# Properties

 Label 1110.2.ba.a.529.18 Level $1110$ Weight $2$ Character 1110.529 Analytic conductor $8.863$ Analytic rank $0$ Dimension $36$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1110 = 2 \cdot 3 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1110.ba (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$8.86339462436$$ Analytic rank: $$0$$ Dimension: $$36$$ Relative dimension: $$18$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 529.18 Character $$\chi$$ $$=$$ 1110.529 Dual form 1110.2.ba.a.619.18

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 - 0.866025i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.14251 - 0.640045i) q^{5} -1.00000i q^{6} +(-2.75229 - 1.58904i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(-0.500000 - 0.866025i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.14251 - 0.640045i) q^{5} -1.00000i q^{6} +(-2.75229 - 1.58904i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(0.516959 + 2.17549i) q^{10} -3.88035 q^{11} +(-0.866025 + 0.500000i) q^{12} +(0.379707 - 0.657673i) q^{13} +3.17807i q^{14} +(-1.53544 - 1.62555i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.69434 + 2.93468i) q^{17} +(0.500000 - 0.866025i) q^{18} +(4.55166 + 2.62790i) q^{19} +(1.62555 - 1.53544i) q^{20} +(-1.58904 - 2.75229i) q^{21} +(1.94018 + 3.36048i) q^{22} +6.61653 q^{23} +(0.866025 + 0.500000i) q^{24} +(4.18068 + 2.74260i) q^{25} -0.759415 q^{26} +1.00000i q^{27} +(2.75229 - 1.58904i) q^{28} -1.30709i q^{29} +(-0.640045 + 2.14251i) q^{30} +6.12433i q^{31} +(-0.500000 + 0.866025i) q^{32} +(-3.36048 - 1.94018i) q^{33} +(1.69434 - 2.93468i) q^{34} +(4.87975 + 5.16611i) q^{35} -1.00000 q^{36} +(6.05221 + 0.608935i) q^{37} -5.25580i q^{38} +(0.657673 - 0.379707i) q^{39} +(-2.14251 - 0.640045i) q^{40} +(-5.17175 + 8.95773i) q^{41} +(-1.58904 + 2.75229i) q^{42} +9.41844 q^{43} +(1.94018 - 3.36048i) q^{44} +(-0.516959 - 2.17549i) q^{45} +(-3.30827 - 5.73009i) q^{46} -5.34620i q^{47} -1.00000i q^{48} +(1.55007 + 2.68480i) q^{49} +(0.284822 - 4.99188i) q^{50} +3.38867i q^{51} +(0.379707 + 0.657673i) q^{52} +(-2.76662 + 1.59731i) q^{53} +(0.866025 - 0.500000i) q^{54} +(8.31368 + 2.48360i) q^{55} +(-2.75229 - 1.58904i) q^{56} +(2.62790 + 4.55166i) q^{57} +(-1.13197 + 0.653545i) q^{58} +(-5.34529 + 3.08610i) q^{59} +(2.17549 - 0.516959i) q^{60} +(-8.45447 - 4.88119i) q^{61} +(5.30382 - 3.06216i) q^{62} -3.17807i q^{63} +1.00000 q^{64} +(-1.23447 + 1.16604i) q^{65} +3.88035i q^{66} +(8.72817 + 5.03921i) q^{67} -3.38867 q^{68} +(5.73009 + 3.30827i) q^{69} +(2.03411 - 6.80904i) q^{70} +(-3.22083 + 5.57863i) q^{71} +(0.500000 + 0.866025i) q^{72} +5.84525i q^{73} +(-2.49875 - 5.54583i) q^{74} +(2.24928 + 4.46551i) q^{75} +(-4.55166 + 2.62790i) q^{76} +(10.6799 + 6.16602i) q^{77} +(-0.657673 - 0.379707i) q^{78} +(7.39006 + 4.26665i) q^{79} +(0.516959 + 2.17549i) q^{80} +(-0.500000 + 0.866025i) q^{81} +10.3435 q^{82} +(-6.05368 + 3.49509i) q^{83} +3.17807 q^{84} +(-1.75181 - 7.37202i) q^{85} +(-4.70922 - 8.15661i) q^{86} +(0.653545 - 1.13197i) q^{87} -3.88035 q^{88} +(-1.93582 + 1.11765i) q^{89} +(-1.62555 + 1.53544i) q^{90} +(-2.09013 + 1.20674i) q^{91} +(-3.30827 + 5.73009i) q^{92} +(-3.06216 + 5.30382i) q^{93} +(-4.62995 + 2.67310i) q^{94} +(-8.06999 - 8.54356i) q^{95} +(-0.866025 + 0.500000i) q^{96} +4.77178 q^{97} +(1.55007 - 2.68480i) q^{98} +(-1.94018 - 3.36048i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + O(q^{10})$$ $$36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} - 14q^{13} - 2q^{15} - 18q^{16} + 18q^{18} + 6q^{19} - 4q^{20} - 2q^{22} - 20q^{23} + 4q^{25} + 28q^{26} - 2q^{30} - 18q^{32} - 6q^{33} - 40q^{35} - 36q^{36} + 20q^{37} + 6q^{39} + 2q^{40} + 10q^{41} - 2q^{44} - 2q^{45} + 10q^{46} + 10q^{49} - 2q^{50} - 14q^{52} - 12q^{53} + 56q^{55} + 8q^{57} + 30q^{58} + 18q^{59} + 4q^{60} - 6q^{61} - 12q^{62} + 36q^{64} + 40q^{65} + 36q^{67} + 12q^{69} + 20q^{70} - 24q^{71} + 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} - 24q^{77} - 6q^{78} + 2q^{80} - 18q^{81} - 20q^{82} + 36q^{83} + 26q^{85} - 10q^{87} + 4q^{88} + 4q^{90} - 36q^{91} + 10q^{92} + 12q^{93} + 12q^{94} - 30q^{95} + 52q^{97} + 10q^{98} + 2q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times$$.

 $$n$$ $$371$$ $$631$$ $$667$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 0.866025i −0.353553 0.612372i
$$3$$ 0.866025 + 0.500000i 0.500000 + 0.288675i
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ −2.14251 0.640045i −0.958159 0.286237i
$$6$$ 1.00000i 0.408248i
$$7$$ −2.75229 1.58904i −1.04027 0.600599i −0.120359 0.992730i $$-0.538405\pi$$
−0.919909 + 0.392131i $$0.871738\pi$$
$$8$$ 1.00000 0.353553
$$9$$ 0.500000 + 0.866025i 0.166667 + 0.288675i
$$10$$ 0.516959 + 2.17549i 0.163477 + 0.687950i
$$11$$ −3.88035 −1.16997 −0.584985 0.811044i $$-0.698900\pi$$
−0.584985 + 0.811044i $$0.698900\pi$$
$$12$$ −0.866025 + 0.500000i −0.250000 + 0.144338i
$$13$$ 0.379707 0.657673i 0.105312 0.182406i −0.808554 0.588422i $$-0.799749\pi$$
0.913866 + 0.406017i $$0.133083\pi$$
$$14$$ 3.17807i 0.849375i
$$15$$ −1.53544 1.62555i −0.396450 0.419715i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 1.69434 + 2.93468i 0.410937 + 0.711764i 0.994992 0.0999499i $$-0.0318683\pi$$
−0.584055 + 0.811714i $$0.698535\pi$$
$$18$$ 0.500000 0.866025i 0.117851 0.204124i
$$19$$ 4.55166 + 2.62790i 1.04422 + 0.602882i 0.921026 0.389501i $$-0.127352\pi$$
0.123196 + 0.992382i $$0.460686\pi$$
$$20$$ 1.62555 1.53544i 0.363484 0.343336i
$$21$$ −1.58904 2.75229i −0.346756 0.600599i
$$22$$ 1.94018 + 3.36048i 0.413647 + 0.716457i
$$23$$ 6.61653 1.37964 0.689821 0.723980i $$-0.257689\pi$$
0.689821 + 0.723980i $$0.257689\pi$$
$$24$$ 0.866025 + 0.500000i 0.176777 + 0.102062i
$$25$$ 4.18068 + 2.74260i 0.836137 + 0.548521i
$$26$$ −0.759415 −0.148934
$$27$$ 1.00000i 0.192450i
$$28$$ 2.75229 1.58904i 0.520134 0.300300i
$$29$$ 1.30709i 0.242721i −0.992609 0.121360i $$-0.961274\pi$$
0.992609 0.121360i $$-0.0387256\pi$$
$$30$$ −0.640045 + 2.14251i −0.116856 + 0.391167i
$$31$$ 6.12433i 1.09996i 0.835177 + 0.549981i $$0.185365\pi$$
−0.835177 + 0.549981i $$0.814635\pi$$
$$32$$ −0.500000 + 0.866025i −0.0883883 + 0.153093i
$$33$$ −3.36048 1.94018i −0.584985 0.337741i
$$34$$ 1.69434 2.93468i 0.290576 0.503293i
$$35$$ 4.87975 + 5.16611i 0.824829 + 0.873232i
$$36$$ −1.00000 −0.166667
$$37$$ 6.05221 + 0.608935i 0.994977 + 0.100108i
$$38$$ 5.25580i 0.852604i
$$39$$ 0.657673 0.379707i 0.105312 0.0608019i
$$40$$ −2.14251 0.640045i −0.338760 0.101200i
$$41$$ −5.17175 + 8.95773i −0.807691 + 1.39896i 0.106768 + 0.994284i $$0.465950\pi$$
−0.914459 + 0.404678i $$0.867384\pi$$
$$42$$ −1.58904 + 2.75229i −0.245194 + 0.424688i
$$43$$ 9.41844 1.43630 0.718149 0.695889i $$-0.244989\pi$$
0.718149 + 0.695889i $$0.244989\pi$$
$$44$$ 1.94018 3.36048i 0.292492 0.506612i
$$45$$ −0.516959 2.17549i −0.0770637 0.324303i
$$46$$ −3.30827 5.73009i −0.487777 0.844855i
$$47$$ 5.34620i 0.779824i −0.920852 0.389912i $$-0.872505\pi$$
0.920852 0.389912i $$-0.127495\pi$$
$$48$$ 1.00000i 0.144338i
$$49$$ 1.55007 + 2.68480i 0.221438 + 0.383543i
$$50$$ 0.284822 4.99188i 0.0402800 0.705959i
$$51$$ 3.38867i 0.474509i
$$52$$ 0.379707 + 0.657673i 0.0526559 + 0.0912028i
$$53$$ −2.76662 + 1.59731i −0.380024 + 0.219407i −0.677829 0.735220i $$-0.737079\pi$$
0.297804 + 0.954627i $$0.403746\pi$$
$$54$$ 0.866025 0.500000i 0.117851 0.0680414i
$$55$$ 8.31368 + 2.48360i 1.12102 + 0.334888i
$$56$$ −2.75229 1.58904i −0.367790 0.212344i
$$57$$ 2.62790 + 4.55166i 0.348074 + 0.602882i
$$58$$ −1.13197 + 0.653545i −0.148635 + 0.0858147i
$$59$$ −5.34529 + 3.08610i −0.695897 + 0.401776i −0.805817 0.592164i $$-0.798274\pi$$
0.109920 + 0.993940i $$0.464940\pi$$
$$60$$ 2.17549 0.516959i 0.280854 0.0667391i
$$61$$ −8.45447 4.88119i −1.08248 0.624973i −0.150919 0.988546i $$-0.548223\pi$$
−0.931565 + 0.363574i $$0.881557\pi$$
$$62$$ 5.30382 3.06216i 0.673586 0.388895i
$$63$$ 3.17807i 0.400399i
$$64$$ 1.00000 0.125000
$$65$$ −1.23447 + 1.16604i −0.153117 + 0.144629i
$$66$$ 3.88035i 0.477638i
$$67$$ 8.72817 + 5.03921i 1.06632 + 0.615638i 0.927173 0.374634i $$-0.122232\pi$$
0.139144 + 0.990272i $$0.455565\pi$$
$$68$$ −3.38867 −0.410937
$$69$$ 5.73009 + 3.30827i 0.689821 + 0.398269i
$$70$$ 2.03411 6.80904i 0.243123 0.813837i
$$71$$ −3.22083 + 5.57863i −0.382242 + 0.662062i −0.991382 0.131000i $$-0.958181\pi$$
0.609141 + 0.793062i $$0.291514\pi$$
$$72$$ 0.500000 + 0.866025i 0.0589256 + 0.102062i
$$73$$ 5.84525i 0.684135i 0.939675 + 0.342067i $$0.111127\pi$$
−0.939675 + 0.342067i $$0.888873\pi$$
$$74$$ −2.49875 5.54583i −0.290474 0.644690i
$$75$$ 2.24928 + 4.46551i 0.259724 + 0.515632i
$$76$$ −4.55166 + 2.62790i −0.522111 + 0.301441i
$$77$$ 10.6799 + 6.16602i 1.21708 + 0.702683i
$$78$$ −0.657673 0.379707i −0.0744668 0.0429934i
$$79$$ 7.39006 + 4.26665i 0.831446 + 0.480036i 0.854348 0.519702i $$-0.173957\pi$$
−0.0229014 + 0.999738i $$0.507290\pi$$
$$80$$ 0.516959 + 2.17549i 0.0577978 + 0.243227i
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ 10.3435 1.14225
$$83$$ −6.05368 + 3.49509i −0.664477 + 0.383636i −0.793981 0.607943i $$-0.791995\pi$$
0.129504 + 0.991579i $$0.458662\pi$$
$$84$$ 3.17807 0.346756
$$85$$ −1.75181 7.37202i −0.190010 0.799608i
$$86$$ −4.70922 8.15661i −0.507808 0.879550i
$$87$$ 0.653545 1.13197i 0.0700674 0.121360i
$$88$$ −3.88035 −0.413647
$$89$$ −1.93582 + 1.11765i −0.205197 + 0.118470i −0.599077 0.800691i $$-0.704466\pi$$
0.393880 + 0.919162i $$0.371132\pi$$
$$90$$ −1.62555 + 1.53544i −0.171348 + 0.161850i
$$91$$ −2.09013 + 1.20674i −0.219105 + 0.126500i
$$92$$ −3.30827 + 5.73009i −0.344911 + 0.597403i
$$93$$ −3.06216 + 5.30382i −0.317532 + 0.549981i
$$94$$ −4.62995 + 2.67310i −0.477543 + 0.275709i
$$95$$ −8.06999 8.54356i −0.827963 0.876551i
$$96$$ −0.866025 + 0.500000i −0.0883883 + 0.0510310i
$$97$$ 4.77178 0.484501 0.242250 0.970214i $$-0.422114\pi$$
0.242250 + 0.970214i $$0.422114\pi$$
$$98$$ 1.55007 2.68480i 0.156581 0.271206i
$$99$$ −1.94018 3.36048i −0.194995 0.337741i
$$100$$ −4.46551 + 2.24928i −0.446551 + 0.224928i
$$101$$ 2.01613 0.200612 0.100306 0.994957i $$-0.468018\pi$$
0.100306 + 0.994957i $$0.468018\pi$$
$$102$$ 2.93468 1.69434i 0.290576 0.167764i
$$103$$ 8.06815 0.794978 0.397489 0.917607i $$-0.369882\pi$$
0.397489 + 0.917607i $$0.369882\pi$$
$$104$$ 0.379707 0.657673i 0.0372334 0.0644901i
$$105$$ 1.64293 + 6.91386i 0.160334 + 0.674724i
$$106$$ 2.76662 + 1.59731i 0.268718 + 0.155144i
$$107$$ −4.44127 2.56417i −0.429354 0.247887i 0.269718 0.962939i $$-0.413070\pi$$
−0.699071 + 0.715052i $$0.746403\pi$$
$$108$$ −0.866025 0.500000i −0.0833333 0.0481125i
$$109$$ −4.29464 + 2.47951i −0.411352 + 0.237494i −0.691371 0.722500i $$-0.742993\pi$$
0.280018 + 0.959995i $$0.409659\pi$$
$$110$$ −2.00598 8.44166i −0.191263 0.804881i
$$111$$ 4.93690 + 3.55346i 0.468589 + 0.337279i
$$112$$ 3.17807i 0.300300i
$$113$$ −5.50508 9.53507i −0.517874 0.896984i −0.999784 0.0207636i $$-0.993390\pi$$
0.481910 0.876221i $$-0.339943\pi$$
$$114$$ 2.62790 4.55166i 0.246125 0.426302i
$$115$$ −14.1760 4.23488i −1.32192 0.394905i
$$116$$ 1.13197 + 0.653545i 0.105101 + 0.0606802i
$$117$$ 0.759415 0.0702079
$$118$$ 5.34529 + 3.08610i 0.492074 + 0.284099i
$$119$$ 10.7694i 0.987234i
$$120$$ −1.53544 1.62555i −0.140166 0.148392i
$$121$$ 4.05712 0.368829
$$122$$ 9.76238i 0.883845i
$$123$$ −8.95773 + 5.17175i −0.807691 + 0.466321i
$$124$$ −5.30382 3.06216i −0.476297 0.274990i
$$125$$ −7.20176 8.55188i −0.644145 0.764903i
$$126$$ −2.75229 + 1.58904i −0.245194 + 0.141563i
$$127$$ −13.0596 + 7.53996i −1.15885 + 0.669063i −0.951029 0.309103i $$-0.899971\pi$$
−0.207823 + 0.978166i $$0.566638\pi$$
$$128$$ −0.500000 0.866025i −0.0441942 0.0765466i
$$129$$ 8.15661 + 4.70922i 0.718149 + 0.414624i
$$130$$ 1.62705 + 0.486060i 0.142702 + 0.0426303i
$$131$$ 9.51251 5.49205i 0.831112 0.479843i −0.0231214 0.999733i $$-0.507360\pi$$
0.854233 + 0.519890i $$0.174027\pi$$
$$132$$ 3.36048 1.94018i 0.292492 0.168871i
$$133$$ −8.35166 14.4655i −0.724180 1.25432i
$$134$$ 10.0784i 0.870644i
$$135$$ 0.640045 2.14251i 0.0550863 0.184398i
$$136$$ 1.69434 + 2.93468i 0.145288 + 0.251647i
$$137$$ 1.70269i 0.145471i −0.997351 0.0727353i $$-0.976827\pi$$
0.997351 0.0727353i $$-0.0231728\pi$$
$$138$$ 6.61653i 0.563237i
$$139$$ 8.79340 + 15.2306i 0.745846 + 1.29184i 0.949798 + 0.312863i $$0.101288\pi$$
−0.203952 + 0.978981i $$0.565379\pi$$
$$140$$ −6.91386 + 1.64293i −0.584328 + 0.138853i
$$141$$ 2.67310 4.62995i 0.225116 0.389912i
$$142$$ 6.44165 0.540571
$$143$$ −1.47340 + 2.55200i −0.123212 + 0.213409i
$$144$$ 0.500000 0.866025i 0.0416667 0.0721688i
$$145$$ −0.836597 + 2.80045i −0.0694756 + 0.232565i
$$146$$ 5.06214 2.92263i 0.418945 0.241878i
$$147$$ 3.10014i 0.255695i
$$148$$ −3.55346 + 4.93690i −0.292092 + 0.405810i
$$149$$ 18.0769 1.48092 0.740458 0.672103i $$-0.234609\pi$$
0.740458 + 0.672103i $$0.234609\pi$$
$$150$$ 2.74260 4.18068i 0.223933 0.341351i
$$151$$ 7.75253 13.4278i 0.630892 1.09274i −0.356478 0.934304i $$-0.616023\pi$$
0.987370 0.158433i $$-0.0506441\pi$$
$$152$$ 4.55166 + 2.62790i 0.369188 + 0.213151i
$$153$$ −1.69434 + 2.93468i −0.136979 + 0.237255i
$$154$$ 12.3320i 0.993744i
$$155$$ 3.91985 13.1214i 0.314850 1.05394i
$$156$$ 0.759415i 0.0608019i
$$157$$ 4.26063 2.45988i 0.340035 0.196320i −0.320252 0.947332i $$-0.603768\pi$$
0.660288 + 0.751013i $$0.270434\pi$$
$$158$$ 8.53330i 0.678873i
$$159$$ −3.19462 −0.253350
$$160$$ 1.62555 1.53544i 0.128511 0.121388i
$$161$$ −18.2106 10.5139i −1.43520 0.828612i
$$162$$ 1.00000 0.0785674
$$163$$ 3.02056 + 5.23176i 0.236588 + 0.409783i 0.959733 0.280914i $$-0.0906374\pi$$
−0.723145 + 0.690696i $$0.757304\pi$$
$$164$$ −5.17175 8.95773i −0.403845 0.699481i
$$165$$ 5.95806 + 6.30770i 0.463835 + 0.491054i
$$166$$ 6.05368 + 3.49509i 0.469856 + 0.271272i
$$167$$ −9.53467 + 16.5145i −0.737815 + 1.27793i 0.215663 + 0.976468i $$0.430809\pi$$
−0.953477 + 0.301465i $$0.902524\pi$$
$$168$$ −1.58904 2.75229i −0.122597 0.212344i
$$169$$ 6.21164 + 10.7589i 0.477819 + 0.827606i
$$170$$ −5.50846 + 5.20312i −0.422479 + 0.399061i
$$171$$ 5.25580i 0.401921i
$$172$$ −4.70922 + 8.15661i −0.359075 + 0.621936i
$$173$$ 17.6459 10.1879i 1.34160 0.774571i 0.354554 0.935035i $$-0.384633\pi$$
0.987042 + 0.160465i $$0.0512993\pi$$
$$174$$ −1.30709 −0.0990903
$$175$$ −7.14836 14.1917i −0.540365 1.07279i
$$176$$ 1.94018 + 3.36048i 0.146246 + 0.253306i
$$177$$ −6.17221 −0.463931
$$178$$ 1.93582 + 1.11765i 0.145096 + 0.0837713i
$$179$$ 1.86502i 0.139398i −0.997568 0.0696989i $$-0.977796\pi$$
0.997568 0.0696989i $$-0.0222039\pi$$
$$180$$ 2.14251 + 0.640045i 0.159693 + 0.0477061i
$$181$$ 6.08878 10.5461i 0.452575 0.783884i −0.545970 0.837805i $$-0.683839\pi$$
0.998545 + 0.0539212i $$0.0171720\pi$$
$$182$$ 2.09013 + 1.20674i 0.154931 + 0.0894493i
$$183$$ −4.88119 8.45447i −0.360828 0.624973i
$$184$$ 6.61653 0.487777
$$185$$ −12.5772 5.17833i −0.924691 0.380719i
$$186$$ 6.12433 0.449057
$$187$$ −6.57462 11.3876i −0.480784 0.832742i
$$188$$ 4.62995 + 2.67310i 0.337674 + 0.194956i
$$189$$ 1.58904 2.75229i 0.115585 0.200200i
$$190$$ −3.36395 + 11.2606i −0.244047 + 0.816930i
$$191$$ 21.9186i 1.58597i 0.609240 + 0.792986i $$0.291475\pi$$
−0.609240 + 0.792986i $$0.708525\pi$$
$$192$$ 0.866025 + 0.500000i 0.0625000 + 0.0360844i
$$193$$ −6.01088 −0.432672 −0.216336 0.976319i $$-0.569411\pi$$
−0.216336 + 0.976319i $$0.569411\pi$$
$$194$$ −2.38589 4.13248i −0.171297 0.296695i
$$195$$ −1.65210 + 0.392586i −0.118309 + 0.0281137i
$$196$$ −3.10014 −0.221438
$$197$$ 16.0895 9.28928i 1.14633 0.661834i 0.198340 0.980133i $$-0.436445\pi$$
0.947990 + 0.318299i $$0.103112\pi$$
$$198$$ −1.94018 + 3.36048i −0.137882 + 0.238819i
$$199$$ 2.04121i 0.144697i 0.997379 + 0.0723487i $$0.0230495\pi$$
−0.997379 + 0.0723487i $$0.976951\pi$$
$$200$$ 4.18068 + 2.74260i 0.295619 + 0.193931i
$$201$$ 5.03921 + 8.72817i 0.355439 + 0.615638i
$$202$$ −1.00807 1.74602i −0.0709272 0.122850i
$$203$$ −2.07701 + 3.59749i −0.145778 + 0.252494i
$$204$$ −2.93468 1.69434i −0.205469 0.118627i
$$205$$ 16.8139 15.8819i 1.17433 1.10924i
$$206$$ −4.03407 6.98722i −0.281067 0.486823i
$$207$$ 3.30827 + 5.73009i 0.229940 + 0.398269i
$$208$$ −0.759415 −0.0526559
$$209$$ −17.6620 10.1972i −1.22171 0.705353i
$$210$$ 5.16611 4.87975i 0.356496 0.336735i
$$211$$ 13.3152 0.916658 0.458329 0.888783i $$-0.348448\pi$$
0.458329 + 0.888783i $$0.348448\pi$$
$$212$$ 3.19462i 0.219407i
$$213$$ −5.57863 + 3.22083i −0.382242 + 0.220687i
$$214$$ 5.12833i 0.350566i
$$215$$ −20.1791 6.02823i −1.37620 0.411122i
$$216$$ 1.00000i 0.0680414i
$$217$$ 9.73177 16.8559i 0.660636 1.14425i
$$218$$ 4.29464 + 2.47951i 0.290870 + 0.167934i
$$219$$ −2.92263 + 5.06214i −0.197493 + 0.342067i
$$220$$ −6.30770 + 5.95806i −0.425265 + 0.401692i
$$221$$ 2.57341 0.173106
$$222$$ 0.608935 6.05221i 0.0408691 0.406197i
$$223$$ 14.8913i 0.997193i −0.866834 0.498597i $$-0.833849\pi$$
0.866834 0.498597i $$-0.166151\pi$$
$$224$$ 2.75229 1.58904i 0.183895 0.106172i
$$225$$ −0.284822 + 4.99188i −0.0189882 + 0.332792i
$$226$$ −5.50508 + 9.53507i −0.366192 + 0.634264i
$$227$$ −0.708052 + 1.22638i −0.0469951 + 0.0813979i −0.888566 0.458749i $$-0.848298\pi$$
0.841571 + 0.540146i $$0.181631\pi$$
$$228$$ −5.25580 −0.348074
$$229$$ −13.9106 + 24.0938i −0.919237 + 1.59217i −0.118661 + 0.992935i $$0.537860\pi$$
−0.800576 + 0.599231i $$0.795473\pi$$
$$230$$ 3.42048 + 14.3942i 0.225540 + 0.949125i
$$231$$ 6.16602 + 10.6799i 0.405694 + 0.702683i
$$232$$ 1.30709i 0.0858147i
$$233$$ 21.1423i 1.38508i 0.721382 + 0.692538i $$0.243507\pi$$
−0.721382 + 0.692538i $$0.756493\pi$$
$$234$$ −0.379707 0.657673i −0.0248223 0.0429934i
$$235$$ −3.42181 + 11.4543i −0.223214 + 0.747195i
$$236$$ 6.17221i 0.401776i
$$237$$ 4.26665 + 7.39006i 0.277149 + 0.480036i
$$238$$ −9.32662 + 5.38472i −0.604555 + 0.349040i
$$239$$ −5.13952 + 2.96731i −0.332448 + 0.191939i −0.656927 0.753954i $$-0.728144\pi$$
0.324479 + 0.945893i $$0.394811\pi$$
$$240$$ −0.640045 + 2.14251i −0.0413147 + 0.138298i
$$241$$ −21.6064 12.4744i −1.39179 0.803550i −0.398276 0.917266i $$-0.630391\pi$$
−0.993513 + 0.113716i $$0.963725\pi$$
$$242$$ −2.02856 3.51357i −0.130401 0.225861i
$$243$$ −0.866025 + 0.500000i −0.0555556 + 0.0320750i
$$244$$ 8.45447 4.88119i 0.541242 0.312486i
$$245$$ −1.60264 6.74432i −0.102389 0.430879i
$$246$$ 8.95773 + 5.17175i 0.571124 + 0.329738i
$$247$$ 3.45660 1.99567i 0.219938 0.126981i
$$248$$ 6.12433i 0.388895i
$$249$$ −6.99018 −0.442985
$$250$$ −3.80526 + 10.5128i −0.240666 + 0.664891i
$$251$$ 5.08160i 0.320748i −0.987056 0.160374i $$-0.948730\pi$$
0.987056 0.160374i $$-0.0512700\pi$$
$$252$$ 2.75229 + 1.58904i 0.173378 + 0.100100i
$$253$$ −25.6745 −1.61414
$$254$$ 13.0596 + 7.53996i 0.819432 + 0.473099i
$$255$$ 2.16890 7.26026i 0.135822 0.454655i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ 5.08288 + 8.80380i 0.317061 + 0.549166i 0.979873 0.199620i $$-0.0639706\pi$$
−0.662812 + 0.748786i $$0.730637\pi$$
$$258$$ 9.41844i 0.586366i
$$259$$ −15.6898 11.2931i −0.974917 0.701722i
$$260$$ −0.392586 1.65210i −0.0243472 0.102459i
$$261$$ 1.13197 0.653545i 0.0700674 0.0404534i
$$262$$ −9.51251 5.49205i −0.587685 0.339300i
$$263$$ −13.5376 7.81597i −0.834767 0.481953i 0.0207149 0.999785i $$-0.493406\pi$$
−0.855482 + 0.517832i $$0.826739\pi$$
$$264$$ −3.36048 1.94018i −0.206823 0.119410i
$$265$$ 6.94986 1.65149i 0.426926 0.101450i
$$266$$ −8.35166 + 14.4655i −0.512073 + 0.886936i
$$267$$ −2.23530 −0.136798
$$268$$ −8.72817 + 5.03921i −0.533158 + 0.307819i
$$269$$ −17.1683 −1.04677 −0.523384 0.852097i $$-0.675330\pi$$
−0.523384 + 0.852097i $$0.675330\pi$$
$$270$$ −2.17549 + 0.516959i −0.132396 + 0.0314611i
$$271$$ −4.20412 7.28174i −0.255382 0.442334i 0.709617 0.704587i $$-0.248868\pi$$
−0.964999 + 0.262253i $$0.915535\pi$$
$$272$$ 1.69434 2.93468i 0.102734 0.177941i
$$273$$ −2.41347 −0.146070
$$274$$ −1.47457 + 0.851345i −0.0890822 + 0.0514316i
$$275$$ −16.2225 10.6423i −0.978255 0.641753i
$$276$$ −5.73009 + 3.30827i −0.344911 + 0.199134i
$$277$$ −14.0962 + 24.4154i −0.846960 + 1.46698i 0.0369475 + 0.999317i $$0.488237\pi$$
−0.883908 + 0.467661i $$0.845097\pi$$
$$278$$ 8.79340 15.2306i 0.527393 0.913472i
$$279$$ −5.30382 + 3.06216i −0.317532 + 0.183327i
$$280$$ 4.87975 + 5.16611i 0.291621 + 0.308734i
$$281$$ −18.0402 + 10.4155i −1.07619 + 0.621339i −0.929866 0.367898i $$-0.880078\pi$$
−0.146324 + 0.989237i $$0.546744\pi$$
$$282$$ −5.34620 −0.318362
$$283$$ −7.70394 + 13.3436i −0.457952 + 0.793196i −0.998853 0.0478906i $$-0.984750\pi$$
0.540901 + 0.841086i $$0.318083\pi$$
$$284$$ −3.22083 5.57863i −0.191121 0.331031i
$$285$$ −2.71703 11.4339i −0.160943 0.677288i
$$286$$ 2.94680 0.174248
$$287$$ 28.4683 16.4362i 1.68043 0.970197i
$$288$$ −1.00000 −0.0589256
$$289$$ 2.75844 4.77777i 0.162261 0.281045i
$$290$$ 2.84356 0.675712i 0.166980 0.0396792i
$$291$$ 4.13248 + 2.38589i 0.242250 + 0.139863i
$$292$$ −5.06214 2.92263i −0.296239 0.171034i
$$293$$ 10.7757 + 6.22135i 0.629523 + 0.363455i 0.780567 0.625072i $$-0.214930\pi$$
−0.151044 + 0.988527i $$0.548264\pi$$
$$294$$ 2.68480 1.55007i 0.156581 0.0904019i
$$295$$ 13.4276 3.19078i 0.781783 0.185774i
$$296$$ 6.05221 + 0.608935i 0.351777 + 0.0353937i
$$297$$ 3.88035i 0.225161i
$$298$$ −9.03844 15.6550i −0.523583 0.906872i
$$299$$ 2.51235 4.35151i 0.145293 0.251654i
$$300$$ −4.99188 0.284822i −0.288206 0.0164442i
$$301$$ −25.9223 14.9662i −1.49414 0.862640i
$$302$$ −15.5051 −0.892215
$$303$$ 1.74602 + 1.00807i 0.100306 + 0.0579118i
$$304$$ 5.25580i 0.301441i
$$305$$ 14.9896 + 15.8692i 0.858302 + 0.908670i
$$306$$ 3.38867 0.193718
$$307$$ 28.9874i 1.65440i 0.561910 + 0.827199i $$0.310067\pi$$
−0.561910 + 0.827199i $$0.689933\pi$$
$$308$$ −10.6799 + 6.16602i −0.608541 + 0.351341i
$$309$$ 6.98722 + 4.03407i 0.397489 + 0.229490i
$$310$$ −13.3234 + 3.16603i −0.756719 + 0.179818i
$$311$$ −0.445283 + 0.257084i −0.0252497 + 0.0145779i −0.512572 0.858644i $$-0.671307\pi$$
0.487322 + 0.873222i $$0.337974\pi$$
$$312$$ 0.657673 0.379707i 0.0372334 0.0214967i
$$313$$ −11.2521 19.4892i −0.636006 1.10160i −0.986301 0.164956i $$-0.947252\pi$$
0.350295 0.936640i $$-0.386081\pi$$
$$314$$ −4.26063 2.45988i −0.240441 0.138819i
$$315$$ −2.03411 + 6.80904i −0.114609 + 0.383646i
$$316$$ −7.39006 + 4.26665i −0.415723 + 0.240018i
$$317$$ −6.11367 + 3.52973i −0.343378 + 0.198249i −0.661765 0.749712i $$-0.730192\pi$$
0.318387 + 0.947961i $$0.396859\pi$$
$$318$$ 1.59731 + 2.76662i 0.0895726 + 0.155144i
$$319$$ 5.07197i 0.283976i
$$320$$ −2.14251 0.640045i −0.119770 0.0357796i
$$321$$ −2.56417 4.44127i −0.143118 0.247887i
$$322$$ 21.0278i 1.17183i
$$323$$ 17.8102i 0.990986i
$$324$$ −0.500000 0.866025i −0.0277778 0.0481125i
$$325$$ 3.39117 1.70813i 0.188108 0.0947503i
$$326$$ 3.02056 5.23176i 0.167293 0.289760i
$$327$$ −4.95903 −0.274235
$$328$$ −5.17175 + 8.95773i −0.285562 + 0.494608i
$$329$$ −8.49531 + 14.7143i −0.468361 + 0.811226i
$$330$$ 2.48360 8.31368i 0.136718 0.457653i
$$331$$ 11.4620 6.61756i 0.630006 0.363734i −0.150748 0.988572i $$-0.548168\pi$$
0.780754 + 0.624838i $$0.214835\pi$$
$$332$$ 6.99018i 0.383636i
$$333$$ 2.49875 + 5.54583i 0.136931 + 0.303910i
$$334$$ 19.0693 1.04343
$$335$$ −15.4749 16.3830i −0.845482 0.895098i
$$336$$ −1.58904 + 2.75229i −0.0866890 + 0.150150i
$$337$$ −8.19202 4.72967i −0.446248 0.257641i 0.259996 0.965610i $$-0.416279\pi$$
−0.706244 + 0.707968i $$0.749612\pi$$
$$338$$ 6.21164 10.7589i 0.337869 0.585206i
$$339$$ 11.0102i 0.597989i
$$340$$ 7.26026 + 2.16890i 0.393743 + 0.117625i
$$341$$ 23.7645i 1.28692i
$$342$$ 4.55166 2.62790i 0.246125 0.142101i
$$343$$ 12.3940i 0.669215i
$$344$$ 9.41844 0.507808
$$345$$ −10.1593 10.7555i −0.546959 0.579057i
$$346$$ −17.6459 10.1879i −0.948652 0.547704i
$$347$$ −6.97276 −0.374317 −0.187159 0.982330i $$-0.559928\pi$$
−0.187159 + 0.982330i $$0.559928\pi$$
$$348$$ 0.653545 + 1.13197i 0.0350337 + 0.0606802i
$$349$$ −4.99936 8.65914i −0.267609 0.463513i 0.700635 0.713520i $$-0.252900\pi$$
−0.968244 + 0.250007i $$0.919567\pi$$
$$350$$ −8.71619 + 13.2865i −0.465900 + 0.710194i
$$351$$ 0.657673 + 0.379707i 0.0351040 + 0.0202673i
$$352$$ 1.94018 3.36048i 0.103412 0.179114i
$$353$$ 0.898282 + 1.55587i 0.0478107 + 0.0828106i 0.888940 0.458023i $$-0.151442\pi$$
−0.841130 + 0.540834i $$0.818109\pi$$
$$354$$ 3.08610 + 5.34529i 0.164025 + 0.284099i
$$355$$ 10.4712 9.89080i 0.555755 0.524949i
$$356$$ 2.23530i 0.118470i
$$357$$ 5.38472 9.32662i 0.284990 0.493617i
$$358$$ −1.61515 + 0.932508i −0.0853634 + 0.0492846i
$$359$$ 36.2514 1.91327 0.956637 0.291283i $$-0.0940822\pi$$
0.956637 + 0.291283i $$0.0940822\pi$$
$$360$$ −0.516959 2.17549i −0.0272461 0.114658i
$$361$$ 4.31172 + 7.46812i 0.226933 + 0.393059i
$$362$$ −12.1776 −0.640038
$$363$$ 3.51357 + 2.02856i 0.184415 + 0.106472i
$$364$$ 2.41347i 0.126500i
$$365$$ 3.74122 12.5235i 0.195825 0.655510i
$$366$$ −4.88119 + 8.45447i −0.255144 + 0.441922i
$$367$$ 24.0265 + 13.8717i 1.25417 + 0.724096i 0.971935 0.235249i $$-0.0755907\pi$$
0.282236 + 0.959345i $$0.408924\pi$$
$$368$$ −3.30827 5.73009i −0.172455 0.298701i
$$369$$ −10.3435 −0.538461
$$370$$ 1.80401 + 13.4813i 0.0937860 + 0.700860i
$$371$$ 10.1527 0.527103
$$372$$ −3.06216 5.30382i −0.158766 0.274990i
$$373$$ −13.7243 7.92370i −0.710615 0.410274i 0.100674 0.994919i $$-0.467900\pi$$
−0.811289 + 0.584646i $$0.801233\pi$$
$$374$$ −6.57462 + 11.3876i −0.339966 + 0.588838i
$$375$$ −1.96097 11.0070i −0.101264 0.568400i
$$376$$ 5.34620i 0.275709i
$$377$$ −0.859638 0.496312i −0.0442736 0.0255614i
$$378$$ −3.17807 −0.163462
$$379$$ 12.5851 + 21.7980i 0.646453 + 1.11969i 0.983964 + 0.178367i $$0.0570816\pi$$
−0.337511 + 0.941322i $$0.609585\pi$$
$$380$$ 11.4339 2.71703i 0.586549 0.139381i
$$381$$ −15.0799 −0.772568
$$382$$ 18.9820 10.9593i 0.971205 0.560726i
$$383$$ 7.99822 13.8533i 0.408690 0.707872i −0.586053 0.810273i $$-0.699319\pi$$
0.994743 + 0.102401i $$0.0326524\pi$$
$$384$$ 1.00000i 0.0510310i
$$385$$ −18.9351 20.0463i −0.965024 1.02166i
$$386$$ 3.00544 + 5.20557i 0.152973 + 0.264957i
$$387$$ 4.70922 + 8.15661i 0.239383 + 0.414624i
$$388$$ −2.38589 + 4.13248i −0.121125 + 0.209795i
$$389$$ 5.81063 + 3.35477i 0.294611 + 0.170093i 0.640019 0.768359i $$-0.278926\pi$$
−0.345409 + 0.938452i $$0.612260\pi$$
$$390$$ 1.16604 + 1.23447i 0.0590447 + 0.0625096i
$$391$$ 11.2106 + 19.4174i 0.566946 + 0.981980i
$$392$$ 1.55007 + 2.68480i 0.0782903 + 0.135603i
$$393$$ 10.9841 0.554074
$$394$$ −16.0895 9.28928i −0.810578 0.467987i
$$395$$ −13.1024 13.8713i −0.659254 0.697941i
$$396$$ 3.88035 0.194995
$$397$$ 19.4407i 0.975703i −0.872927 0.487851i $$-0.837781\pi$$
0.872927 0.487851i $$-0.162219\pi$$
$$398$$ 1.76774 1.02060i 0.0886087 0.0511583i
$$399$$ 16.7033i 0.836212i
$$400$$ 0.284822 4.99188i 0.0142411 0.249594i
$$401$$ 0.994109i 0.0496434i 0.999692 + 0.0248217i $$0.00790181\pi$$
−0.999692 + 0.0248217i $$0.992098\pi$$
$$402$$ 5.03921 8.72817i 0.251333 0.435322i
$$403$$ 4.02780 + 2.32545i 0.200639 + 0.115839i
$$404$$ −1.00807 + 1.74602i −0.0501531 + 0.0868677i
$$405$$ 1.62555 1.53544i 0.0807742 0.0762968i
$$406$$ 4.15403 0.206161
$$407$$ −23.4847 2.36288i −1.16409 0.117124i
$$408$$ 3.38867i 0.167764i
$$409$$ −26.9360 + 15.5515i −1.33190 + 0.768973i −0.985591 0.169148i $$-0.945898\pi$$
−0.346309 + 0.938120i $$0.612565\pi$$
$$410$$ −22.1610 6.62030i −1.09445 0.326953i
$$411$$ 0.851345 1.47457i 0.0419938 0.0727353i
$$412$$ −4.03407 + 6.98722i −0.198745 + 0.344236i
$$413$$ 19.6157 0.965226
$$414$$ 3.30827 5.73009i 0.162592 0.281618i
$$415$$ 15.2071 3.61364i 0.746486 0.177386i
$$416$$ 0.379707 + 0.657673i 0.0186167 + 0.0322451i
$$417$$ 17.5868i 0.861229i
$$418$$ 20.3944i 0.997520i
$$419$$ 19.2268 + 33.3019i 0.939293 + 1.62690i 0.766794 + 0.641893i $$0.221851\pi$$
0.172498 + 0.985010i $$0.444816\pi$$
$$420$$ −6.80904 2.03411i −0.332247 0.0992544i
$$421$$ 9.18954i 0.447871i 0.974604 + 0.223935i $$0.0718905\pi$$
−0.974604 + 0.223935i $$0.928110\pi$$
$$422$$ −6.65761 11.5313i −0.324088 0.561336i
$$423$$ 4.62995 2.67310i 0.225116 0.129971i
$$424$$ −2.76662 + 1.59731i −0.134359 + 0.0775722i
$$425$$ −0.965170 + 16.9159i −0.0468176 + 0.820540i
$$426$$ 5.57863 + 3.22083i 0.270286 + 0.156050i
$$427$$ 15.5128 + 26.8689i 0.750716 + 1.30028i
$$428$$ 4.44127 2.56417i 0.214677 0.123944i
$$429$$ −2.55200 + 1.47340i −0.123212 + 0.0711363i
$$430$$ 4.86895 + 20.4897i 0.234801 + 0.988102i
$$431$$ −9.79127 5.65299i −0.471629 0.272295i 0.245293 0.969449i $$-0.421116\pi$$
−0.716921 + 0.697154i $$0.754449\pi$$
$$432$$ 0.866025 0.500000i 0.0416667 0.0240563i
$$433$$ 19.1591i 0.920727i −0.887731 0.460363i $$-0.847719\pi$$
0.887731 0.460363i $$-0.152281\pi$$
$$434$$ −19.4635 −0.934280
$$435$$ −2.12474 + 2.00696i −0.101873 + 0.0962266i
$$436$$ 4.95903i 0.237494i
$$437$$ 30.1162 + 17.3876i 1.44065 + 0.831761i
$$438$$ 5.84525 0.279297
$$439$$ 28.6432 + 16.5371i 1.36706 + 0.789274i 0.990552 0.137138i $$-0.0437903\pi$$
0.376511 + 0.926412i $$0.377124\pi$$
$$440$$ 8.31368 + 2.48360i 0.396339 + 0.118401i
$$441$$ −1.55007 + 2.68480i −0.0738128 + 0.127848i
$$442$$ −1.28670 2.22864i −0.0612023 0.106005i
$$443$$ 0.475614i 0.0225971i −0.999936 0.0112985i $$-0.996403\pi$$
0.999936 0.0112985i $$-0.00359651\pi$$
$$444$$ −5.54583 + 2.49875i −0.263194 + 0.118585i
$$445$$ 4.86286 1.15556i 0.230522 0.0547786i
$$446$$ −12.8962 + 7.44563i −0.610654 + 0.352561i
$$447$$ 15.6550 + 9.03844i 0.740458 + 0.427503i
$$448$$ −2.75229 1.58904i −0.130034 0.0750749i
$$449$$ −33.9306 19.5898i −1.60128 0.924502i −0.991231 0.132141i $$-0.957815\pi$$
−0.610053 0.792360i $$-0.708852\pi$$
$$450$$ 4.46551 2.24928i 0.210506 0.106032i
$$451$$ 20.0682 34.7591i 0.944974 1.63674i
$$452$$ 11.0102 0.517874
$$453$$ 13.4278 7.75253i 0.630892 0.364245i
$$454$$ 1.41610 0.0664611
$$455$$ 5.25049 1.24767i 0.246147 0.0584915i
$$456$$ 2.62790 + 4.55166i 0.123063 + 0.213151i
$$457$$ 6.27814 10.8741i 0.293679 0.508667i −0.680998 0.732286i $$-0.738454\pi$$
0.974677 + 0.223618i $$0.0717869\pi$$
$$458$$ 27.8212 1.30000
$$459$$ −2.93468 + 1.69434i −0.136979 + 0.0790849i
$$460$$ 10.7555 10.1593i 0.501478 0.473681i
$$461$$ −4.06075 + 2.34448i −0.189128 + 0.109193i −0.591574 0.806250i $$-0.701493\pi$$
0.402446 + 0.915444i $$0.368160\pi$$
$$462$$ 6.16602 10.6799i 0.286869 0.496872i
$$463$$ 6.13895 10.6330i 0.285301 0.494156i −0.687381 0.726297i $$-0.741240\pi$$
0.972682 + 0.232141i $$0.0745730\pi$$
$$464$$ −1.13197 + 0.653545i −0.0525506 + 0.0303401i
$$465$$ 9.95540 9.40356i 0.461670 0.436080i
$$466$$ 18.3097 10.5711i 0.848182 0.489698i
$$467$$ −12.6856 −0.587021 −0.293511 0.955956i $$-0.594824\pi$$
−0.293511 + 0.955956i $$0.594824\pi$$
$$468$$ −0.379707 + 0.657673i −0.0175520 + 0.0304009i
$$469$$ −16.0150 27.7388i −0.739503 1.28086i
$$470$$ 11.6306 2.76377i 0.536480 0.127483i
$$471$$ 4.91975 0.226690
$$472$$ −5.34529 + 3.08610i −0.246037 + 0.142049i
$$473$$ −36.5468 −1.68043
$$474$$ 4.26665 7.39006i 0.195974 0.339436i
$$475$$ 11.8218 + 23.4698i 0.542419 + 1.07687i
$$476$$ 9.32662 + 5.38472i 0.427485 + 0.246808i
$$477$$ −2.76662 1.59731i −0.126675 0.0731357i
$$478$$ 5.13952 + 2.96731i 0.235076 + 0.135721i
$$479$$ −2.51613 + 1.45269i −0.114965 + 0.0663750i −0.556380 0.830928i $$-0.687810\pi$$
0.441415 + 0.897303i $$0.354477\pi$$
$$480$$ 2.17549 0.516959i 0.0992970 0.0235958i
$$481$$ 2.69855 3.74915i 0.123043 0.170947i
$$482$$ 24.9489i 1.13639i
$$483$$ −10.5139 18.2106i −0.478399 0.828612i
$$484$$ −2.02856 + 3.51357i −0.0922073 + 0.159708i
$$485$$ −10.2236 3.05415i −0.464229 0.138682i
$$486$$ 0.866025 + 0.500000i 0.0392837 + 0.0226805i
$$487$$ −0.439955 −0.0199363 −0.00996814 0.999950i $$-0.503173\pi$$
−0.00996814 + 0.999950i $$0.503173\pi$$
$$488$$ −8.45447 4.88119i −0.382716 0.220961i
$$489$$ 6.04111i 0.273189i
$$490$$ −5.03943 + 4.76009i −0.227658 + 0.215039i
$$491$$ 38.7496 1.74875 0.874373 0.485254i $$-0.161273\pi$$
0.874373 + 0.485254i $$0.161273\pi$$
$$492$$ 10.3435i 0.466321i
$$493$$ 3.83589 2.21465i 0.172760 0.0997429i
$$494$$ −3.45660 1.99567i −0.155520 0.0897893i
$$495$$ 2.00598 + 8.44166i 0.0901622 + 0.379424i
$$496$$ 5.30382 3.06216i 0.238149 0.137495i
$$497$$ 17.7293 10.2360i 0.795268 0.459148i
$$498$$ 3.49509 + 6.05368i 0.156619 + 0.271272i
$$499$$ −32.7624 18.9154i −1.46665 0.846768i −0.467342 0.884077i $$-0.654788\pi$$
−0.999304 + 0.0373082i $$0.988122\pi$$
$$500$$ 11.0070 1.96097i 0.492249 0.0876972i
$$501$$ −16.5145 + 9.53467i −0.737815 + 0.425978i
$$502$$ −4.40080 + 2.54080i −0.196417 + 0.113401i
$$503$$ 13.0136 + 22.5402i 0.580246 + 1.00502i 0.995450 + 0.0952875i $$0.0303770\pi$$
−0.415203 + 0.909729i $$0.636290\pi$$
$$504$$ 3.17807i 0.141563i
$$505$$ −4.31958 1.29041i −0.192219 0.0574227i
$$506$$ 12.8372 + 22.2347i 0.570685 + 0.988455i
$$507$$ 12.4233i 0.551738i
$$508$$ 15.0799i 0.669063i
$$509$$ −18.3204 31.7319i −0.812038 1.40649i −0.911435 0.411444i $$-0.865025\pi$$
0.0993971 0.995048i $$-0.468309\pi$$
$$510$$ −7.37202 + 1.75181i −0.326439 + 0.0775712i
$$511$$ 9.28831 16.0878i 0.410891 0.711684i
$$512$$ 1.00000 0.0441942
$$513$$ −2.62790 + 4.55166i −0.116025 + 0.200961i
$$514$$ 5.08288 8.80380i 0.224196 0.388319i
$$515$$ −17.2861 5.16398i −0.761716 0.227552i
$$516$$ −8.15661 + 4.70922i −0.359075 + 0.207312i
$$517$$ 20.7451i 0.912370i
$$518$$ −1.93524 + 19.2343i −0.0850296 + 0.845109i
$$519$$ 20.3758 0.894397
$$520$$ −1.23447 + 1.16604i −0.0541349 + 0.0511342i
$$521$$ −6.87938 + 11.9154i −0.301391 + 0.522025i −0.976451 0.215738i $$-0.930784\pi$$
0.675060 + 0.737763i $$0.264118\pi$$
$$522$$ −1.13197 0.653545i −0.0495451 0.0286049i
$$523$$ 0.135209 0.234189i 0.00591228 0.0102404i −0.863054 0.505111i $$-0.831451\pi$$
0.868966 + 0.494871i $$0.164785\pi$$
$$524$$ 10.9841i 0.479843i
$$525$$ 0.905186 15.8646i 0.0395055 0.692386i
$$526$$ 15.6319i 0.681585i
$$527$$ −17.9729 + 10.3767i −0.782913 + 0.452015i
$$528$$ 3.88035i 0.168871i
$$529$$ 20.7785 0.903414
$$530$$ −4.90516 5.19301i −0.213066 0.225570i
$$531$$ −5.34529 3.08610i −0.231966 0.133925i
$$532$$ 16.7033 0.724180
$$533$$ 3.92750 + 6.80263i 0.170119 + 0.294655i
$$534$$ 1.11765 + 1.93582i 0.0483654 + 0.0837713i
$$535$$ 7.87427 + 8.33636i 0.340434 + 0.360412i
$$536$$ 8.72817 + 5.03921i 0.377000 + 0.217661i
$$537$$ 0.932508 1.61515i 0.0402407 0.0696989i
$$538$$ 8.58413 + 14.8681i 0.370088 + 0.641011i
$$539$$ −6.01481 10.4180i −0.259076 0.448733i
$$540$$ 1.53544 + 1.62555i 0.0660750 + 0.0699525i
$$541$$ 33.4724i 1.43909i −0.694446 0.719545i $$-0.744350\pi$$
0.694446 0.719545i $$-0.255650\pi$$
$$542$$ −4.20412 + 7.28174i −0.180582 + 0.312778i
$$543$$ 10.5461 6.08878i 0.452575 0.261295i
$$544$$ −3.38867 −0.145288
$$545$$ 10.7883 2.56361i 0.462120 0.109813i
$$546$$ 1.20674 + 2.09013i 0.0516436 + 0.0894493i
$$547$$ 41.8398 1.78894 0.894471 0.447126i $$-0.147552\pi$$
0.894471 + 0.447126i $$0.147552\pi$$
$$548$$ 1.47457 + 0.851345i 0.0629906 + 0.0363677i
$$549$$ 9.76238i 0.416648i
$$550$$ −1.10521 + 19.3703i −0.0471263 + 0.825950i
$$551$$ 3.43490 5.94943i 0.146332 0.253454i
$$552$$ 5.73009 + 3.30827i 0.243889 + 0.140809i
$$553$$ −13.5597 23.4861i −0.576618 0.998732i
$$554$$ 28.1925 1.19778
$$555$$ −8.30297 10.7731i −0.352441 0.457295i
$$556$$ −17.5868 −0.745846
$$557$$ 18.9097 + 32.7526i 0.801230 + 1.38777i 0.918807 + 0.394708i $$0.129154\pi$$
−0.117576 + 0.993064i $$0.537512\pi$$
$$558$$ 5.30382 + 3.06216i 0.224529 + 0.129632i
$$559$$ 3.57625 6.19425i 0.151259 0.261989i
$$560$$ 2.03411 6.80904i 0.0859568 0.287735i
$$561$$ 13.1492i 0.555162i
$$562$$ 18.0402 + 10.4155i 0.760981 + 0.439353i
$$563$$ 38.4439 1.62022 0.810109 0.586280i $$-0.199408\pi$$
0.810109 + 0.586280i $$0.199408\pi$$
$$564$$ 2.67310 + 4.62995i 0.112558 + 0.194956i
$$565$$ 5.69180 + 23.9525i 0.239456 + 1.00769i
$$566$$ 15.4079 0.647642
$$567$$ 2.75229 1.58904i 0.115585 0.0667332i
$$568$$ −3.22083 + 5.57863i −0.135143 + 0.234074i
$$569$$ 42.4265i 1.77861i 0.457315 + 0.889305i $$0.348811\pi$$
−0.457315 + 0.889305i $$0.651189\pi$$
$$570$$ −8.54356 + 8.06999i −0.357851 + 0.338015i
$$571$$ −2.51703 4.35962i −0.105334 0.182444i 0.808540 0.588441i $$-0.200258\pi$$
−0.913875 + 0.405996i $$0.866925\pi$$
$$572$$ −1.47340 2.55200i −0.0616059 0.106704i
$$573$$ −10.9593 + 18.9820i −0.457831 + 0.792986i
$$574$$ −28.4683 16.4362i −1.18824 0.686033i
$$575$$ 27.6616 + 18.1465i 1.15357 + 0.756763i
$$576$$ 0.500000 + 0.866025i 0.0208333 + 0.0360844i
$$577$$ 4.83557 + 8.37546i 0.201308 + 0.348675i 0.948950 0.315427i $$-0.102148\pi$$
−0.747642 + 0.664102i $$0.768814\pi$$
$$578$$ −5.51689 −0.229472
$$579$$ −5.20557 3.00544i −0.216336 0.124902i
$$580$$ −2.00696 2.12474i −0.0833347 0.0882250i
$$581$$ 22.2153 0.921646
$$582$$ 4.77178i 0.197797i
$$583$$ 10.7355 6.19812i 0.444617 0.256700i
$$584$$ 5.84525i 0.241878i
$$585$$ −1.62705 0.486060i −0.0672704 0.0200961i
$$586$$ 12.4427i 0.514003i
$$587$$ 11.6533 20.1840i 0.480981 0.833084i −0.518780 0.854908i $$-0.673614\pi$$
0.999762 + 0.0218233i $$0.00694711\pi$$
$$588$$ −2.68480 1.55007i −0.110719 0.0639238i
$$589$$ −16.0941 + 27.8758i −0.663147 + 1.14860i
$$590$$ −9.47708 10.0332i −0.390165 0.413061i
$$591$$ 18.5786 0.764220
$$592$$ −2.49875 5.54583i −0.102698 0.227932i
$$593$$ 28.4421i 1.16798i −0.811762 0.583989i $$-0.801491\pi$$
0.811762 0.583989i $$-0.198509\pi$$
$$594$$ −3.36048 + 1.94018i −0.137882 + 0.0796064i
$$595$$ −6.89293 + 23.0736i −0.282583 + 0.945927i
$$596$$ −9.03844 + 15.6550i −0.370229 + 0.641255i
$$597$$ −1.02060 + 1.76774i −0.0417706 + 0.0723487i
$$598$$ −5.02469 −0.205475
$$599$$ 13.7454 23.8078i 0.561623 0.972759i −0.435733 0.900076i $$-0.643511\pi$$
0.997355 0.0726826i $$-0.0231560\pi$$
$$600$$ 2.24928 + 4.46551i 0.0918264 + 0.182304i
$$601$$ −22.0281 38.1539i −0.898547 1.55633i −0.829353 0.558725i $$-0.811291\pi$$
−0.0691938 0.997603i $$-0.522043\pi$$
$$602$$ 29.9325i 1.21996i
$$603$$ 10.0784i 0.410425i
$$604$$ 7.75253 + 13.4278i 0.315446 + 0.546368i
$$605$$ −8.69242 2.59674i −0.353397 0.105573i
$$606$$ 2.01613i 0.0818997i
$$607$$ −22.3880 38.7772i −0.908702 1.57392i −0.815869 0.578236i $$-0.803741\pi$$
−0.0928326 0.995682i $$-0.529592\pi$$
$$608$$ −4.55166 + 2.62790i −0.184594 + 0.106575i
$$609$$ −3.59749 + 2.07701i −0.145778 + 0.0841648i
$$610$$ 6.24837 20.9160i 0.252989 0.846864i
$$611$$ −3.51605 2.02999i −0.142244 0.0821247i
$$612$$ −1.69434 2.93468i −0.0684895 0.118627i
$$613$$ 21.4944 12.4098i 0.868150 0.501227i 0.00141717 0.999999i $$-0.499549\pi$$
0.866733 + 0.498772i $$0.166216\pi$$
$$614$$ 25.1038 14.4937i 1.01311 0.584918i
$$615$$ 22.5022 5.34716i 0.907374 0.215618i
$$616$$ 10.6799 + 6.16602i 0.430304 + 0.248436i
$$617$$ 34.1390 19.7101i 1.37438 0.793500i 0.382906 0.923787i $$-0.374923\pi$$
0.991476 + 0.130287i $$0.0415898\pi$$
$$618$$ 8.06815i 0.324549i
$$619$$ 9.70430 0.390049 0.195024 0.980798i $$-0.437521\pi$$
0.195024 + 0.980798i $$0.437521\pi$$
$$620$$ 9.40356 + 9.95540i 0.377656 + 0.399818i
$$621$$ 6.61653i 0.265512i
$$622$$ 0.445283 + 0.257084i 0.0178542 + 0.0103081i
$$623$$ 7.10393 0.284613
$$624$$ −0.657673 0.379707i −0.0263280 0.0152005i
$$625$$ 9.95625 + 22.9319i 0.398250 + 0.917277i
$$626$$ −11.2521 + 19.4892i −0.449724 + 0.778945i
$$627$$ −10.1972 17.6620i −0.407236 0.705353i
$$628$$ 4.91975i 0.196320i
$$629$$ 8.46745 + 18.7930i 0.337619 + 0.749327i
$$630$$ 6.91386 1.64293i 0.275455 0.0654560i
$$631$$ −11.6902 + 6.74933i −0.465379 + 0.268687i −0.714303 0.699836i $$-0.753256\pi$$
0.248924 + 0.968523i $$0.419923\pi$$
$$632$$ 7.39006 + 4.26665i 0.293961 + 0.169718i
$$633$$ 11.5313 + 6.65761i 0.458329 + 0.264616i
$$634$$ 6.11367 + 3.52973i 0.242805 + 0.140183i
$$635$$ 32.8062 7.79570i 1.30187 0.309363i
$$636$$ 1.59731 2.76662i 0.0633374 0.109704i
$$637$$ 2.35429 0.0932804
$$638$$ 4.39245 2.53598i 0.173899 0.100401i
$$639$$ −6.44165 −0.254828
$$640$$ 0.516959 + 2.17549i 0.0204346 + 0.0859938i
$$641$$ 8.41425 + 14.5739i 0.332343 + 0.575635i 0.982971 0.183762i $$-0.0588275\pi$$
−0.650628 + 0.759397i $$0.725494\pi$$
$$642$$ −2.56417 + 4.44127i −0.101200 + 0.175283i
$$643$$ −18.4589 −0.727949 −0.363975 0.931409i $$-0.618581\pi$$
−0.363975 + 0.931409i $$0.618581\pi$$
$$644$$ 18.2106 10.5139i 0.717599 0.414306i
$$645$$ −14.4615 15.3101i −0.569421 0.602836i
$$646$$ 15.4241 8.90510i 0.606852 0.350366i
$$647$$ −2.42149 + 4.19414i −0.0951985 + 0.164889i −0.909691 0.415285i $$-0.863682\pi$$
0.814493 + 0.580173i $$0.197015\pi$$
$$648$$ −0.500000 + 0.866025i −0.0196419 + 0.0340207i
$$649$$ 20.7416 11.9752i 0.814179 0.470066i
$$650$$ −3.17487 2.08277i −0.124529 0.0816931i
$$651$$ 16.8559 9.73177i 0.660636 0.381418i
$$652$$ −6.04111 −0.236588
$$653$$ −0.412819 + 0.715023i −0.0161549 + 0.0279810i −0.873990 0.485944i $$-0.838476\pi$$
0.857835 + 0.513925i $$0.171809\pi$$
$$654$$ 2.47951 + 4.29464i 0.0969566 + 0.167934i
$$655$$ −23.8958 + 5.67833i −0.933686 + 0.221871i
$$656$$ 10.3435 0.403845
$$657$$ −5.06214 + 2.92263i −0.197493 + 0.114022i
$$658$$ 16.9906 0.662363
$$659$$ −12.4134 + 21.5006i −0.483557 + 0.837546i −0.999822 0.0188834i $$-0.993989\pi$$
0.516264 + 0.856429i $$0.327322\pi$$
$$660$$ −8.44166 + 2.00598i −0.328591 + 0.0780827i
$$661$$ 14.5538 + 8.40263i 0.566077 + 0.326825i 0.755581 0.655055i $$-0.227355\pi$$
−0.189504 + 0.981880i $$0.560688\pi$$
$$662$$ −11.4620 6.61756i −0.445482 0.257199i
$$663$$ 2.22864 + 1.28670i 0.0865531 + 0.0499715i
$$664$$ −6.05368 + 3.49509i −0.234928 + 0.135636i
$$665$$ 8.63493 + 36.3379i 0.334848 + 1.40912i
$$666$$ 3.55346 4.93690i 0.137694 0.191301i
$$667$$ 8.64841i 0.334868i
$$668$$ −9.53467 16.5145i −0.368907 0.638966i
$$669$$ 7.44563 12.8962i 0.287865 0.498597i
$$670$$ −6.45065 + 21.5931i −0.249210 + 0.834215i
$$671$$ 32.8063 + 18.9407i 1.26647 + 0.731199i
$$672$$ 3.17807 0.122597
$$673$$ −1.06009 0.612042i −0.0408634 0.0235925i 0.479429 0.877581i $$-0.340844\pi$$
−0.520293 + 0.853988i $$0.674177\pi$$
$$674$$ 9.45934i 0.364360i
$$675$$ −2.74260 + 4.18068i −0.105563 + 0.160915i
$$676$$ −12.4233 −0.477819
$$677$$ 19.9522i 0.766825i 0.923577 + 0.383412i $$0.125251\pi$$
−0.923577 + 0.383412i $$0.874749\pi$$
$$678$$ −9.53507 + 5.50508i −0.366192 + 0.211421i
$$679$$ −13.1333 7.58253i −0.504011 0.290991i
$$680$$ −1.75181 7.37202i −0.0671787 0.282704i
$$681$$ −1.22638 + 0.708052i −0.0469951 + 0.0271326i
$$682$$ −20.5807 + 11.8823i −0.788075 + 0.454996i
$$683$$ 7.80416 + 13.5172i 0.298618 + 0.517221i 0.975820 0.218576i $$-0.0701411\pi$$
−0.677202 + 0.735797i $$0.736808\pi$$
$$684$$ −4.55166 2.62790i −0.174037 0.100480i
$$685$$ −1.08980 + 3.64803i −0.0416391 + 0.139384i
$$686$$ 10.7336 6.19702i 0.409809 0.236603i
$$687$$ −24.0938 + 13.9106i −0.919237 + 0.530722i
$$688$$ −4.70922 8.15661i −0.179537 0.310968i
$$689$$ 2.42604i 0.0924248i
$$690$$ −4.23488 + 14.1760i −0.161219 + 0.539670i
$$691$$ −19.8289 34.3447i −0.754328 1.30654i −0.945707 0.325019i $$-0.894629\pi$$
0.191379 0.981516i $$-0.438704\pi$$
$$692$$ 20.3758i 0.774571i
$$693$$ 12.3320i 0.468455i
$$694$$ 3.48638 + 6.03859i 0.132341 + 0.229222i
$$695$$ −9.09165 38.2599i −0.344866 1.45128i
$$696$$ 0.653545 1.13197i 0.0247726 0.0429073i
$$697$$ −35.0507 −1.32764
$$698$$ −4.99936 + 8.65914i −0.189228 + 0.327753i
$$699$$ −10.5711 + 18.3097i −0.399837 + 0.692538i
$$700$$ 15.8646 + 0.905186i 0.599624 + 0.0342128i
$$701$$ 30.5819 17.6564i 1.15506 0.666875i 0.204945 0.978773i $$-0.434298\pi$$
0.950115 + 0.311899i $$0.100965\pi$$
$$702$$ 0.759415i 0.0286623i
$$703$$ 25.9473 + 18.6763i 0.978623 + 0.704389i
$$704$$ −3.88035 −0.146246
$$705$$ −8.69052 + 8.20879i −0.327304 + 0.309161i
$$706$$ 0.898282 1.55587i 0.0338073 0.0585559i
$$707$$ −5.54898 3.20370i −0.208691 0.120488i
$$708$$ 3.08610 5.34529i 0.115983 0.200888i
$$709$$ 11.4844i 0.431305i −0.976470 0.215652i $$-0.930812\pi$$
0.976470 0.215652i $$-0.0691878\pi$$
$$710$$ −13.8013 4.12295i −0.517953 0.154731i
$$711$$ 8.53330i 0.320024i
$$712$$ −1.93582 + 1.11765i −0.0725481 + 0.0418856i
$$713$$ 40.5218i 1.51755i
$$714$$ −10.7694 −0.403036
$$715$$ 4.79016 4.52464i 0.179142 0.169212i
$$716$$ 1.61515 + 0.932508i 0.0603610 + 0.0348494i
$$717$$ −5.93461 −0.221632
$$718$$ −18.1257 31.3946i −0.676444 1.17164i
$$719$$ 6.73406 + 11.6637i 0.251138 + 0.434984i 0.963839 0.266484i $$-0.0858619\pi$$
−0.712701 + 0.701468i $$0.752529\pi$$
$$720$$ −1.62555 + 1.53544i −0.0605807 + 0.0572226i
$$721$$ −22.2059 12.8206i −0.826991 0.477463i
$$722$$ 4.31172 7.46812i 0.160466 0.277935i
$$723$$ −12.4744 21.6064i −0.463930 0.803550i
$$724$$ 6.08878 + 10.5461i 0.226288 + 0.391942i
$$725$$ 3.58483 5.46453i 0.133137 0.202948i
$$726$$ 4.05712i 0.150574i
$$727$$ 8.17953 14.1674i 0.303362 0.525439i −0.673533 0.739157i $$-0.735224\pi$$
0.976895 + 0.213718i $$0.0685575\pi$$
$$728$$ −2.09013 + 1.20674i −0.0774654 + 0.0447247i
$$729$$ −1.00000 −0.0370370
$$730$$ −12.7163 + 3.02175i −0.470651 + 0.111840i
$$731$$ 15.9580 + 27.6401i 0.590228 + 1.02231i
$$732$$ 9.76238 0.360828
$$733$$ −33.0277 19.0685i −1.21991 0.704313i −0.255008 0.966939i $$-0.582078\pi$$
−0.964898 + 0.262626i $$0.915411\pi$$
$$734$$ 27.7434i 1.02403i
$$735$$ 1.98423 6.64207i 0.0731894 0.244997i
$$736$$ −3.30827 + 5.73009i −0.121944 + 0.211214i
$$737$$ −33.8684 19.5539i −1.24756 0.720278i
$$738$$ 5.17175 + 8.95773i 0.190375 + 0.329738i
$$739$$ −36.2617 −1.33391 −0.666954 0.745099i $$-0.732402\pi$$
−0.666954 + 0.745099i $$0.732402\pi$$
$$740$$ 10.7731 8.30297i 0.396029 0.305223i
$$741$$ 3.99133 0.146625
$$742$$ −5.07636 8.79251i −0.186359 0.322783i
$$743$$ −5.97478 3.44954i −0.219193 0.126551i 0.386383 0.922338i $$-0.373724\pi$$
−0.605577 + 0.795787i $$0.707058\pi$$
$$744$$ −3.06216 + 5.30382i −0.112264 + 0.194448i
$$745$$ −38.7299 11.5700i −1.41895 0.423893i
$$746$$ 15.8474i 0.580215i
$$747$$ −6.05368 3.49509i −0.221492 0.127879i
$$748$$ 13.1492 0.480784
$$749$$ 8.14911 + 14.1147i 0.297762 + 0.515739i
$$750$$ −8.55188 + 7.20176i −0.312270 + 0.262971i
$$751$$ −27.9667 −1.02052 −0.510260 0.860020i $$-0.670451\pi$$
−0.510260 + 0.860020i $$0.670451\pi$$
$$752$$ −4.62995 + 2.67310i −0.168837 + 0.0974780i
$$753$$ 2.54080 4.40080i 0.0925919 0.160374i
$$754$$ 0.992624i 0.0361492i
$$755$$ −25.2042 + 23.8071i −0.917276 + 0.866431i
$$756$$ 1.58904 + 2.75229i 0.0577927 + 0.100100i
$$757$$ −22.6799 39.2828i −0.824316 1.42776i −0.902441 0.430814i $$-0.858227\pi$$
0.0781247 0.996944i $$-0.475107\pi$$
$$758$$ 12.5851 21.7980i 0.457111 0.791740i
$$759$$ −22.2347 12.8372i −0.807070 0.465962i
$$760$$ −8.06999 8.54356i −0.292729 0.309908i
$$761$$ 4.81085 + 8.33263i 0.174393 + 0.302058i 0.939951 0.341309i $$-0.110870\pi$$
−0.765558 + 0.643367i $$0.777537\pi$$
$$762$$ 7.53996 + 13.0596i 0.273144 + 0.473099i
$$763$$ 15.7601 0.570555
$$764$$ −18.9820 10.9593i −0.686746 0.396493i
$$765$$ 5.50846 5.20312i 0.199159 0.188119i
$$766$$ −15.9964 −0.577975
$$767$$ 4.68726i 0.169247i
$$768$$ −0.866025 + 0.500000i −0.0312500 + 0.0180422i
$$769$$ 31.0987i 1.12145i 0.828002 + 0.560725i $$0.189477\pi$$
−0.828002 + 0.560725i $$0.810523\pi$$
$$770$$ −7.89306 + 26.4215i −0.284446 + 0.952164i
$$771$$ 10.1658i 0.366111i
$$772$$ 3.00544 5.20557i 0.108168 0.187353i
$$773$$ −3.09863 1.78899i −0.111450 0.0643456i 0.443239 0.896404i $$-0.353829\pi$$
−0.554689 + 0.832058i $$0.687163\pi$$
$$774$$ 4.70922 8.15661i 0.169269 0.293183i
$$775$$ −16.7966 + 25.6039i −0.603352 + 0.919718i
$$776$$ 4.77178 0.171297
$$777$$ −7.94120