Properties

Label 1110.2.ba.a.529.3
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.3
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.a.619.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.491597 + 2.18136i) q^{5} +1.00000i q^{6} +(-0.916644 - 0.529225i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.491597 + 2.18136i) q^{5} +1.00000i q^{6} +(-0.916644 - 0.529225i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(2.13491 - 0.664945i) q^{10} -0.825600 q^{11} +(0.866025 - 0.500000i) q^{12} +(1.81865 - 3.14999i) q^{13} +1.05845i q^{14} +(1.51642 - 1.64331i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.742138 - 1.28542i) q^{17} +(0.500000 - 0.866025i) q^{18} +(4.75785 + 2.74695i) q^{19} +(-1.64331 - 1.51642i) q^{20} +(0.529225 + 0.916644i) q^{21} +(0.412800 + 0.714991i) q^{22} -2.23982 q^{23} +(-0.866025 - 0.500000i) q^{24} +(-4.51666 - 2.14470i) q^{25} -3.63729 q^{26} -1.00000i q^{27} +(0.916644 - 0.529225i) q^{28} +2.02537i q^{29} +(-2.18136 - 0.491597i) q^{30} +6.27676i q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.714991 + 0.412800i) q^{33} +(-0.742138 + 1.28542i) q^{34} +(1.60505 - 1.73937i) q^{35} -1.00000 q^{36} +(-5.95462 - 1.24197i) q^{37} -5.49389i q^{38} +(-3.14999 + 1.81865i) q^{39} +(-0.491597 + 2.18136i) q^{40} +(-1.42858 + 2.47438i) q^{41} +(0.529225 - 0.916644i) q^{42} -10.6694 q^{43} +(0.412800 - 0.714991i) q^{44} +(-2.13491 + 0.664945i) q^{45} +(1.11991 + 1.93975i) q^{46} +11.7632i q^{47} +1.00000i q^{48} +(-2.93984 - 5.09196i) q^{49} +(0.400968 + 4.98390i) q^{50} +1.48428i q^{51} +(1.81865 + 3.14999i) q^{52} +(-8.00978 + 4.62445i) q^{53} +(-0.866025 + 0.500000i) q^{54} +(0.405862 - 1.80093i) q^{55} +(-0.916644 - 0.529225i) q^{56} +(-2.74695 - 4.75785i) q^{57} +(1.75402 - 1.01268i) q^{58} +(-6.33426 + 3.65709i) q^{59} +(0.664945 + 2.13491i) q^{60} +(-5.60990 - 3.23888i) q^{61} +(5.43583 - 3.13838i) q^{62} -1.05845i q^{63} +1.00000 q^{64} +(5.97722 + 5.51565i) q^{65} -0.825600i q^{66} +(11.2463 + 6.49307i) q^{67} +1.48428 q^{68} +(1.93975 + 1.11991i) q^{69} +(-2.30886 - 0.520331i) q^{70} +(-0.701131 + 1.21439i) q^{71} +(0.500000 + 0.866025i) q^{72} -8.82512i q^{73} +(1.90173 + 5.77784i) q^{74} +(2.83920 + 4.11570i) q^{75} +(-4.75785 + 2.74695i) q^{76} +(0.756782 + 0.436928i) q^{77} +(3.14999 + 1.81865i) q^{78} +(-3.10453 - 1.79240i) q^{79} +(2.13491 - 0.664945i) q^{80} +(-0.500000 + 0.866025i) q^{81} +2.85716 q^{82} +(-13.4101 + 7.74230i) q^{83} -1.05845 q^{84} +(3.16880 - 0.986962i) q^{85} +(5.33471 + 9.23999i) q^{86} +(1.01268 - 1.75402i) q^{87} -0.825600 q^{88} +(-2.86558 + 1.65444i) q^{89} +(1.64331 + 1.51642i) q^{90} +(-3.33410 + 1.92495i) q^{91} +(1.11991 - 1.93975i) q^{92} +(3.13838 - 5.43583i) q^{93} +(10.1872 - 5.88160i) q^{94} +(-8.33102 + 9.02819i) q^{95} +(0.866025 - 0.500000i) q^{96} +5.18358 q^{97} +(-2.93984 + 5.09196i) q^{98} +(-0.412800 - 0.714991i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} - 14q^{13} - 2q^{15} - 18q^{16} + 18q^{18} + 6q^{19} - 4q^{20} - 2q^{22} - 20q^{23} + 4q^{25} + 28q^{26} - 2q^{30} - 18q^{32} - 6q^{33} - 40q^{35} - 36q^{36} + 20q^{37} + 6q^{39} + 2q^{40} + 10q^{41} - 2q^{44} - 2q^{45} + 10q^{46} + 10q^{49} - 2q^{50} - 14q^{52} - 12q^{53} + 56q^{55} + 8q^{57} + 30q^{58} + 18q^{59} + 4q^{60} - 6q^{61} - 12q^{62} + 36q^{64} + 40q^{65} + 36q^{67} + 12q^{69} + 20q^{70} - 24q^{71} + 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} - 24q^{77} - 6q^{78} + 2q^{80} - 18q^{81} - 20q^{82} + 36q^{83} + 26q^{85} - 10q^{87} + 4q^{88} + 4q^{90} - 36q^{91} + 10q^{92} + 12q^{93} + 12q^{94} - 30q^{95} + 52q^{97} + 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.491597 + 2.18136i −0.219849 + 0.975534i
\(6\) 1.00000i 0.408248i
\(7\) −0.916644 0.529225i −0.346459 0.200028i 0.316666 0.948537i \(-0.397437\pi\)
−0.663125 + 0.748509i \(0.730770\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 2.13491 0.664945i 0.675118 0.210274i
\(11\) −0.825600 −0.248928 −0.124464 0.992224i \(-0.539721\pi\)
−0.124464 + 0.992224i \(0.539721\pi\)
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) 1.81865 3.14999i 0.504402 0.873649i −0.495585 0.868559i \(-0.665046\pi\)
0.999987 0.00509014i \(-0.00162025\pi\)
\(14\) 1.05845i 0.282883i
\(15\) 1.51642 1.64331i 0.391537 0.424302i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.742138 1.28542i −0.179995 0.311760i 0.761884 0.647714i \(-0.224275\pi\)
−0.941879 + 0.335954i \(0.890941\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) 4.75785 + 2.74695i 1.09153 + 0.630193i 0.933982 0.357319i \(-0.116309\pi\)
0.157543 + 0.987512i \(0.449643\pi\)
\(20\) −1.64331 1.51642i −0.367456 0.339081i
\(21\) 0.529225 + 0.916644i 0.115486 + 0.200028i
\(22\) 0.412800 + 0.714991i 0.0880093 + 0.152437i
\(23\) −2.23982 −0.467036 −0.233518 0.972353i \(-0.575024\pi\)
−0.233518 + 0.972353i \(0.575024\pi\)
\(24\) −0.866025 0.500000i −0.176777 0.102062i
\(25\) −4.51666 2.14470i −0.903333 0.428940i
\(26\) −3.63729 −0.713332
\(27\) 1.00000i 0.192450i
\(28\) 0.916644 0.529225i 0.173229 0.100014i
\(29\) 2.02537i 0.376101i 0.982159 + 0.188050i \(0.0602168\pi\)
−0.982159 + 0.188050i \(0.939783\pi\)
\(30\) −2.18136 0.491597i −0.398260 0.0897529i
\(31\) 6.27676i 1.12734i 0.826000 + 0.563669i \(0.190611\pi\)
−0.826000 + 0.563669i \(0.809389\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0.714991 + 0.412800i 0.124464 + 0.0718593i
\(34\) −0.742138 + 1.28542i −0.127276 + 0.220448i
\(35\) 1.60505 1.73937i 0.271303 0.294007i
\(36\) −1.00000 −0.166667
\(37\) −5.95462 1.24197i −0.978934 0.204179i
\(38\) 5.49389i 0.891227i
\(39\) −3.14999 + 1.81865i −0.504402 + 0.291216i
\(40\) −0.491597 + 2.18136i −0.0777283 + 0.344903i
\(41\) −1.42858 + 2.47438i −0.223107 + 0.386433i −0.955750 0.294181i \(-0.904953\pi\)
0.732643 + 0.680613i \(0.238287\pi\)
\(42\) 0.529225 0.916644i 0.0816612 0.141441i
\(43\) −10.6694 −1.62707 −0.813536 0.581515i \(-0.802460\pi\)
−0.813536 + 0.581515i \(0.802460\pi\)
\(44\) 0.412800 0.714991i 0.0622319 0.107789i
\(45\) −2.13491 + 0.664945i −0.318254 + 0.0991241i
\(46\) 1.11991 + 1.93975i 0.165122 + 0.286000i
\(47\) 11.7632i 1.71584i 0.513783 + 0.857920i \(0.328244\pi\)
−0.513783 + 0.857920i \(0.671756\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.93984 5.09196i −0.419977 0.727422i
\(50\) 0.400968 + 4.98390i 0.0567054 + 0.704829i
\(51\) 1.48428i 0.207840i
\(52\) 1.81865 + 3.14999i 0.252201 + 0.436825i
\(53\) −8.00978 + 4.62445i −1.10023 + 0.635217i −0.936281 0.351252i \(-0.885756\pi\)
−0.163947 + 0.986469i \(0.552423\pi\)
\(54\) −0.866025 + 0.500000i −0.117851 + 0.0680414i
\(55\) 0.405862 1.80093i 0.0547265 0.242837i
\(56\) −0.916644 0.529225i −0.122492 0.0707206i
\(57\) −2.74695 4.75785i −0.363842 0.630193i
\(58\) 1.75402 1.01268i 0.230314 0.132972i
\(59\) −6.33426 + 3.65709i −0.824651 + 0.476112i −0.852018 0.523513i \(-0.824621\pi\)
0.0273670 + 0.999625i \(0.491288\pi\)
\(60\) 0.664945 + 2.13491i 0.0858440 + 0.275616i
\(61\) −5.60990 3.23888i −0.718274 0.414696i 0.0958432 0.995396i \(-0.469445\pi\)
−0.814117 + 0.580701i \(0.802779\pi\)
\(62\) 5.43583 3.13838i 0.690351 0.398574i
\(63\) 1.05845i 0.133352i
\(64\) 1.00000 0.125000
\(65\) 5.97722 + 5.51565i 0.741383 + 0.684132i
\(66\) 0.825600i 0.101624i
\(67\) 11.2463 + 6.49307i 1.37396 + 0.793255i 0.991424 0.130686i \(-0.0417179\pi\)
0.382535 + 0.923941i \(0.375051\pi\)
\(68\) 1.48428 0.179995
\(69\) 1.93975 + 1.11991i 0.233518 + 0.134822i
\(70\) −2.30886 0.520331i −0.275962 0.0621914i
\(71\) −0.701131 + 1.21439i −0.0832089 + 0.144122i −0.904627 0.426205i \(-0.859850\pi\)
0.821418 + 0.570327i \(0.193184\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 8.82512i 1.03290i −0.856317 0.516451i \(-0.827253\pi\)
0.856317 0.516451i \(-0.172747\pi\)
\(74\) 1.90173 + 5.77784i 0.221072 + 0.671660i
\(75\) 2.83920 + 4.11570i 0.327842 + 0.475240i
\(76\) −4.75785 + 2.74695i −0.545763 + 0.315096i
\(77\) 0.756782 + 0.436928i 0.0862433 + 0.0497926i
\(78\) 3.14999 + 1.81865i 0.356666 + 0.205921i
\(79\) −3.10453 1.79240i −0.349287 0.201661i 0.315084 0.949064i \(-0.397967\pi\)
−0.664371 + 0.747403i \(0.731300\pi\)
\(80\) 2.13491 0.664945i 0.238690 0.0743431i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 2.85716 0.315521
\(83\) −13.4101 + 7.74230i −1.47195 + 0.849828i −0.999503 0.0315331i \(-0.989961\pi\)
−0.472443 + 0.881361i \(0.656628\pi\)
\(84\) −1.05845 −0.115486
\(85\) 3.16880 0.986962i 0.343705 0.107051i
\(86\) 5.33471 + 9.23999i 0.575257 + 0.996374i
\(87\) 1.01268 1.75402i 0.108571 0.188050i
\(88\) −0.825600 −0.0880093
\(89\) −2.86558 + 1.65444i −0.303751 + 0.175371i −0.644127 0.764919i \(-0.722779\pi\)
0.340376 + 0.940289i \(0.389446\pi\)
\(90\) 1.64331 + 1.51642i 0.173221 + 0.159844i
\(91\) −3.33410 + 1.92495i −0.349509 + 0.201789i
\(92\) 1.11991 1.93975i 0.116759 0.202232i
\(93\) 3.13838 5.43583i 0.325435 0.563669i
\(94\) 10.1872 5.88160i 1.05073 0.606641i
\(95\) −8.33102 + 9.02819i −0.854745 + 0.926273i
\(96\) 0.866025 0.500000i 0.0883883 0.0510310i
\(97\) 5.18358 0.526313 0.263157 0.964753i \(-0.415236\pi\)
0.263157 + 0.964753i \(0.415236\pi\)
\(98\) −2.93984 + 5.09196i −0.296969 + 0.514365i
\(99\) −0.412800 0.714991i −0.0414880 0.0718593i
\(100\) 4.11570 2.83920i 0.411570 0.283920i
\(101\) −10.5205 −1.04682 −0.523412 0.852080i \(-0.675341\pi\)
−0.523412 + 0.852080i \(0.675341\pi\)
\(102\) 1.28542 0.742138i 0.127276 0.0734826i
\(103\) 16.1758 1.59385 0.796923 0.604081i \(-0.206460\pi\)
0.796923 + 0.604081i \(0.206460\pi\)
\(104\) 1.81865 3.14999i 0.178333 0.308882i
\(105\) −2.25970 + 0.703810i −0.220524 + 0.0686849i
\(106\) 8.00978 + 4.62445i 0.777979 + 0.449166i
\(107\) 12.2112 + 7.05015i 1.18050 + 0.681563i 0.956131 0.292940i \(-0.0946337\pi\)
0.224372 + 0.974504i \(0.427967\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −4.54656 + 2.62496i −0.435481 + 0.251425i −0.701679 0.712493i \(-0.747566\pi\)
0.266198 + 0.963918i \(0.414233\pi\)
\(110\) −1.76258 + 0.548978i −0.168056 + 0.0523430i
\(111\) 4.53587 + 4.05289i 0.430525 + 0.384683i
\(112\) 1.05845i 0.100014i
\(113\) −1.67721 2.90502i −0.157779 0.273281i 0.776288 0.630378i \(-0.217100\pi\)
−0.934067 + 0.357097i \(0.883767\pi\)
\(114\) −2.74695 + 4.75785i −0.257275 + 0.445613i
\(115\) 1.10109 4.88587i 0.102677 0.455609i
\(116\) −1.75402 1.01268i −0.162856 0.0940252i
\(117\) 3.63729 0.336268
\(118\) 6.33426 + 3.65709i 0.583116 + 0.336662i
\(119\) 1.57103i 0.144016i
\(120\) 1.51642 1.64331i 0.138429 0.150013i
\(121\) −10.3184 −0.938035
\(122\) 6.47775i 0.586468i
\(123\) 2.47438 1.42858i 0.223107 0.128811i
\(124\) −5.43583 3.13838i −0.488152 0.281835i
\(125\) 6.89874 8.79815i 0.617042 0.786930i
\(126\) −0.916644 + 0.529225i −0.0816612 + 0.0471471i
\(127\) −5.43873 + 3.14005i −0.482609 + 0.278634i −0.721503 0.692411i \(-0.756548\pi\)
0.238894 + 0.971046i \(0.423215\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 9.23999 + 5.33471i 0.813536 + 0.469695i
\(130\) 1.78808 7.93425i 0.156825 0.695879i
\(131\) 11.2829 6.51420i 0.985794 0.569148i 0.0817796 0.996650i \(-0.473940\pi\)
0.904014 + 0.427502i \(0.140606\pi\)
\(132\) −0.714991 + 0.412800i −0.0622319 + 0.0359296i
\(133\) −2.90750 5.03594i −0.252113 0.436672i
\(134\) 12.9861i 1.12183i
\(135\) 2.18136 + 0.491597i 0.187742 + 0.0423099i
\(136\) −0.742138 1.28542i −0.0636378 0.110224i
\(137\) 7.15737i 0.611496i 0.952113 + 0.305748i \(0.0989064\pi\)
−0.952113 + 0.305748i \(0.901094\pi\)
\(138\) 2.23982i 0.190667i
\(139\) −5.76530 9.98579i −0.489006 0.846983i 0.510914 0.859632i \(-0.329307\pi\)
−0.999920 + 0.0126486i \(0.995974\pi\)
\(140\) 0.703810 + 2.25970i 0.0594828 + 0.190979i
\(141\) 5.88160 10.1872i 0.495320 0.857920i
\(142\) 1.40226 0.117675
\(143\) −1.50147 + 2.60063i −0.125560 + 0.217476i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −4.41805 0.995663i −0.366899 0.0826853i
\(146\) −7.64277 + 4.41256i −0.632520 + 0.365186i
\(147\) 5.87968i 0.484948i
\(148\) 4.05289 4.53587i 0.333145 0.372846i
\(149\) −3.03860 −0.248932 −0.124466 0.992224i \(-0.539722\pi\)
−0.124466 + 0.992224i \(0.539722\pi\)
\(150\) 2.14470 4.51666i 0.175114 0.368784i
\(151\) −4.20011 + 7.27481i −0.341800 + 0.592015i −0.984767 0.173879i \(-0.944370\pi\)
0.642967 + 0.765894i \(0.277703\pi\)
\(152\) 4.75785 + 2.74695i 0.385913 + 0.222807i
\(153\) 0.742138 1.28542i 0.0599983 0.103920i
\(154\) 0.873856i 0.0704173i
\(155\) −13.6919 3.08563i −1.09976 0.247844i
\(156\) 3.63729i 0.291216i
\(157\) 12.7985 7.38920i 1.02143 0.589722i 0.106911 0.994269i \(-0.465904\pi\)
0.914517 + 0.404546i \(0.132571\pi\)
\(158\) 3.58480i 0.285191i
\(159\) 9.24890 0.733485
\(160\) −1.64331 1.51642i −0.129915 0.119883i
\(161\) 2.05312 + 1.18537i 0.161809 + 0.0934203i
\(162\) 1.00000 0.0785674
\(163\) 1.76345 + 3.05439i 0.138124 + 0.239238i 0.926787 0.375588i \(-0.122559\pi\)
−0.788662 + 0.614827i \(0.789226\pi\)
\(164\) −1.42858 2.47438i −0.111554 0.193216i
\(165\) −1.25195 + 1.35672i −0.0974644 + 0.105621i
\(166\) 13.4101 + 7.74230i 1.04082 + 0.600919i
\(167\) −10.7385 + 18.5996i −0.830969 + 1.43928i 0.0663009 + 0.997800i \(0.478880\pi\)
−0.897270 + 0.441482i \(0.854453\pi\)
\(168\) 0.529225 + 0.916644i 0.0408306 + 0.0707206i
\(169\) −0.114948 0.199096i −0.00884218 0.0153151i
\(170\) −2.43913 2.25078i −0.187073 0.172627i
\(171\) 5.49389i 0.420128i
\(172\) 5.33471 9.23999i 0.406768 0.704543i
\(173\) −2.69931 + 1.55845i −0.205225 + 0.118487i −0.599090 0.800681i \(-0.704471\pi\)
0.393865 + 0.919168i \(0.371138\pi\)
\(174\) −2.02537 −0.153543
\(175\) 3.00515 + 4.35626i 0.227168 + 0.329302i
\(176\) 0.412800 + 0.714991i 0.0311160 + 0.0538944i
\(177\) 7.31417 0.549767
\(178\) 2.86558 + 1.65444i 0.214784 + 0.124006i
\(179\) 10.0254i 0.749333i 0.927160 + 0.374666i \(0.122243\pi\)
−0.927160 + 0.374666i \(0.877757\pi\)
\(180\) 0.491597 2.18136i 0.0366415 0.162589i
\(181\) 0.887705 1.53755i 0.0659826 0.114285i −0.831147 0.556053i \(-0.812315\pi\)
0.897129 + 0.441768i \(0.145648\pi\)
\(182\) 3.33410 + 1.92495i 0.247140 + 0.142686i
\(183\) 3.23888 + 5.60990i 0.239425 + 0.414696i
\(184\) −2.23982 −0.165122
\(185\) 5.63646 12.3786i 0.414401 0.910094i
\(186\) −6.27676 −0.460234
\(187\) 0.612709 + 1.06124i 0.0448058 + 0.0776058i
\(188\) −10.1872 5.88160i −0.742981 0.428960i
\(189\) −0.529225 + 0.916644i −0.0384954 + 0.0666761i
\(190\) 11.9842 + 2.70078i 0.869422 + 0.195935i
\(191\) 19.2656i 1.39401i −0.717066 0.697006i \(-0.754515\pi\)
0.717066 0.697006i \(-0.245485\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) −18.5203 −1.33312 −0.666561 0.745451i \(-0.732234\pi\)
−0.666561 + 0.745451i \(0.732234\pi\)
\(194\) −2.59179 4.48912i −0.186080 0.322300i
\(195\) −2.41860 7.76530i −0.173199 0.556085i
\(196\) 5.87968 0.419977
\(197\) −4.21694 + 2.43465i −0.300444 + 0.173462i −0.642642 0.766166i \(-0.722162\pi\)
0.342198 + 0.939628i \(0.388829\pi\)
\(198\) −0.412800 + 0.714991i −0.0293364 + 0.0508122i
\(199\) 17.8813i 1.26757i −0.773509 0.633785i \(-0.781500\pi\)
0.773509 0.633785i \(-0.218500\pi\)
\(200\) −4.51666 2.14470i −0.319376 0.151653i
\(201\) −6.49307 11.2463i −0.457986 0.793255i
\(202\) 5.26023 + 9.11098i 0.370108 + 0.641046i
\(203\) 1.07187 1.85654i 0.0752308 0.130304i
\(204\) −1.28542 0.742138i −0.0899975 0.0519601i
\(205\) −4.69522 4.33265i −0.327928 0.302605i
\(206\) −8.08789 14.0086i −0.563510 0.976028i
\(207\) −1.11991 1.93975i −0.0778393 0.134822i
\(208\) −3.63729 −0.252201
\(209\) −3.92808 2.26788i −0.271711 0.156872i
\(210\) 1.73937 + 1.60505i 0.120028 + 0.110759i
\(211\) −0.395745 −0.0272442 −0.0136221 0.999907i \(-0.504336\pi\)
−0.0136221 + 0.999907i \(0.504336\pi\)
\(212\) 9.24890i 0.635217i
\(213\) 1.21439 0.701131i 0.0832089 0.0480407i
\(214\) 14.1003i 0.963876i
\(215\) 5.24506 23.2739i 0.357710 1.58726i
\(216\) 1.00000i 0.0680414i
\(217\) 3.32182 5.75355i 0.225500 0.390577i
\(218\) 4.54656 + 2.62496i 0.307932 + 0.177785i
\(219\) −4.41256 + 7.64277i −0.298173 + 0.516451i
\(220\) 1.35672 + 1.25195i 0.0914701 + 0.0844066i
\(221\) −5.39875 −0.363159
\(222\) 1.24197 5.95462i 0.0833557 0.399648i
\(223\) 25.5883i 1.71352i −0.515713 0.856761i \(-0.672473\pi\)
0.515713 0.856761i \(-0.327527\pi\)
\(224\) 0.916644 0.529225i 0.0612459 0.0353603i
\(225\) −0.400968 4.98390i −0.0267312 0.332260i
\(226\) −1.67721 + 2.90502i −0.111567 + 0.193239i
\(227\) −11.6633 + 20.2013i −0.774117 + 1.34081i 0.161172 + 0.986926i \(0.448473\pi\)
−0.935289 + 0.353884i \(0.884861\pi\)
\(228\) 5.49389 0.363842
\(229\) −11.6531 + 20.1837i −0.770055 + 1.33377i 0.167477 + 0.985876i \(0.446438\pi\)
−0.937532 + 0.347899i \(0.886895\pi\)
\(230\) −4.78183 + 1.48936i −0.315304 + 0.0982055i
\(231\) −0.436928 0.756782i −0.0287478 0.0497926i
\(232\) 2.02537i 0.132972i
\(233\) 0.508726i 0.0333277i −0.999861 0.0166639i \(-0.994695\pi\)
0.999861 0.0166639i \(-0.00530452\pi\)
\(234\) −1.81865 3.14999i −0.118889 0.205921i
\(235\) −25.6598 5.78276i −1.67386 0.377226i
\(236\) 7.31417i 0.476112i
\(237\) 1.79240 + 3.10453i 0.116429 + 0.201661i
\(238\) 1.36055 0.785516i 0.0881916 0.0509174i
\(239\) 5.12135 2.95681i 0.331273 0.191260i −0.325133 0.945668i \(-0.605409\pi\)
0.656406 + 0.754408i \(0.272076\pi\)
\(240\) −2.18136 0.491597i −0.140806 0.0317324i
\(241\) 1.48624 + 0.858078i 0.0957368 + 0.0552737i 0.547104 0.837065i \(-0.315730\pi\)
−0.451367 + 0.892338i \(0.649064\pi\)
\(242\) 5.15919 + 8.93598i 0.331645 + 0.574427i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 5.60990 3.23888i 0.359137 0.207348i
\(245\) 12.5526 3.90966i 0.801957 0.249779i
\(246\) −2.47438 1.42858i −0.157761 0.0910831i
\(247\) 17.3057 9.99145i 1.10113 0.635740i
\(248\) 6.27676i 0.398574i
\(249\) 15.4846 0.981297
\(250\) −11.0688 1.57541i −0.700052 0.0996379i
\(251\) 16.7132i 1.05493i −0.849576 0.527465i \(-0.823142\pi\)
0.849576 0.527465i \(-0.176858\pi\)
\(252\) 0.916644 + 0.529225i 0.0577432 + 0.0333380i
\(253\) 1.84920 0.116258
\(254\) 5.43873 + 3.14005i 0.341256 + 0.197024i
\(255\) −3.23774 0.729666i −0.202755 0.0456934i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.47817 2.56026i −0.0922055 0.159705i 0.816233 0.577722i \(-0.196058\pi\)
−0.908439 + 0.418018i \(0.862725\pi\)
\(258\) 10.6694i 0.664249i
\(259\) 4.80099 + 4.28978i 0.298319 + 0.266554i
\(260\) −7.76530 + 2.41860i −0.481583 + 0.149995i
\(261\) −1.75402 + 1.01268i −0.108571 + 0.0626835i
\(262\) −11.2829 6.51420i −0.697062 0.402449i
\(263\) −15.9056 9.18313i −0.980784 0.566256i −0.0782774 0.996932i \(-0.524942\pi\)
−0.902507 + 0.430676i \(0.858275\pi\)
\(264\) 0.714991 + 0.412800i 0.0440046 + 0.0254061i
\(265\) −6.15001 19.7456i −0.377792 1.21296i
\(266\) −2.90750 + 5.03594i −0.178271 + 0.308774i
\(267\) 3.30888 0.202500
\(268\) −11.2463 + 6.49307i −0.686979 + 0.396628i
\(269\) 23.1442 1.41113 0.705563 0.708648i \(-0.250694\pi\)
0.705563 + 0.708648i \(0.250694\pi\)
\(270\) −0.664945 2.13491i −0.0404672 0.129927i
\(271\) 8.12733 + 14.0769i 0.493700 + 0.855113i 0.999974 0.00725939i \(-0.00231076\pi\)
−0.506274 + 0.862373i \(0.668977\pi\)
\(272\) −0.742138 + 1.28542i −0.0449987 + 0.0779401i
\(273\) 3.84989 0.233006
\(274\) 6.19847 3.57869i 0.374463 0.216196i
\(275\) 3.72896 + 1.77066i 0.224865 + 0.106775i
\(276\) −1.93975 + 1.11991i −0.116759 + 0.0674108i
\(277\) −2.33406 + 4.04271i −0.140240 + 0.242903i −0.927587 0.373607i \(-0.878121\pi\)
0.787347 + 0.616510i \(0.211454\pi\)
\(278\) −5.76530 + 9.98579i −0.345779 + 0.598908i
\(279\) −5.43583 + 3.13838i −0.325435 + 0.187890i
\(280\) 1.60505 1.73937i 0.0959201 0.103947i
\(281\) 12.2372 7.06515i 0.730010 0.421471i −0.0884158 0.996084i \(-0.528180\pi\)
0.818426 + 0.574612i \(0.194847\pi\)
\(282\) −11.7632 −0.700489
\(283\) −5.01437 + 8.68515i −0.298073 + 0.516278i −0.975695 0.219132i \(-0.929677\pi\)
0.677622 + 0.735411i \(0.263011\pi\)
\(284\) −0.701131 1.21439i −0.0416045 0.0720611i
\(285\) 11.7290 3.65313i 0.694765 0.216393i
\(286\) 3.00295 0.177568
\(287\) 2.61900 1.51208i 0.154595 0.0892554i
\(288\) −1.00000 −0.0589256
\(289\) 7.39846 12.8145i 0.435204 0.753795i
\(290\) 1.34676 + 4.32398i 0.0790842 + 0.253913i
\(291\) −4.48912 2.59179i −0.263157 0.151934i
\(292\) 7.64277 + 4.41256i 0.447260 + 0.258225i
\(293\) −0.821707 0.474413i −0.0480046 0.0277155i 0.475806 0.879550i \(-0.342157\pi\)
−0.523810 + 0.851835i \(0.675490\pi\)
\(294\) 5.09196 2.93984i 0.296969 0.171455i
\(295\) −4.86352 15.6151i −0.283165 0.909147i
\(296\) −5.95462 1.24197i −0.346105 0.0721881i
\(297\) 0.825600i 0.0479062i
\(298\) 1.51930 + 2.63151i 0.0880107 + 0.152439i
\(299\) −4.07345 + 7.05542i −0.235574 + 0.408026i
\(300\) −4.98390 + 0.400968i −0.287745 + 0.0231499i
\(301\) 9.78007 + 5.64652i 0.563714 + 0.325460i
\(302\) 8.40022 0.483379
\(303\) 9.11098 + 5.26023i 0.523412 + 0.302192i
\(304\) 5.49389i 0.315096i
\(305\) 9.82296 10.6450i 0.562461 0.609530i
\(306\) −1.48428 −0.0848504
\(307\) 12.8973i 0.736088i 0.929808 + 0.368044i \(0.119972\pi\)
−0.929808 + 0.368044i \(0.880028\pi\)
\(308\) −0.756782 + 0.436928i −0.0431216 + 0.0248963i
\(309\) −14.0086 8.08789i −0.796923 0.460104i
\(310\) 4.17370 + 13.4003i 0.237050 + 0.761087i
\(311\) −22.1356 + 12.7800i −1.25520 + 0.724688i −0.972137 0.234414i \(-0.924683\pi\)
−0.283060 + 0.959102i \(0.591349\pi\)
\(312\) −3.14999 + 1.81865i −0.178333 + 0.102961i
\(313\) 2.35334 + 4.07611i 0.133019 + 0.230395i 0.924839 0.380359i \(-0.124200\pi\)
−0.791820 + 0.610754i \(0.790866\pi\)
\(314\) −12.7985 7.38920i −0.722259 0.416997i
\(315\) 2.30886 + 0.520331i 0.130090 + 0.0293173i
\(316\) 3.10453 1.79240i 0.174643 0.100830i
\(317\) 21.7227 12.5416i 1.22007 0.704407i 0.255137 0.966905i \(-0.417880\pi\)
0.964933 + 0.262498i \(0.0845462\pi\)
\(318\) −4.62445 8.00978i −0.259326 0.449166i
\(319\) 1.67214i 0.0936219i
\(320\) −0.491597 + 2.18136i −0.0274811 + 0.121942i
\(321\) −7.05015 12.2112i −0.393501 0.681563i
\(322\) 2.37074i 0.132116i
\(323\) 8.15446i 0.453726i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −14.9700 + 10.3270i −0.830386 + 0.572838i
\(326\) 1.76345 3.05439i 0.0976686 0.169167i
\(327\) 5.24991 0.290321
\(328\) −1.42858 + 2.47438i −0.0788803 + 0.136625i
\(329\) 6.22538 10.7827i 0.343216 0.594468i
\(330\) 1.80093 + 0.405862i 0.0991380 + 0.0223420i
\(331\) 7.92971 4.57822i 0.435856 0.251642i −0.265982 0.963978i \(-0.585696\pi\)
0.701838 + 0.712336i \(0.252363\pi\)
\(332\) 15.4846i 0.849828i
\(333\) −1.90173 5.77784i −0.104214 0.316624i
\(334\) 21.4770 1.17517
\(335\) −19.6924 + 21.3403i −1.07591 + 1.16595i
\(336\) 0.529225 0.916644i 0.0288716 0.0500070i
\(337\) 8.94213 + 5.16274i 0.487109 + 0.281232i 0.723374 0.690456i \(-0.242590\pi\)
−0.236266 + 0.971689i \(0.575924\pi\)
\(338\) −0.114948 + 0.199096i −0.00625236 + 0.0108294i
\(339\) 3.35443i 0.182188i
\(340\) −0.729666 + 3.23774i −0.0395717 + 0.175591i
\(341\) 5.18209i 0.280626i
\(342\) 4.75785 2.74695i 0.257275 0.148538i
\(343\) 13.6325i 0.736086i
\(344\) −10.6694 −0.575257
\(345\) −3.39651 + 3.68074i −0.182862 + 0.198164i
\(346\) 2.69931 + 1.55845i 0.145116 + 0.0837827i
\(347\) 25.3284 1.35970 0.679850 0.733351i \(-0.262045\pi\)
0.679850 + 0.733351i \(0.262045\pi\)
\(348\) 1.01268 + 1.75402i 0.0542855 + 0.0940252i
\(349\) 11.2916 + 19.5576i 0.604426 + 1.04690i 0.992142 + 0.125117i \(0.0399308\pi\)
−0.387716 + 0.921779i \(0.626736\pi\)
\(350\) 2.27006 4.78066i 0.121340 0.255537i
\(351\) −3.14999 1.81865i −0.168134 0.0970722i
\(352\) 0.412800 0.714991i 0.0220023 0.0381091i
\(353\) −11.5240 19.9601i −0.613360 1.06237i −0.990670 0.136283i \(-0.956484\pi\)
0.377310 0.926087i \(-0.376849\pi\)
\(354\) −3.65709 6.33426i −0.194372 0.336662i
\(355\) −2.30436 2.12641i −0.122303 0.112858i
\(356\) 3.30888i 0.175371i
\(357\) 0.785516 1.36055i 0.0415739 0.0720081i
\(358\) 8.68224 5.01269i 0.458871 0.264929i
\(359\) −15.2488 −0.804799 −0.402400 0.915464i \(-0.631824\pi\)
−0.402400 + 0.915464i \(0.631824\pi\)
\(360\) −2.13491 + 0.664945i −0.112520 + 0.0350457i
\(361\) 5.59142 + 9.68463i 0.294285 + 0.509717i
\(362\) −1.77541 −0.0933135
\(363\) 8.93598 + 5.15919i 0.469017 + 0.270787i
\(364\) 3.84989i 0.201789i
\(365\) 19.2508 + 4.33840i 1.00763 + 0.227082i
\(366\) 3.23888 5.60990i 0.169299 0.293234i
\(367\) 5.59808 + 3.23205i 0.292217 + 0.168712i 0.638941 0.769255i \(-0.279373\pi\)
−0.346724 + 0.937967i \(0.612706\pi\)
\(368\) 1.11991 + 1.93975i 0.0583795 + 0.101116i
\(369\) −2.85716 −0.148738
\(370\) −13.5384 + 1.30799i −0.703830 + 0.0679993i
\(371\) 9.78949 0.508245
\(372\) 3.13838 + 5.43583i 0.162717 + 0.281835i
\(373\) 22.1461 + 12.7860i 1.14668 + 0.662036i 0.948076 0.318044i \(-0.103026\pi\)
0.198604 + 0.980080i \(0.436359\pi\)
\(374\) 0.612709 1.06124i 0.0316824 0.0548756i
\(375\) −10.3736 + 4.17005i −0.535688 + 0.215340i
\(376\) 11.7632i 0.606641i
\(377\) 6.37988 + 3.68342i 0.328580 + 0.189706i
\(378\) 1.05845 0.0544408
\(379\) 0.395361 + 0.684786i 0.0203084 + 0.0351751i 0.876001 0.482309i \(-0.160202\pi\)
−0.855693 + 0.517484i \(0.826869\pi\)
\(380\) −3.65313 11.7290i −0.187402 0.601684i
\(381\) 6.28010 0.321739
\(382\) −16.6845 + 9.63281i −0.853654 + 0.492857i
\(383\) −7.08892 + 12.2784i −0.362227 + 0.627396i −0.988327 0.152347i \(-0.951317\pi\)
0.626100 + 0.779743i \(0.284650\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −1.32513 + 1.43602i −0.0675348 + 0.0731864i
\(386\) 9.26016 + 16.0391i 0.471330 + 0.816367i
\(387\) −5.33471 9.23999i −0.271179 0.469695i
\(388\) −2.59179 + 4.48912i −0.131578 + 0.227900i
\(389\) 14.9727 + 8.64452i 0.759149 + 0.438295i 0.828990 0.559264i \(-0.188916\pi\)
−0.0698414 + 0.997558i \(0.522249\pi\)
\(390\) −5.51565 + 5.97722i −0.279296 + 0.302668i
\(391\) 1.66226 + 2.87912i 0.0840641 + 0.145603i
\(392\) −2.93984 5.09196i −0.148484 0.257183i
\(393\) −13.0284 −0.657196
\(394\) 4.21694 + 2.43465i 0.212446 + 0.122656i
\(395\) 5.43605 5.89095i 0.273517 0.296406i
\(396\) 0.825600 0.0414880
\(397\) 5.32580i 0.267294i 0.991029 + 0.133647i \(0.0426689\pi\)
−0.991029 + 0.133647i \(0.957331\pi\)
\(398\) −15.4856 + 8.94064i −0.776225 + 0.448154i
\(399\) 5.81501i 0.291115i
\(400\) 0.400968 + 4.98390i 0.0200484 + 0.249195i
\(401\) 29.8380i 1.49004i −0.667043 0.745019i \(-0.732440\pi\)
0.667043 0.745019i \(-0.267560\pi\)
\(402\) −6.49307 + 11.2463i −0.323845 + 0.560916i
\(403\) 19.7717 + 11.4152i 0.984899 + 0.568632i
\(404\) 5.26023 9.11098i 0.261706 0.453288i
\(405\) −1.64331 1.51642i −0.0816570 0.0753513i
\(406\) −2.14375 −0.106392
\(407\) 4.91613 + 1.02537i 0.243684 + 0.0508258i
\(408\) 1.48428i 0.0734826i
\(409\) −6.17878 + 3.56732i −0.305521 + 0.176393i −0.644921 0.764250i \(-0.723110\pi\)
0.339399 + 0.940642i \(0.389776\pi\)
\(410\) −1.40457 + 6.23251i −0.0693669 + 0.307801i
\(411\) 3.57869 6.19847i 0.176524 0.305748i
\(412\) −8.08789 + 14.0086i −0.398462 + 0.690156i
\(413\) 7.74169 0.380943
\(414\) −1.11991 + 1.93975i −0.0550407 + 0.0953333i
\(415\) −10.2964 33.0583i −0.505431 1.62277i
\(416\) 1.81865 + 3.14999i 0.0891665 + 0.154441i
\(417\) 11.5306i 0.564655i
\(418\) 4.53576i 0.221851i
\(419\) 3.74432 + 6.48535i 0.182922 + 0.316830i 0.942874 0.333149i \(-0.108111\pi\)
−0.759952 + 0.649979i \(0.774778\pi\)
\(420\) 0.520331 2.30886i 0.0253895 0.112661i
\(421\) 11.6772i 0.569114i 0.958659 + 0.284557i \(0.0918465\pi\)
−0.958659 + 0.284557i \(0.908153\pi\)
\(422\) 0.197873 + 0.342726i 0.00963229 + 0.0166836i
\(423\) −10.1872 + 5.88160i −0.495320 + 0.285973i
\(424\) −8.00978 + 4.62445i −0.388989 + 0.224583i
\(425\) 0.595147 + 7.39748i 0.0288689 + 0.358831i
\(426\) −1.21439 0.701131i −0.0588376 0.0339699i
\(427\) 3.42819 + 5.93779i 0.165902 + 0.287350i
\(428\) −12.2112 + 7.05015i −0.590251 + 0.340782i
\(429\) 2.60063 1.50147i 0.125560 0.0724919i
\(430\) −22.7783 + 7.09458i −1.09847 + 0.342131i
\(431\) −12.6642 7.31168i −0.610013 0.352191i 0.162957 0.986633i \(-0.447897\pi\)
−0.772971 + 0.634442i \(0.781230\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 39.9241i 1.91863i −0.282341 0.959314i \(-0.591111\pi\)
0.282341 0.959314i \(-0.408889\pi\)
\(434\) −6.64363 −0.318905
\(435\) 3.32831 + 3.07130i 0.159580 + 0.147257i
\(436\) 5.24991i 0.251425i
\(437\) −10.6568 6.15268i −0.509782 0.294323i
\(438\) 8.82512 0.421680
\(439\) 1.05841 + 0.611072i 0.0505151 + 0.0291649i 0.525045 0.851075i \(-0.324049\pi\)
−0.474530 + 0.880239i \(0.657382\pi\)
\(440\) 0.405862 1.80093i 0.0193487 0.0858560i
\(441\) 2.93984 5.09196i 0.139992 0.242474i
\(442\) 2.69937 + 4.67545i 0.128396 + 0.222389i
\(443\) 7.35235i 0.349321i −0.984629 0.174660i \(-0.944117\pi\)
0.984629 0.174660i \(-0.0558828\pi\)
\(444\) −5.77784 + 1.90173i −0.274204 + 0.0902522i
\(445\) −2.20022 7.06418i −0.104301 0.334874i
\(446\) −22.1602 + 12.7942i −1.04931 + 0.605822i
\(447\) 2.63151 + 1.51930i 0.124466 + 0.0718605i
\(448\) −0.916644 0.529225i −0.0433074 0.0250035i
\(449\) 10.2005 + 5.88927i 0.481392 + 0.277932i 0.720997 0.692939i \(-0.243684\pi\)
−0.239604 + 0.970871i \(0.577018\pi\)
\(450\) −4.11570 + 2.83920i −0.194016 + 0.133841i
\(451\) 1.17944 2.04285i 0.0555375 0.0961939i
\(452\) 3.35443 0.157779
\(453\) 7.27481 4.20011i 0.341800 0.197338i
\(454\) 23.3265 1.09477
\(455\) −2.55996 8.21918i −0.120013 0.385321i
\(456\) −2.74695 4.75785i −0.128638 0.222807i
\(457\) 7.85584 13.6067i 0.367481 0.636496i −0.621690 0.783263i \(-0.713554\pi\)
0.989171 + 0.146768i \(0.0468870\pi\)
\(458\) 23.3061 1.08902
\(459\) −1.28542 + 0.742138i −0.0599983 + 0.0346401i
\(460\) 3.68074 + 3.39651i 0.171615 + 0.158363i
\(461\) −21.3746 + 12.3407i −0.995517 + 0.574762i −0.906919 0.421306i \(-0.861572\pi\)
−0.0885978 + 0.996067i \(0.528239\pi\)
\(462\) −0.436928 + 0.756782i −0.0203277 + 0.0352087i
\(463\) −18.6610 + 32.3218i −0.867249 + 1.50212i −0.00245324 + 0.999997i \(0.500781\pi\)
−0.864796 + 0.502123i \(0.832552\pi\)
\(464\) 1.75402 1.01268i 0.0814282 0.0470126i
\(465\) 10.3147 + 9.51817i 0.478332 + 0.441395i
\(466\) −0.440570 + 0.254363i −0.0204090 + 0.0117831i
\(467\) 9.17134 0.424399 0.212200 0.977226i \(-0.431937\pi\)
0.212200 + 0.977226i \(0.431937\pi\)
\(468\) −1.81865 + 3.14999i −0.0840670 + 0.145608i
\(469\) −6.87259 11.9037i −0.317347 0.549661i
\(470\) 7.82188 + 25.1134i 0.360797 + 1.15840i
\(471\) −14.7784 −0.680953
\(472\) −6.33426 + 3.65709i −0.291558 + 0.168331i
\(473\) 8.80868 0.405023
\(474\) 1.79240 3.10453i 0.0823276 0.142596i
\(475\) −15.5982 22.6112i −0.715696 1.03747i
\(476\) −1.36055 0.785516i −0.0623609 0.0360041i
\(477\) −8.00978 4.62445i −0.366743 0.211739i
\(478\) −5.12135 2.95681i −0.234245 0.135242i
\(479\) −3.81113 + 2.20036i −0.174135 + 0.100537i −0.584534 0.811369i \(-0.698723\pi\)
0.410399 + 0.911906i \(0.365389\pi\)
\(480\) 0.664945 + 2.13491i 0.0303504 + 0.0974449i
\(481\) −14.7415 + 16.4983i −0.672157 + 0.752257i
\(482\) 1.71616i 0.0781688i
\(483\) −1.18537 2.05312i −0.0539362 0.0934203i
\(484\) 5.15919 8.93598i 0.234509 0.406181i
\(485\) −2.54823 + 11.3073i −0.115709 + 0.513437i
\(486\) −0.866025 0.500000i −0.0392837 0.0226805i
\(487\) 21.3719 0.968451 0.484226 0.874943i \(-0.339101\pi\)
0.484226 + 0.874943i \(0.339101\pi\)
\(488\) −5.60990 3.23888i −0.253948 0.146617i
\(489\) 3.52691i 0.159492i
\(490\) −9.66217 8.91604i −0.436492 0.402786i
\(491\) 17.2381 0.777944 0.388972 0.921250i \(-0.372830\pi\)
0.388972 + 0.921250i \(0.372830\pi\)
\(492\) 2.85716i 0.128811i
\(493\) 2.60345 1.50310i 0.117253 0.0676963i
\(494\) −17.3057 9.99145i −0.778620 0.449536i
\(495\) 1.76258 0.548978i 0.0792222 0.0246747i
\(496\) 5.43583 3.13838i 0.244076 0.140917i
\(497\) 1.28538 0.742112i 0.0576570 0.0332883i
\(498\) −7.74230 13.4101i −0.346941 0.600919i
\(499\) 27.1360 + 15.6670i 1.21478 + 0.701351i 0.963796 0.266642i \(-0.0859140\pi\)
0.250979 + 0.967992i \(0.419247\pi\)
\(500\) 4.17005 + 10.3736i 0.186490 + 0.463920i
\(501\) 18.5996 10.7385i 0.830969 0.479760i
\(502\) −14.4741 + 8.35662i −0.646011 + 0.372974i
\(503\) −7.38550 12.7921i −0.329303 0.570370i 0.653070 0.757297i \(-0.273481\pi\)
−0.982374 + 0.186927i \(0.940147\pi\)
\(504\) 1.05845i 0.0471471i
\(505\) 5.17182 22.9489i 0.230143 1.02121i
\(506\) −0.924600 1.60145i −0.0411035 0.0711933i
\(507\) 0.229897i 0.0102101i
\(508\) 6.28010i 0.278634i
\(509\) 10.6815 + 18.5009i 0.473449 + 0.820039i 0.999538 0.0303912i \(-0.00967531\pi\)
−0.526089 + 0.850430i \(0.676342\pi\)
\(510\) 0.986962 + 3.16880i 0.0437034 + 0.140317i
\(511\) −4.67047 + 8.08949i −0.206609 + 0.357858i
\(512\) 1.00000 0.0441942
\(513\) 2.74695 4.75785i 0.121281 0.210064i
\(514\) −1.47817 + 2.56026i −0.0651991 + 0.112928i
\(515\) −7.95196 + 35.2852i −0.350405 + 1.55485i
\(516\) −9.23999 + 5.33471i −0.406768 + 0.234848i
\(517\) 9.71171i 0.427120i
\(518\) 1.31456 6.30267i 0.0577586 0.276923i
\(519\) 3.11690 0.136817
\(520\) 5.97722 + 5.51565i 0.262118 + 0.241877i
\(521\) 16.6844 28.8982i 0.730957 1.26606i −0.225517 0.974239i \(-0.572407\pi\)
0.956474 0.291816i \(-0.0942595\pi\)
\(522\) 1.75402 + 1.01268i 0.0767713 + 0.0443239i
\(523\) −6.52639 + 11.3040i −0.285379 + 0.494291i −0.972701 0.232062i \(-0.925453\pi\)
0.687322 + 0.726353i \(0.258786\pi\)
\(524\) 13.0284i 0.569148i
\(525\) −0.424404 5.27520i −0.0185225 0.230229i
\(526\) 18.3663i 0.800807i
\(527\) 8.06828 4.65822i 0.351460 0.202915i
\(528\) 0.825600i 0.0359296i
\(529\) −17.9832 −0.781878
\(530\) −14.0252 + 15.1989i −0.609215 + 0.660196i
\(531\) −6.33426 3.65709i −0.274884 0.158704i
\(532\) 5.81501 0.252113
\(533\) 5.19617 + 9.00003i 0.225071 + 0.389835i
\(534\) −1.65444 2.86558i −0.0715947 0.124006i
\(535\) −21.3819 + 23.1712i −0.924420 + 1.00178i
\(536\) 11.2463 + 6.49307i 0.485768 + 0.280458i
\(537\) 5.01269 8.68224i 0.216314 0.374666i
\(538\) −11.5721 20.0434i −0.498908 0.864134i
\(539\) 2.42713 + 4.20392i 0.104544 + 0.181076i
\(540\) −1.51642 + 1.64331i −0.0652561 + 0.0707170i
\(541\) 21.6228i 0.929635i 0.885406 + 0.464818i \(0.153880\pi\)
−0.885406 + 0.464818i \(0.846120\pi\)
\(542\) 8.12733 14.0769i 0.349099 0.604657i
\(543\) −1.53755 + 0.887705i −0.0659826 + 0.0380951i
\(544\) 1.48428 0.0636378
\(545\) −3.49090 11.2081i −0.149534 0.480102i
\(546\) −1.92495 3.33410i −0.0823801 0.142686i
\(547\) −19.0025 −0.812488 −0.406244 0.913765i \(-0.633162\pi\)
−0.406244 + 0.913765i \(0.633162\pi\)
\(548\) −6.19847 3.57869i −0.264785 0.152874i
\(549\) 6.47775i 0.276464i
\(550\) −0.331039 4.11471i −0.0141156 0.175452i
\(551\) −5.56357 + 9.63638i −0.237016 + 0.410524i
\(552\) 1.93975 + 1.11991i 0.0825610 + 0.0476666i
\(553\) 1.89716 + 3.28599i 0.0806757 + 0.139734i
\(554\) 4.66812 0.198329
\(555\) −11.0706 + 7.90197i −0.469922 + 0.335420i
\(556\) 11.5306 0.489006
\(557\) 18.9136 + 32.7593i 0.801395 + 1.38806i 0.918698 + 0.394960i \(0.129242\pi\)
−0.117304 + 0.993096i \(0.537425\pi\)
\(558\) 5.43583 + 3.13838i 0.230117 + 0.132858i
\(559\) −19.4039 + 33.6086i −0.820698 + 1.42149i
\(560\) −2.30886 0.520331i −0.0975671 0.0219880i
\(561\) 1.22542i 0.0517372i
\(562\) −12.2372 7.06515i −0.516195 0.298025i
\(563\) 2.80373 0.118163 0.0590815 0.998253i \(-0.481183\pi\)
0.0590815 + 0.998253i \(0.481183\pi\)
\(564\) 5.88160 + 10.1872i 0.247660 + 0.428960i
\(565\) 7.16141 2.23051i 0.301283 0.0938383i
\(566\) 10.0287 0.421539
\(567\) 0.916644 0.529225i 0.0384954 0.0222254i
\(568\) −0.701131 + 1.21439i −0.0294188 + 0.0509549i
\(569\) 39.6236i 1.66111i 0.556937 + 0.830555i \(0.311976\pi\)
−0.556937 + 0.830555i \(0.688024\pi\)
\(570\) −9.02819 8.33102i −0.378149 0.348948i
\(571\) −3.77916 6.54570i −0.158153 0.273929i 0.776050 0.630672i \(-0.217221\pi\)
−0.934203 + 0.356743i \(0.883887\pi\)
\(572\) −1.50147 2.60063i −0.0627798 0.108738i
\(573\) −9.63281 + 16.6845i −0.402416 + 0.697006i
\(574\) −2.61900 1.51208i −0.109315 0.0631131i
\(575\) 10.1165 + 4.80375i 0.421889 + 0.200330i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −14.7782 25.5966i −0.615224 1.06560i −0.990345 0.138624i \(-0.955732\pi\)
0.375121 0.926976i \(-0.377601\pi\)
\(578\) −14.7969 −0.615471
\(579\) 16.0391 + 9.26016i 0.666561 + 0.384839i
\(580\) 3.07130 3.32831i 0.127529 0.138201i
\(581\) 16.3897 0.679958
\(582\) 5.18358i 0.214867i
\(583\) 6.61288 3.81795i 0.273877 0.158123i
\(584\) 8.82512i 0.365186i
\(585\) −1.78808 + 7.93425i −0.0739281 + 0.328041i
\(586\) 0.948825i 0.0391956i
\(587\) 16.1870 28.0366i 0.668108 1.15720i −0.310325 0.950631i \(-0.600438\pi\)
0.978433 0.206566i \(-0.0662288\pi\)
\(588\) −5.09196 2.93984i −0.209989 0.121237i
\(589\) −17.2419 + 29.8639i −0.710441 + 1.23052i
\(590\) −11.0913 + 12.0195i −0.456623 + 0.494835i
\(591\) 4.86930 0.200296
\(592\) 1.90173 + 5.77784i 0.0781607 + 0.237468i
\(593\) 8.03864i 0.330107i −0.986285 0.165054i \(-0.947220\pi\)
0.986285 0.165054i \(-0.0527797\pi\)
\(594\) 0.714991 0.412800i 0.0293364 0.0169374i
\(595\) −3.42699 0.772315i −0.140493 0.0316618i
\(596\) 1.51930 2.63151i 0.0622330 0.107791i
\(597\) −8.94064 + 15.4856i −0.365916 + 0.633785i
\(598\) 8.14690 0.333151
\(599\) −1.25133 + 2.16737i −0.0511279 + 0.0885562i −0.890457 0.455068i \(-0.849615\pi\)
0.839329 + 0.543624i \(0.182948\pi\)
\(600\) 2.83920 + 4.11570i 0.115910 + 0.168023i
\(601\) 8.38293 + 14.5197i 0.341947 + 0.592269i 0.984794 0.173725i \(-0.0555804\pi\)
−0.642847 + 0.765994i \(0.722247\pi\)
\(602\) 11.2930i 0.460270i
\(603\) 12.9861i 0.528837i
\(604\) −4.20011 7.27481i −0.170900 0.296008i
\(605\) 5.07249 22.5081i 0.206226 0.915085i
\(606\) 10.5205i 0.427364i
\(607\) −5.24017 9.07623i −0.212692 0.368393i 0.739864 0.672756i \(-0.234890\pi\)
−0.952556 + 0.304363i \(0.901556\pi\)
\(608\) −4.75785 + 2.74695i −0.192956 + 0.111403i
\(609\) −1.85654 + 1.07187i −0.0752308 + 0.0434345i
\(610\) −14.1303 3.18444i −0.572120 0.128934i
\(611\) 37.0540 + 21.3931i 1.49904 + 0.865473i
\(612\) 0.742138 + 1.28542i 0.0299992 + 0.0519601i
\(613\) 5.61834 3.24375i 0.226923 0.131014i −0.382229 0.924068i \(-0.624843\pi\)
0.609152 + 0.793054i \(0.291510\pi\)
\(614\) 11.1694 6.44866i 0.450760 0.260247i
\(615\) 1.89986 + 6.09979i 0.0766096 + 0.245967i
\(616\) 0.756782 + 0.436928i 0.0304916 + 0.0176043i
\(617\) −20.5224 + 11.8486i −0.826200 + 0.477007i −0.852550 0.522646i \(-0.824945\pi\)
0.0263501 + 0.999653i \(0.491612\pi\)
\(618\) 16.1758i 0.650685i
\(619\) −31.0146 −1.24658 −0.623291 0.781990i \(-0.714205\pi\)
−0.623291 + 0.781990i \(0.714205\pi\)
\(620\) 9.51817 10.3147i 0.382259 0.414248i
\(621\) 2.23982i 0.0898811i
\(622\) 22.1356 + 12.7800i 0.887558 + 0.512432i
\(623\) 3.50229 0.140316
\(624\) 3.14999 + 1.81865i 0.126100 + 0.0728041i
\(625\) 15.8005 + 19.3738i 0.632021 + 0.774951i
\(626\) 2.35334 4.07611i 0.0940585 0.162914i
\(627\) 2.26788 + 3.92808i 0.0905703 + 0.156872i
\(628\) 14.7784i 0.589722i
\(629\) 2.82270 + 8.57591i 0.112548 + 0.341944i
\(630\) −0.703810 2.25970i −0.0280405 0.0900285i
\(631\) 9.21344 5.31938i 0.366781 0.211761i −0.305270 0.952266i \(-0.598747\pi\)
0.672051 + 0.740504i \(0.265413\pi\)
\(632\) −3.10453 1.79240i −0.123491 0.0712978i
\(633\) 0.342726 + 0.197873i 0.0136221 + 0.00786473i
\(634\) −21.7227 12.5416i −0.862719 0.498091i
\(635\) −4.17592 13.4075i −0.165716 0.532059i
\(636\) −4.62445 + 8.00978i −0.183371 + 0.317609i
\(637\) −21.3861 −0.847349
\(638\) −1.44812 + 0.836071i −0.0573315 + 0.0331004i
\(639\) −1.40226 −0.0554726
\(640\) 2.13491 0.664945i 0.0843898 0.0262842i
\(641\) 4.38870 + 7.60145i 0.173343 + 0.300239i 0.939587 0.342311i \(-0.111210\pi\)
−0.766243 + 0.642550i \(0.777876\pi\)
\(642\) −7.05015 + 12.2112i −0.278247 + 0.481938i
\(643\) 26.7207 1.05376 0.526882 0.849939i \(-0.323361\pi\)
0.526882 + 0.849939i \(0.323361\pi\)
\(644\) −2.05312 + 1.18537i −0.0809044 + 0.0467102i
\(645\) −16.1793 + 17.5332i −0.637059 + 0.690370i
\(646\) −7.06197 + 4.07723i −0.277849 + 0.160416i
\(647\) −9.72305 + 16.8408i −0.382252 + 0.662081i −0.991384 0.130989i \(-0.958185\pi\)
0.609131 + 0.793069i \(0.291518\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) 5.22957 3.01929i 0.205278 0.118518i
\(650\) 16.4284 + 7.80090i 0.644376 + 0.305977i
\(651\) −5.75355 + 3.32182i −0.225500 + 0.130192i
\(652\) −3.52691 −0.138124
\(653\) 12.7773 22.1309i 0.500014 0.866049i −0.499986 0.866033i \(-0.666662\pi\)
1.00000 1.60106e-5i \(-5.09633e-6\pi\)
\(654\) −2.62496 4.54656i −0.102644 0.177785i
\(655\) 8.66317 + 27.8145i 0.338498 + 1.08680i
\(656\) 2.85716 0.111554
\(657\) 7.64277 4.41256i 0.298173 0.172150i
\(658\) −12.4508 −0.485381
\(659\) 1.11439 1.93019i 0.0434106 0.0751893i −0.843504 0.537123i \(-0.819511\pi\)
0.886914 + 0.461934i \(0.152844\pi\)
\(660\) −0.548978 1.76258i −0.0213690 0.0686085i
\(661\) 10.9781 + 6.33818i 0.426997 + 0.246527i 0.698066 0.716033i \(-0.254044\pi\)
−0.271070 + 0.962560i \(0.587377\pi\)
\(662\) −7.92971 4.57822i −0.308197 0.177938i
\(663\) 4.67545 + 2.69937i 0.181580 + 0.104835i
\(664\) −13.4101 + 7.74230i −0.520411 + 0.300460i
\(665\) 12.4145 3.86666i 0.481415 0.149943i
\(666\) −4.05289 + 4.53587i −0.157046 + 0.175761i
\(667\) 4.53646i 0.175653i
\(668\) −10.7385 18.5996i −0.415485 0.719641i
\(669\) −12.7942 + 22.1602i −0.494651 + 0.856761i
\(670\) 28.3275 + 6.38395i 1.09439 + 0.246634i
\(671\) 4.63153 + 2.67402i 0.178798 + 0.103229i
\(672\) −1.05845 −0.0408306
\(673\) −34.8308 20.1096i −1.34263 0.775168i −0.355438 0.934700i \(-0.615668\pi\)
−0.987193 + 0.159532i \(0.949002\pi\)
\(674\) 10.3255i 0.397723i
\(675\) −2.14470 + 4.51666i −0.0825495 + 0.173847i
\(676\) 0.229897 0.00884218
\(677\) 29.7892i 1.14489i −0.819942 0.572446i \(-0.805995\pi\)
0.819942 0.572446i \(-0.194005\pi\)
\(678\) 2.90502 1.67721i 0.111567 0.0644130i
\(679\) −4.75150 2.74328i −0.182346 0.105277i
\(680\) 3.16880 0.986962i 0.121518 0.0378483i
\(681\) 20.2013 11.6633i 0.774117 0.446937i
\(682\) −4.48782 + 2.59105i −0.171848 + 0.0992163i
\(683\) −10.7369 18.5968i −0.410835 0.711587i 0.584146 0.811649i \(-0.301429\pi\)
−0.994981 + 0.100061i \(0.968096\pi\)
\(684\) −4.75785 2.74695i −0.181921 0.105032i
\(685\) −15.6128 3.51854i −0.596535 0.134437i
\(686\) 11.8061 6.81625i 0.450759 0.260246i
\(687\) 20.1837 11.6531i 0.770055 0.444592i
\(688\) 5.33471 + 9.23999i 0.203384 + 0.352271i
\(689\) 33.6410i 1.28162i
\(690\) 4.88587 + 1.10109i 0.186002 + 0.0419178i
\(691\) 7.87430 + 13.6387i 0.299553 + 0.518840i 0.976034 0.217620i \(-0.0698293\pi\)
−0.676481 + 0.736460i \(0.736496\pi\)
\(692\) 3.11690i 0.118487i
\(693\) 0.873856i 0.0331950i
\(694\) −12.6642 21.9350i −0.480727 0.832643i
\(695\) 24.6168 7.66721i 0.933768 0.290834i
\(696\) 1.01268 1.75402i 0.0383856 0.0664859i
\(697\) 4.24082 0.160633
\(698\) 11.2916 19.5576i 0.427394 0.740268i
\(699\) −0.254363 + 0.440570i −0.00962089 + 0.0166639i
\(700\) −5.27520 + 0.424404i −0.199384 + 0.0160410i
\(701\) −32.3179 + 18.6588i −1.22063 + 0.704732i −0.965053 0.262056i \(-0.915600\pi\)
−0.255579 + 0.966788i \(0.582266\pi\)
\(702\) 3.63729i 0.137281i
\(703\) −24.9196 22.2661i −0.939859 0.839783i
\(704\) −0.825600 −0.0311160
\(705\) 19.3307 + 17.8379i 0.728035 + 0.671815i
\(706\) −11.5240 + 19.9601i −0.433711 + 0.751209i
\(707\) 9.64351 + 5.56768i 0.362682 + 0.209394i
\(708\) −3.65709 + 6.33426i −0.137442 + 0.238056i
\(709\) 27.0809i 1.01705i −0.861048 0.508523i \(-0.830192\pi\)
0.861048 0.508523i \(-0.169808\pi\)
\(710\) −0.689348 + 3.05884i −0.0258708 + 0.114796i
\(711\) 3.58480i 0.134440i
\(712\) −2.86558 + 1.65444i −0.107392 + 0.0620028i
\(713\) 14.0588i 0.526508i
\(714\) −1.57103 −0.0587944
\(715\) −4.93479 4.55372i −0.184551 0.170299i
\(716\) −8.68224 5.01269i −0.324471 0.187333i
\(717\) −5.91363 −0.220849
\(718\) 7.62438 + 13.2058i 0.284539 + 0.492837i
\(719\) −0.353769 0.612746i −0.0131934 0.0228516i 0.859353 0.511382i \(-0.170866\pi\)
−0.872547 + 0.488531i \(0.837533\pi\)
\(720\) 1.64331 + 1.51642i 0.0612427 + 0.0565135i
\(721\) −14.8274 8.56062i −0.552202 0.318814i
\(722\) 5.59142 9.68463i 0.208091 0.360425i
\(723\) −0.858078 1.48624i −0.0319123 0.0552737i
\(724\) 0.887705 + 1.53755i 0.0329913 + 0.0571426i
\(725\) 4.34380 9.14790i 0.161325 0.339744i
\(726\) 10.3184i 0.382951i
\(727\) −25.3278 + 43.8690i −0.939356 + 1.62701i −0.172680 + 0.984978i \(0.555243\pi\)
−0.766676 + 0.642034i \(0.778091\pi\)
\(728\) −3.33410 + 1.92495i −0.123570 + 0.0713432i
\(729\) −1.00000 −0.0370370
\(730\) −5.86821 18.8408i −0.217192 0.697331i
\(731\) 7.91819 + 13.7147i 0.292865 + 0.507257i
\(732\) −6.47775 −0.239425
\(733\) 29.3112 + 16.9228i 1.08263 + 0.625058i 0.931605 0.363471i \(-0.118408\pi\)
0.151027 + 0.988530i \(0.451742\pi\)
\(734\) 6.46411i 0.238595i
\(735\) −12.8257 2.89043i −0.473083 0.106615i
\(736\) 1.11991 1.93975i 0.0412805 0.0715000i
\(737\) −9.28497 5.36068i −0.342016 0.197463i
\(738\) 1.42858 + 2.47438i 0.0525868 + 0.0910831i
\(739\) −13.7161 −0.504555 −0.252277 0.967655i \(-0.581180\pi\)
−0.252277 + 0.967655i \(0.581180\pi\)
\(740\) 7.90197 + 11.0706i 0.290482 + 0.406964i
\(741\) −19.9829 −0.734090
\(742\) −4.89475 8.47795i −0.179692 0.311235i
\(743\) 13.8765 + 8.01159i 0.509079 + 0.293917i 0.732455 0.680816i \(-0.238375\pi\)
−0.223376 + 0.974732i \(0.571708\pi\)
\(744\) 3.13838 5.43583i 0.115059 0.199287i
\(745\) 1.49377 6.62829i 0.0547274 0.242842i
\(746\) 25.5721i 0.936260i
\(747\) −13.4101 7.74230i −0.490649 0.283276i
\(748\) −1.22542 −0.0448058
\(749\) −7.46223 12.9250i −0.272664 0.472268i
\(750\) 8.79815 + 6.89874i 0.321263 + 0.251906i
\(751\) 33.4440 1.22039 0.610195 0.792251i \(-0.291091\pi\)
0.610195 + 0.792251i \(0.291091\pi\)
\(752\) 10.1872 5.88160i 0.371490 0.214480i
\(753\) −8.35662 + 14.4741i −0.304532 + 0.527465i
\(754\) 7.36685i 0.268285i
\(755\) −13.8042 12.7382i −0.502387 0.463592i
\(756\) −0.529225 0.916644i −0.0192477 0.0333380i
\(757\) 25.2767 + 43.7805i 0.918697 + 1.59123i 0.801396 + 0.598134i \(0.204091\pi\)
0.117301 + 0.993096i \(0.462576\pi\)
\(758\) 0.395361 0.684786i 0.0143602 0.0248726i
\(759\) −1.60145 0.924600i −0.0581291 0.0335608i
\(760\) −8.33102 + 9.02819i −0.302198 + 0.327487i
\(761\) −19.6784 34.0840i −0.713341 1.23554i −0.963596 0.267362i \(-0.913848\pi\)
0.250255 0.968180i \(-0.419485\pi\)
\(762\) −3.14005 5.43873i −0.113752 0.197024i
\(763\) 5.55677 0.201169
\(764\) 16.6845 + 9.63281i 0.603625 + 0.348503i
\(765\) 2.43913 + 2.25078i 0.0881871 + 0.0813771i
\(766\) 14.1778 0.512267
\(767\) 26.6038i 0.960607i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 4.77703i 0.172264i 0.996284 + 0.0861320i \(0.0274507\pi\)
−0.996284 + 0.0861320i \(0.972549\pi\)
\(770\) 1.90619 + 0.429585i 0.0686945 + 0.0154812i
\(771\) 2.95633i 0.106470i
\(772\) 9.26016 16.0391i 0.333280 0.577259i
\(773\) 11.8192 + 6.82383i 0.425108 + 0.245436i 0.697260 0.716818i \(-0.254402\pi\)
−0.272153 + 0.962254i \(0.587736\pi\)
\(774\) −5.33471 + 9.23999i −0.191752 + 0.332125i
\(775\) 13.4618 28.3500i 0.483561 1.01836i
\(776\) 5.18358 0.186080
\(777\)