0.563300i 0.0455401 0.0262926i
\(460\) −1.97550 6.25967i −0.0921083 0.291858i
\(461\) 19.0806 11.0162i 0.888670 0.513074i 0.0151628 0.999885i \(-0.495173\pi\)
0.873507 + 0.486811i \(0.161840\pi\)
\(462\) 0.159268 0.275860i 0.00740982 0.0128342i
\(463\) −17.1390 + 29.6855i −0.796515 + 1.37960i 0.125358 + 0.992112i \(0.459992\pi\)
−0.921873 + 0.387492i \(0.873341\pi\)
\(464\) 2.30357 1.32997i 0.106941 0.0617422i
\(465\) 4.09186 + 12.9656i 0.189755 + 0.601267i
\(466\) 2.98587 1.72390i 0.138318 0.0798579i
\(467\) 25.6755 1.18812 0.594060 0.804421i \(-0.297524\pi\)
0.594060 + 0.804421i \(0.297524\pi\)
\(468\) −1.78579 + 3.09309i −0.0825484 + 0.142978i
\(469\) −0.143110 0.247874i −0.00660822 0.0114458i
\(470\) −5.21470 + 23.5518i −0.240536 + 1.08636i
\(471\) 5.70316 0.262788
\(472\) −2.46559 + 1.42351i −0.113488 + 0.0655223i
\(473\) 22.3925 1.02961
\(474\) 2.28090 3.95064i 0.104765 0.181459i
\(475\) −4.15326 + 8.91914i −0.190565 + 0.409238i
\(476\) −0.0789858 0.0456025i −0.00362031 0.00209019i
\(477\) −0.118647 0.0685008i −0.00543247 0.00313644i
\(478\) −12.3341 7.12108i −0.564147 0.325710i
\(479\) 30.5619 17.6449i 1.39641 0.806217i 0.402395 0.915466i \(-0.368178\pi\)
0.994014 + 0.109249i \(0.0348446\pi\)
\(480\) 0.483391 2.18319i 0.0220637 0.0996487i
\(481\) −15.5564 15.1651i −0.709309 0.691470i
\(482\) 20.6720i 0.941585i
\(483\) 0.118823 + 0.205808i 0.00540665 + 0.00936460i
\(484\) −2.24087 + 3.88130i −0.101858 + 0.176423i
\(485\) 1.33330 1.45582i 0.0605420 0.0661054i
\(486\) −0.866025 0.500000i −0.0392837 0.0226805i
\(487\) 24.8974 1.12821 0.564105 0.825703i \(-0.309221\pi\)
0.564105 + 0.825703i \(0.309221\pi\)
\(488\) 8.34607 + 4.81861i 0.377809 + 0.218128i
\(489\) 10.9381i 0.494640i
\(490\) 4.70637 + 14.9128i 0.212612 + 0.673692i
\(491\) −11.8114 −0.533040 −0.266520 0.963829i \(-0.585874\pi\)
−0.266520 + 0.963829i \(0.585874\pi\)
\(492\) 7.44162i 0.335494i
\(493\) −2.59520 + 1.49834i −0.116882 + 0.0674819i
\(494\) 6.08641 + 3.51399i 0.273841 + 0.158102i
\(495\) −8.59018 1.90199i −0.386100 0.0854881i
\(496\) −5.26570 + 3.04016i −0.236437 + 0.136507i
\(497\) −0.489368 + 0.282537i −0.0219512 + 0.0126735i
\(498\) −6.14100 10.6365i −0.275185 0.476634i
\(499\) 3.41972 + 1.97438i 0.153088 + 0.0883852i 0.574587 0.818444i \(-0.305163\pi\)
−0.421499 + 0.906829i \(0.638496\pi\)
\(500\) 10.3259 4.28681i 0.461786 0.191712i
\(501\) −7.96135 + 4.59649i −0.355687 + 0.205356i
\(502\) 7.14077 4.12273i 0.318708 0.184006i
\(503\) 18.5458 + 32.1223i 0.826916 + 1.43226i 0.900446 + 0.434968i \(0.143240\pi\)
−0.0735293 + 0.997293i \(0.523426\pi\)
\(504\) 0.0809559i 0.00360606i
\(505\) −8.60315 + 9.39373i −0.382835 + 0.418016i
\(506\) −5.77515 10.0029i −0.256737 0.444681i
\(507\) 0.243751i 0.0108253i
\(508\) 16.4385i 0.729339i
\(509\) −0.0856429 0.148338i −0.00379605 0.00657496i 0.864121 0.503284i \(-0.167875\pi\)
−0.867917 + 0.496709i \(0.834542\pi\)
\(510\) −0.544588 + 2.45959i −0.0241147 + 0.108912i
\(511\) −0.242286 + 0.419652i −0.0107181 + 0.0185643i
\(512\) 1.00000 0.0441942
\(513\) −0.983874 + 1.70412i −0.0434391 + 0.0752387i
\(514\) 3.41974 5.92316i 0.150838 0.261259i
\(515\) −10.1815 + 11.1171i −0.448650 + 0.489878i
\(516\) −4.92859 + 2.84552i −0.216969 + 0.125267i
\(517\) 42.4465i 1.86679i
\(518\) −0.477241 0.121384i −0.0209688 0.00533332i
\(519\) 4.98849 0.218971
\(520\) −2.40357 7.61604i −0.105403 0.333986i
\(521\) −6.76509 + 11.7175i −0.296384 + 0.513352i −0.975306 0.220859i \(-0.929114\pi\)
0.678922 + 0.734210i \(0.262447\pi\)
\(522\) 2.30357 + 1.32997i 0.100825 + 0.0582111i
\(523\) 16.3542 28.3263i 0.715118 1.23862i −0.247796 0.968812i \(-0.579706\pi\)
0.962914 0.269809i \(-0.0869605\pi\)
\(524\) 1.96051i 0.0856452i
\(525\) −0.331452 + 0.232349i −0.0144658 + 0.0101405i
\(526\) 14.7172i 0.641699i
\(527\) 5.93234 3.42504i 0.258417 0.149197i
\(528\) 3.93468i 0.171235i
\(529\) −14.3828 −0.625339
\(530\) 0.292142 0.0921977i 0.0126898 0.00400481i
\(531\) −2.46559 1.42351i −0.106997 0.0617750i
\(532\) 0.159301 0.00690657
\(533\) 13.2892 + 23.0176i 0.575619 + 0.997002i
\(534\) −6.52551 11.3025i −0.282387 0.489108i
\(535\) −0.762985 + 0.240792i −0.0329867 + 0.0104104i
\(536\) −3.06184 1.76776i −0.132251 0.0763554i
\(537\) 4.64879 8.05194i 0.200610 0.347467i
\(538\) −13.2635 22.9731i −0.571831 0.990440i
\(539\) 13.7585 + 23.8304i 0.592621 + 1.02645i
\(540\) 2.13240 0.672968i 0.0917637 0.0289599i
\(541\) 29.1310i 1.25244i −0.779647 0.626220i \(-0.784601\pi\)
0.779647 0.626220i \(-0.215399\pi\)
\(542\) 6.61234 11.4529i 0.284024 0.491945i
\(543\) −6.56480 + 3.79019i −0.281722 + 0.162653i
\(544\) −1.12660 −0.0483026
\(545\) −0.613999 + 2.77308i −0.0263008 + 0.118786i
\(546\) 0.144571 + 0.250404i 0.00618705 + 0.0107163i
\(547\) −25.3366 −1.08332 −0.541658 0.840599i \(-0.682203\pi\)
−0.541658 + 0.840599i \(0.682203\pi\)
\(548\) 17.8036 + 10.2789i 0.760534 + 0.439094i
\(549\) 9.63722i 0.411306i
\(550\) 16.1095 11.2928i 0.686911 0.481527i
\(551\) 2.61704 4.53284i 0.111490 0.193106i
\(552\) 2.54222 + 1.46775i 0.108204 + 0.0624718i
\(553\) −0.184652 0.319827i −0.00785222 0.0136004i
\(554\) −12.6155 −0.535982
\(555\) 0.769907 + 13.5797i 0.0326807 + 0.576425i
\(556\) −12.9990 −0.551281
\(557\) 2.18960 + 3.79250i 0.0927765 + 0.160694i 0.908678 0.417497i \(-0.137092\pi\)
−0.815902 + 0.578190i \(0.803759\pi\)
\(558\) −5.26570 3.04016i −0.222915 0.128700i
\(559\) −10.1630 + 17.6029i −0.429851 + 0.744523i
\(560\) −0.133497 0.122262i −0.00564127 0.00516650i
\(561\) 4.43281i 0.187154i
\(562\) 10.1405 + 5.85462i 0.427751 + 0.246962i
\(563\) 12.3285 0.519586 0.259793 0.965664i \(-0.416346\pi\)
0.259793 + 0.965664i \(0.416346\pi\)
\(564\) −5.39388 9.34248i −0.227123 0.393389i
\(565\) −34.9005 7.72747i −1.46827 0.325097i
\(566\) 16.2667 0.683739
\(567\) −0.0701099 + 0.0404780i −0.00294434 + 0.00169991i
\(568\) −3.49001 + 6.04487i −0.146437 + 0.253637i
\(569\) 33.7423i 1.41455i −0.706939 0.707274i \(-0.749925\pi\)
0.706939 0.707274i \(-0.250075\pi\)
\(570\) −1.32423 4.19602i −0.0554659 0.175752i
\(571\) 1.27841 + 2.21428i 0.0535000 + 0.0926647i 0.891535 0.452952i \(-0.149629\pi\)
−0.838035 + 0.545616i \(0.816296\pi\)
\(572\) −7.02654 12.1703i −0.293794 0.508867i
\(573\) 0.0426751 0.0739155i 0.00178278 0.00308786i
\(574\) 0.521731 + 0.301222i 0.0217766 + 0.0125727i
\(575\) 1.28704 + 14.6210i 0.0536734 + 0.609738i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 20.7924 + 36.0134i 0.865598 + 1.49926i 0.866453 + 0.499259i \(0.166395\pi\)
−0.000854926 1.00000i \(0.500272\pi\)
\(578\) −15.7308 −0.654314
\(579\) −4.47316 2.58258i −0.185898 0.107328i
\(580\) −5.67203 + 1.79005i −0.235518 + 0.0743278i
\(581\) −0.994300 −0.0412505
\(582\) 0.882847i 0.0365952i
\(583\) 0.466838 0.269529i 0.0193345 0.0111628i
\(584\) 5.98563i 0.247687i
\(585\) 5.39390 5.88957i 0.223010 0.243504i
\(586\) 5.33950i 0.220573i
\(587\) −5.77378 + 10.0005i −0.238310 + 0.412764i −0.960229 0.279213i \(-0.909927\pi\)
0.721920 + 0.691977i \(0.243260\pi\)
\(588\) −6.05650 3.49672i −0.249766 0.144202i
\(589\) −5.98226 + 10.3616i −0.246495 + 0.426941i
\(590\) 6.07097 1.91595i 0.249938 0.0788785i
\(591\) −10.7894 −0.443815
\(592\) −5.85497 + 1.64903i −0.240638 + 0.0677746i
\(593\) 2.72675i 0.111974i −0.998431 0.0559872i \(-0.982169\pi\)
0.998431 0.0559872i \(-0.0178306\pi\)
\(594\) 3.40754 1.96734i 0.139813 0.0807210i
\(595\) 0.150397 + 0.137740i 0.00616569 + 0.00564679i
\(596\) −11.2914 + 19.5574i −0.462516 + 0.801101i
\(597\) −3.96681 + 6.87071i −0.162351 + 0.281200i
\(598\) 10.4844 0.428740
\(599\) 2.29323 3.97199i 0.0936988 0.162291i −0.815366 0.578946i \(-0.803464\pi\)
0.909065 + 0.416655i \(0.136798\pi\)
\(600\) −2.11067 + 4.53267i −0.0861677 + 0.185045i
\(601\) 4.07826 + 7.06376i 0.166356 + 0.288137i 0.937136 0.348965i \(-0.113467\pi\)
−0.770780 + 0.637101i \(0.780133\pi\)
\(602\) 0.460724i 0.0187777i
\(603\) 3.53551i 0.143977i
\(604\) 3.99191 + 6.91418i 0.162428 + 0.281334i
\(605\) 6.76844 7.39042i 0.275176 0.300463i
\(606\) 5.69660i 0.231409i
\(607\) −10.9036 18.8855i −0.442562 0.766540i 0.555317 0.831639i \(-0.312597\pi\)
−0.997879 + 0.0650990i \(0.979264\pi\)
\(608\) 1.70412 0.983874i 0.0691112 0.0399013i
\(609\) 0.186488 0.107669i 0.00755686 0.00436296i
\(610\) −15.8918 14.5544i −0.643441 0.589289i
\(611\) −33.3675 19.2647i −1.34990 0.779368i
\(612\) −0.563300 0.975664i −0.0227700 0.0394389i
\(613\) −11.2580 + 6.49980i −0.454706 + 0.262525i −0.709816 0.704387i \(-0.751222\pi\)
0.255110 + 0.966912i \(0.417888\pi\)
\(614\) −20.2859 + 11.7121i −0.818672 + 0.472661i
\(615\) 3.59721 16.2465i 0.145053 0.655122i
\(616\) −0.275860 0.159268i −0.0111147 0.00641709i
\(617\) 18.7829 10.8443i 0.756170 0.436575i −0.0717491 0.997423i \(-0.522858\pi\)
0.827919 + 0.560848i \(0.189525\pi\)
\(618\) 6.74171i 0.271191i
\(619\) −16.7055 −0.671450 −0.335725 0.941960i \(-0.608981\pi\)
−0.335725 + 0.941960i \(0.608981\pi\)
\(620\) 12.9656 4.09186i 0.520712 0.164333i
\(621\) 2.93551i 0.117798i
\(622\) −19.5018 11.2594i −0.781950 0.451459i
\(623\) −1.05656 −0.0423301
\(624\) 3.09309 + 1.78579i 0.123823 + 0.0714890i
\(625\) −24.6155 + 4.36751i −0.984622 + 0.174700i
\(626\) −4.65775 + 8.06746i −0.186161 + 0.322441i
\(627\) −3.87123 6.70517i −0.154602 0.267779i
\(628\) 5.70316i 0.227581i
\(629\) 6.59621 1.85779i 0.263008 0.0740751i
\(630\) 0.0391333 0.176742i 0.00155911 0.00704159i
\(631\) 12.8764 7.43418i 0.512600 0.295950i −0.221301 0.975205i \(-0.571030\pi\)
0.733902 + 0.679255i \(0.237697\pi\)
\(632\) −3.95064 2.28090i −0.157148 0.0907294i
\(633\) −21.0608 12.1595i −0.837093 0.483296i
\(634\) −18.6912 10.7914i −0.742323 0.428580i
\(635\) 7.94620 35.8884i 0.315335 1.42419i
\(636\) −0.0685008 + 0.118647i −0.00271623 + 0.00470465i
\(637\) −24.9777 −0.989653
\(638\) −9.06382 + 5.23300i −0.358840 + 0.207176i
\(639\) −6.98002 −0.276125
\(640\) −2.18319 0.483391i −0.0862983 0.0191077i
\(641\) −22.7322 39.3734i −0.897869 1.55516i −0.830213 0.557447i \(-0.811781\pi\)
−0.0676565 0.997709i \(-0.521552\pi\)
\(642\) 0.178903 0.309869i 0.00706075 0.0122296i
\(643\) −1.49694 −0.0590335 −0.0295167 0.999564i \(-0.509397\pi\)
−0.0295167 + 0.999564i \(0.509397\pi\)
\(644\) 0.205808 0.118823i 0.00810998 0.00468230i
\(645\) 12.1356 3.82989i 0.477837 0.150802i
\(646\) −1.91986 + 1.10843i −0.0755359 + 0.0436107i
\(647\) −8.29567 + 14.3685i −0.326136 + 0.564885i −0.981742 0.190219i \(-0.939080\pi\)
0.655605 + 0.755104i \(0.272413\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) 9.70131 5.60106i 0.380810 0.219861i
\(650\) 1.56593 + 17.7892i 0.0614207 + 0.697748i
\(651\) −0.426290 + 0.246119i −0.0167076 + 0.00964615i
\(652\) −10.9381 −0.428371
\(653\) 15.6069 27.0320i 0.610747 1.05784i −0.380368 0.924835i \(-0.624203\pi\)
0.991115 0.133009i \(-0.0424640\pi\)
\(654\) −0.635097 1.10002i −0.0248342 0.0430142i
\(655\) 0.947691 4.28017i 0.0370294 0.167240i
\(656\) 7.44162 0.290546
\(657\) −5.18371 + 2.99281i −0.202236 + 0.116761i
\(658\) −0.873334 −0.0340461
\(659\) −17.9421 + 31.0766i −0.698925 + 1.21057i 0.269914 + 0.962884i \(0.413005\pi\)
−0.968840 + 0.247689i \(0.920329\pi\)
\(660\) −1.90199 + 8.59018i −0.0740348 + 0.334372i
\(661\) −10.6343 6.13969i −0.413624 0.238806i 0.278721 0.960372i \(-0.410089\pi\)
−0.692346 + 0.721566i \(0.743423\pi\)
\(662\) −3.45970 1.99746i −0.134465 0.0776334i
\(663\) −3.48467 2.01188i −0.135333 0.0781348i
\(664\) −10.6365 + 6.14100i −0.412777 + 0.238317i
\(665\) −0.347784 0.0770045i −0.0134865 0.00298611i
\(666\) −4.35559 4.24604i −0.168776 0.164531i
\(667\) 7.80826i 0.302337i
\(668\) 4.59649 + 7.96135i 0.177844 + 0.308034i
\(669\) −9.12368 + 15.8027i −0.352742 + 0.610967i
\(670\) 5.83008 + 5.33942i 0.225236 + 0.206280i
\(671\) −32.8392 18.9597i −1.26774 0.731931i
\(672\) 0.0809559 0.00312294
\(673\) 1.05405 + 0.608554i 0.0406305 + 0.0234580i 0.520178 0.854058i \(-0.325866\pi\)
−0.479547 + 0.877516i \(0.659199\pi\)
\(674\) 5.55486i 0.213965i
\(675\) −4.98074 + 0.438440i −0.191709 + 0.0168756i
\(676\) −0.243751 −0.00937502
\(677\) 28.6640i 1.10165i 0.834622 + 0.550823i \(0.185686\pi\)
−0.834622 + 0.550823i \(0.814314\pi\)
\(678\) 13.8443 7.99299i 0.531686 0.306969i
\(679\) 0.0618963 + 0.0357359i 0.00237536 + 0.00137142i
\(680\) 2.45959 + 0.544588i 0.0943208 + 0.0208840i
\(681\) −8.58102 + 4.95426i −0.328826 + 0.189848i
\(682\) 20.7189 11.9621i 0.793367 0.458051i
\(683\) −18.2271 31.5702i −0.697439 1.20800i −0.969352 0.245677i \(-0.920990\pi\)
0.271913 0.962322i \(-0.412344\pi\)
\(684\) 1.70412 + 0.983874i 0.0651586 + 0.0376193i
\(685\) −33.9001 31.0470i −1.29525 1.18625i
\(686\) −0.981079 + 0.566426i −0.0374578 + 0.0216263i
\(687\) −22.1841 + 12.8080i −0.846376 + 0.488655i
\(688\) 2.84552 + 4.92859i 0.108484 + 0.187901i
\(689\) 0.489313i 0.0186414i
\(690\) −4.84067 4.43328i −0.184281 0.168772i
\(691\) 4.52772 + 7.84224i 0.172243 + 0.298333i 0.939204 0.343361i \(-0.111565\pi\)
−0.766961 + 0.641694i \(0.778232\pi\)
\(692\) 4.98849i 0.189634i
\(693\) 0.318536i 0.0121002i
\(694\) 12.6100 + 21.8412i 0.478669 + 0.829079i
\(695\) 28.3794 + 6.28361i 1.07649 + 0.238351i
\(696\) 1.32997 2.30357i 0.0504123 0.0873166i
\(697\) −8.38373 −0.317556
\(698\) −4.14403 + 7.17766i −0.156854 + 0.271679i
\(699\) 1.72390 2.98587i 0.0652037 0.112936i
\(700\) 0.232349 + 0.331452i 0.00878197 + 0.0125277i
\(701\) −16.7531 + 9.67242i −0.632757 + 0.365322i −0.781819 0.623505i \(-0.785708\pi\)
0.149062 + 0.988828i \(0.452375\pi\)
\(702\) 3.57159i 0.134801i
\(703\) −8.35514 + 8.57069i −0.315120 + 0.323250i
\(704\) −3.93468 −0.148294
\(705\) 7.25983 + 23.0038i 0.273421 + 0.866373i
\(706\) 14.1316 24.4767i 0.531851 0.921192i
\(707\) −0.399388 0.230587i −0.0150205 0.00867211i
\(708\) −1.42351 + 2.46559i −0.0534987 + 0.0926625i
\(709\) 46.2387i 1.73653i 0.496100 + 0.868265i \(0.334765\pi\)
−0.496100 + 0.868265i \(0.665235\pi\)
\(710\) 10.5414 11.5101i 0.395612 0.431966i
\(711\) 4.56180i 0.171081i
\(712\) −11.3025 + 6.52551i −0.423580 + 0.244554i
\(713\) 17.8488i 0.668443i
\(714\) −0.0912049 −0.00341326
\(715\) 9.45727 + 29.9667i 0.353682 + 1.12069i
\(716\) −8.05194 4.64879i −0.300915 0.173734i
\(717\) −14.2422 −0.531883
\(718\) −2.25969 3.91389i −0.0843307 0.146065i
\(719\) −12.4040 21.4844i −0.462592 0.801233i 0.536497 0.843902i \(-0.319747\pi\)
−0.999089 + 0.0426691i \(0.986414\pi\)
\(720\) −0.672968 2.13240i −0.0250800 0.0794697i
\(721\) −0.472660 0.272891i −0.0176028 0.0101630i
\(722\) −7.56399 + 13.1012i −0.281502 + 0.487576i
\(723\) 10.3360 + 17.9025i 0.384401 + 0.665801i
\(724\) 3.79019 + 6.56480i 0.140861 + 0.243979i
\(725\) 13.2484 1.16622i 0.492035 0.0433123i
\(726\) 4.48174i 0.166333i
\(727\) 3.14633 5.44961i 0.116691 0.202115i −0.801763 0.597641i \(-0.796105\pi\)
0.918454 + 0.395527i \(0.129438\pi\)
\(728\) 0.250404 0.144571i 0.00928058 0.00535815i
\(729\) −1.00000 −0.0370370
\(730\) 2.89340 13.0678i 0.107089 0.483661i
\(731\) −3.20576 5.55255i −0.118569 0.205368i
\(732\) 9.63722 0.356202
\(733\) −19.0928 11.0232i −0.705210 0.407153i 0.104075 0.994569i \(-0.466812\pi\)
−0.809285 + 0.587416i \(0.800145\pi\)
\(734\) 15.0663i 0.556107i
\(735\) 11.5322 + 10.5617i 0.425373 + 0.389573i
\(736\) 1.46775 2.54222i 0.0541021 0.0937077i
\(737\) 12.0474 + 6.95556i 0.443771 + 0.256211i
\(738\) 3.72081 + 6.44463i 0.136965 + 0.237230i
\(739\) 43.2559 1.59120 0.795598 0.605825i \(-0.207157\pi\)
0.795598 + 0.605825i \(0.207157\pi\)
\(740\) 13.5797 0.769907i 0.499198 0.0283024i
\(741\) 7.02798 0.258179
\(742\) 0.00554555 + 0.00960517i 0.000203583 + 0.000352617i
\(743\) 0.357720 + 0.206529i 0.0131235 + 0.00757683i 0.506547 0.862212i \(-0.330922\pi\)
−0.493424 + 0.869789i \(0.664255\pi\)
\(744\) −3.04016 + 5.26570i −0.111458 + 0.193050i
\(745\) 34.1053 37.2393i 1.24952 1.36434i
\(746\) 28.9739i 1.06081i
\(747\) −10.6365 6.14100i −0.389170 0.224687i
\(748\) 4.43281 0.162080
\(749\) −0.0144833 0.0250858i −0.000529207 0.000916614i
\(750\) 6.79905 8.87541i 0.248266 0.324084i
\(751\) 43.8781 1.60114 0.800568 0.599243i \(-0.204531\pi\)
0.800568 + 0.599243i \(0.204531\pi\)
\(752\) −9.34248 + 5.39388i −0.340685 + 0.196695i
\(753\) 4.12273 7.14077i 0.150241 0.260224i
\(754\) 9.50019i 0.345977i
\(755\) −5.37285 17.0247i −0.195538 0.619591i
\(756\) 0.0404780 + 0.0701099i 0.00147217 + 0.00254987i
\(757\) −12.6101 21.8413i −0.458321 0.793835i 0.540551 0.841311i \(-0.318216\pi\)
−0.998872 + 0.0474758i \(0.984882\pi\)
\(758\) 13.4494 23.2950i 0.488503 0.846112i
\(759\) −10.0029 5.77515i −0.363081 0.209625i
\(760\) −4.19602 + 1.32423i −0.152206 + 0.0480349i
\(761\) 13.9826 + 24.2185i 0.506868 + 0.877921i 0.999968 + 0.00794833i \(0.00253006\pi\)
−0.493101 + 0.869972i \(0.664137\pi\)
\(762\) 8.21923 + 14.2361i 0.297751 + 0.515721i
\(763\) −0.102830 −0.00372268
\(764\) −0.0739155 0.0426751i −0.00267417 0.00154393i
\(765\) 0.758166 + 2.40236i 0.0274115 + 0.0868574i
\(766\) 9.66029 0.349041
\(767\) 10.1684i 0.367159i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 51.0104i 1.83948i −0.392527 0.919740i \(-0.628399\pi\)
0.392527 0.919740i \(-0.371601\pi\)
\(770\) 0.525268 + 0.481061i 0.0189293 + 0.0173362i
\(771\) 6.83947i 0.246318i
\(772\) −2.58258 + 4.47316i −0.0929490 + 0.160992i
\(773\) −31.2064 18.0170i −1.12242 0.648028i −0.180400 0.983593i \(-0.557739\pi\)
−0.942017 + 0.335565i \(0.891073\pi\)
\(774\) −2.84552 + 4.92859i −0.102280 + 0.177154i
\(775\) −30.2845 + 2.66585i −1.08785 + 0.0957602i
\(776\) 0.882847