Properties

Label 1110.2.ba.a.529.14
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.14
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.a.619.14

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.16244 + 0.569075i) q^{5} -1.00000i q^{6} +(1.99912 + 1.15419i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.16244 + 0.569075i) q^{5} -1.00000i q^{6} +(1.99912 + 1.15419i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.588388 - 2.15727i) q^{10} +3.60666 q^{11} +(-0.866025 + 0.500000i) q^{12} +(2.08315 - 3.60811i) q^{13} -2.30838i q^{14} +(1.58819 + 1.57405i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.64189 - 2.84383i) q^{17} +(0.500000 - 0.866025i) q^{18} +(-3.53639 - 2.04174i) q^{19} +(-1.57405 + 1.58819i) q^{20} +(1.15419 + 1.99912i) q^{21} +(-1.80333 - 3.12346i) q^{22} -0.748890 q^{23} +(0.866025 + 0.500000i) q^{24} +(4.35231 + 2.46118i) q^{25} -4.16629 q^{26} +1.00000i q^{27} +(-1.99912 + 1.15419i) q^{28} +3.31885i q^{29} +(0.569075 - 2.16244i) q^{30} +4.54696i q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.12346 + 1.80333i) q^{33} +(-1.64189 + 2.84383i) q^{34} +(3.66615 + 3.63351i) q^{35} -1.00000 q^{36} +(-4.22132 - 4.37955i) q^{37} +4.08347i q^{38} +(3.60811 - 2.08315i) q^{39} +(2.16244 + 0.569075i) q^{40} +(-1.97387 + 3.41884i) q^{41} +(1.15419 - 1.99912i) q^{42} +11.6588 q^{43} +(-1.80333 + 3.12346i) q^{44} +(0.588388 + 2.15727i) q^{45} +(0.374445 + 0.648558i) q^{46} -1.55975i q^{47} -1.00000i q^{48} +(-0.835693 - 1.44746i) q^{49} +(-0.0447077 - 4.99980i) q^{50} -3.28377i q^{51} +(2.08315 + 3.60811i) q^{52} +(-2.02580 + 1.16959i) q^{53} +(0.866025 - 0.500000i) q^{54} +(7.79920 + 2.05246i) q^{55} +(1.99912 + 1.15419i) q^{56} +(-2.04174 - 3.53639i) q^{57} +(2.87421 - 1.65943i) q^{58} +(-10.1511 + 5.86075i) q^{59} +(-2.15727 + 0.588388i) q^{60} +(2.15821 + 1.24604i) q^{61} +(3.93778 - 2.27348i) q^{62} +2.30838i q^{63} +1.00000 q^{64} +(6.55797 - 6.61687i) q^{65} -3.60666i q^{66} +(-6.87799 - 3.97101i) q^{67} +3.28377 q^{68} +(-0.648558 - 0.374445i) q^{69} +(1.31364 - 4.99174i) q^{70} +(0.361447 - 0.626045i) q^{71} +(0.500000 + 0.866025i) q^{72} -0.278797i q^{73} +(-1.68214 + 5.84555i) q^{74} +(2.53862 + 4.30760i) q^{75} +(3.53639 - 2.04174i) q^{76} +(7.21014 + 4.16277i) q^{77} +(-3.60811 - 2.08315i) q^{78} +(7.52682 + 4.34561i) q^{79} +(-0.588388 - 2.15727i) q^{80} +(-0.500000 + 0.866025i) q^{81} +3.94773 q^{82} +(-5.53660 + 3.19656i) q^{83} -2.30838 q^{84} +(-1.93213 - 7.08397i) q^{85} +(-5.82942 - 10.0969i) q^{86} +(-1.65943 + 2.87421i) q^{87} +3.60666 q^{88} +(-5.28646 + 3.05214i) q^{89} +(1.57405 - 1.58819i) q^{90} +(8.32890 - 4.80869i) q^{91} +(0.374445 - 0.648558i) q^{92} +(-2.27348 + 3.93778i) q^{93} +(-1.35078 + 0.779875i) q^{94} +(-6.48534 - 6.42760i) q^{95} +(-0.866025 + 0.500000i) q^{96} +4.51721 q^{97} +(-0.835693 + 1.44746i) q^{98} +(1.80333 + 3.12346i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 2q^{5} + 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} - 14q^{13} - 2q^{15} - 18q^{16} + 18q^{18} + 6q^{19} - 4q^{20} - 2q^{22} - 20q^{23} + 4q^{25} + 28q^{26} - 2q^{30} - 18q^{32} - 6q^{33} - 40q^{35} - 36q^{36} + 20q^{37} + 6q^{39} + 2q^{40} + 10q^{41} - 2q^{44} - 2q^{45} + 10q^{46} + 10q^{49} - 2q^{50} - 14q^{52} - 12q^{53} + 56q^{55} + 8q^{57} + 30q^{58} + 18q^{59} + 4q^{60} - 6q^{61} - 12q^{62} + 36q^{64} + 40q^{65} + 36q^{67} + 12q^{69} + 20q^{70} - 24q^{71} + 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} - 24q^{77} - 6q^{78} + 2q^{80} - 18q^{81} - 20q^{82} + 36q^{83} + 26q^{85} - 10q^{87} + 4q^{88} + 4q^{90} - 36q^{91} + 10q^{92} + 12q^{93} + 12q^{94} - 30q^{95} + 52q^{97} + 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.16244 + 0.569075i 0.967073 + 0.254498i
\(6\) 1.00000i 0.408248i
\(7\) 1.99912 + 1.15419i 0.755594 + 0.436243i 0.827712 0.561153i \(-0.189642\pi\)
−0.0721173 + 0.997396i \(0.522976\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −0.588388 2.15727i −0.186064 0.682188i
\(11\) 3.60666 1.08745 0.543725 0.839263i \(-0.317013\pi\)
0.543725 + 0.839263i \(0.317013\pi\)
\(12\) −0.866025 + 0.500000i −0.250000 + 0.144338i
\(13\) 2.08315 3.60811i 0.577761 1.00071i −0.417975 0.908459i \(-0.637260\pi\)
0.995736 0.0922523i \(-0.0294066\pi\)
\(14\) 2.30838i 0.616940i
\(15\) 1.58819 + 1.57405i 0.410069 + 0.406419i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.64189 2.84383i −0.398216 0.689730i 0.595290 0.803511i \(-0.297037\pi\)
−0.993506 + 0.113781i \(0.963704\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) −3.53639 2.04174i −0.811303 0.468406i 0.0361050 0.999348i \(-0.488505\pi\)
−0.847408 + 0.530942i \(0.821838\pi\)
\(20\) −1.57405 + 1.58819i −0.351969 + 0.355131i
\(21\) 1.15419 + 1.99912i 0.251865 + 0.436243i
\(22\) −1.80333 3.12346i −0.384472 0.665924i
\(23\) −0.748890 −0.156154 −0.0780772 0.996947i \(-0.524878\pi\)
−0.0780772 + 0.996947i \(0.524878\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) 4.35231 + 2.46118i 0.870462 + 0.492236i
\(26\) −4.16629 −0.817077
\(27\) 1.00000i 0.192450i
\(28\) −1.99912 + 1.15419i −0.377797 + 0.218121i
\(29\) 3.31885i 0.616295i 0.951339 + 0.308148i \(0.0997091\pi\)
−0.951339 + 0.308148i \(0.900291\pi\)
\(30\) 0.569075 2.16244i 0.103898 0.394806i
\(31\) 4.54696i 0.816658i 0.912835 + 0.408329i \(0.133888\pi\)
−0.912835 + 0.408329i \(0.866112\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 3.12346 + 1.80333i 0.543725 + 0.313920i
\(34\) −1.64189 + 2.84383i −0.281581 + 0.487713i
\(35\) 3.66615 + 3.63351i 0.619692 + 0.614176i
\(36\) −1.00000 −0.166667
\(37\) −4.22132 4.37955i −0.693981 0.719993i
\(38\) 4.08347i 0.662426i
\(39\) 3.60811 2.08315i 0.577761 0.333570i
\(40\) 2.16244 + 0.569075i 0.341912 + 0.0899786i
\(41\) −1.97387 + 3.41884i −0.308266 + 0.533933i −0.977983 0.208684i \(-0.933082\pi\)
0.669717 + 0.742616i \(0.266415\pi\)
\(42\) 1.15419 1.99912i 0.178095 0.308470i
\(43\) 11.6588 1.77796 0.888979 0.457949i \(-0.151416\pi\)
0.888979 + 0.457949i \(0.151416\pi\)
\(44\) −1.80333 + 3.12346i −0.271863 + 0.470880i
\(45\) 0.588388 + 2.15727i 0.0877116 + 0.321586i
\(46\) 0.374445 + 0.648558i 0.0552089 + 0.0956247i
\(47\) 1.55975i 0.227513i −0.993509 0.113757i \(-0.963712\pi\)
0.993509 0.113757i \(-0.0362884\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −0.835693 1.44746i −0.119385 0.206780i
\(50\) −0.0447077 4.99980i −0.00632263 0.707079i
\(51\) 3.28377i 0.459820i
\(52\) 2.08315 + 3.60811i 0.288880 + 0.500355i
\(53\) −2.02580 + 1.16959i −0.278265 + 0.160656i −0.632638 0.774448i \(-0.718028\pi\)
0.354373 + 0.935104i \(0.384694\pi\)
\(54\) 0.866025 0.500000i 0.117851 0.0680414i
\(55\) 7.79920 + 2.05246i 1.05164 + 0.276754i
\(56\) 1.99912 + 1.15419i 0.267143 + 0.154235i
\(57\) −2.04174 3.53639i −0.270434 0.468406i
\(58\) 2.87421 1.65943i 0.377402 0.217893i
\(59\) −10.1511 + 5.86075i −1.32156 + 0.763004i −0.983978 0.178291i \(-0.942943\pi\)
−0.337585 + 0.941295i \(0.609610\pi\)
\(60\) −2.15727 + 0.588388i −0.278502 + 0.0759605i
\(61\) 2.15821 + 1.24604i 0.276330 + 0.159539i 0.631761 0.775163i \(-0.282332\pi\)
−0.355431 + 0.934703i \(0.615666\pi\)
\(62\) 3.93778 2.27348i 0.500099 0.288732i
\(63\) 2.30838i 0.290828i
\(64\) 1.00000 0.125000
\(65\) 6.55797 6.61687i 0.813416 0.820722i
\(66\) 3.60666i 0.443950i
\(67\) −6.87799 3.97101i −0.840280 0.485136i 0.0170795 0.999854i \(-0.494563\pi\)
−0.857359 + 0.514718i \(0.827896\pi\)
\(68\) 3.28377 0.398216
\(69\) −0.648558 0.374445i −0.0780772 0.0450779i
\(70\) 1.31364 4.99174i 0.157010 0.596626i
\(71\) 0.361447 0.626045i 0.0428959 0.0742978i −0.843780 0.536689i \(-0.819675\pi\)
0.886676 + 0.462391i \(0.153008\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 0.278797i 0.0326307i −0.999867 0.0163154i \(-0.994806\pi\)
0.999867 0.0163154i \(-0.00519357\pi\)
\(74\) −1.68214 + 5.84555i −0.195544 + 0.679531i
\(75\) 2.53862 + 4.30760i 0.293134 + 0.497399i
\(76\) 3.53639 2.04174i 0.405652 0.234203i
\(77\) 7.21014 + 4.16277i 0.821671 + 0.474392i
\(78\) −3.60811 2.08315i −0.408538 0.235870i
\(79\) 7.52682 + 4.34561i 0.846833 + 0.488919i 0.859581 0.511000i \(-0.170725\pi\)
−0.0127481 + 0.999919i \(0.504058\pi\)
\(80\) −0.588388 2.15727i −0.0657837 0.241190i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 3.94773 0.435954
\(83\) −5.53660 + 3.19656i −0.607721 + 0.350868i −0.772073 0.635534i \(-0.780780\pi\)
0.164352 + 0.986402i \(0.447447\pi\)
\(84\) −2.30838 −0.251865
\(85\) −1.93213 7.08397i −0.209569 0.768365i
\(86\) −5.82942 10.0969i −0.628603 1.08877i
\(87\) −1.65943 + 2.87421i −0.177909 + 0.308148i
\(88\) 3.60666 0.384472
\(89\) −5.28646 + 3.05214i −0.560364 + 0.323526i −0.753292 0.657687i \(-0.771535\pi\)
0.192928 + 0.981213i \(0.438202\pi\)
\(90\) 1.57405 1.58819i 0.165920 0.167410i
\(91\) 8.32890 4.80869i 0.873106 0.504088i
\(92\) 0.374445 0.648558i 0.0390386 0.0676169i
\(93\) −2.27348 + 3.93778i −0.235749 + 0.408329i
\(94\) −1.35078 + 0.779875i −0.139323 + 0.0804380i
\(95\) −6.48534 6.42760i −0.665381 0.659458i
\(96\) −0.866025 + 0.500000i −0.0883883 + 0.0510310i
\(97\) 4.51721 0.458653 0.229327 0.973350i \(-0.426348\pi\)
0.229327 + 0.973350i \(0.426348\pi\)
\(98\) −0.835693 + 1.44746i −0.0844177 + 0.146216i
\(99\) 1.80333 + 3.12346i 0.181242 + 0.313920i
\(100\) −4.30760 + 2.53862i −0.430760 + 0.253862i
\(101\) −3.92973 −0.391022 −0.195511 0.980701i \(-0.562637\pi\)
−0.195511 + 0.980701i \(0.562637\pi\)
\(102\) −2.84383 + 1.64189i −0.281581 + 0.162571i
\(103\) 13.0004 1.28096 0.640482 0.767973i \(-0.278735\pi\)
0.640482 + 0.767973i \(0.278735\pi\)
\(104\) 2.08315 3.60811i 0.204269 0.353805i
\(105\) 1.35822 + 4.97979i 0.132549 + 0.485978i
\(106\) 2.02580 + 1.16959i 0.196763 + 0.113601i
\(107\) −5.99495 3.46119i −0.579554 0.334606i 0.181402 0.983409i \(-0.441936\pi\)
−0.760956 + 0.648803i \(0.775270\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) 8.88722 5.13104i 0.851242 0.491465i −0.00982793 0.999952i \(-0.503128\pi\)
0.861070 + 0.508487i \(0.169795\pi\)
\(110\) −2.12212 7.78054i −0.202336 0.741845i
\(111\) −1.46600 5.90346i −0.139147 0.560332i
\(112\) 2.30838i 0.218121i
\(113\) −0.115280 0.199671i −0.0108446 0.0187835i 0.860552 0.509362i \(-0.170119\pi\)
−0.871397 + 0.490579i \(0.836785\pi\)
\(114\) −2.04174 + 3.53639i −0.191226 + 0.331213i
\(115\) −1.61943 0.426175i −0.151013 0.0397410i
\(116\) −2.87421 1.65943i −0.266864 0.154074i
\(117\) 4.16629 0.385174
\(118\) 10.1511 + 5.86075i 0.934486 + 0.539526i
\(119\) 7.58019i 0.694875i
\(120\) 1.58819 + 1.57405i 0.144981 + 0.143691i
\(121\) 2.00802 0.182548
\(122\) 2.49208i 0.225623i
\(123\) −3.41884 + 1.97387i −0.308266 + 0.177978i
\(124\) −3.93778 2.27348i −0.353623 0.204164i
\(125\) 8.01101 + 7.79895i 0.716527 + 0.697559i
\(126\) 1.99912 1.15419i 0.178095 0.102823i
\(127\) −11.4021 + 6.58300i −1.01177 + 0.584147i −0.911710 0.410834i \(-0.865238\pi\)
−0.100062 + 0.994981i \(0.531904\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 10.0969 + 5.82942i 0.888979 + 0.513252i
\(130\) −9.00936 2.37093i −0.790173 0.207944i
\(131\) 14.1821 8.18806i 1.23910 0.715394i 0.270189 0.962807i \(-0.412914\pi\)
0.968910 + 0.247413i \(0.0795804\pi\)
\(132\) −3.12346 + 1.80333i −0.271863 + 0.156960i
\(133\) −4.71310 8.16333i −0.408678 0.707850i
\(134\) 7.94202i 0.686086i
\(135\) −0.569075 + 2.16244i −0.0489782 + 0.186113i
\(136\) −1.64189 2.84383i −0.140791 0.243856i
\(137\) 8.12613i 0.694263i −0.937817 0.347131i \(-0.887156\pi\)
0.937817 0.347131i \(-0.112844\pi\)
\(138\) 0.748890i 0.0637498i
\(139\) 5.13844 + 8.90004i 0.435837 + 0.754892i 0.997364 0.0725670i \(-0.0231191\pi\)
−0.561527 + 0.827459i \(0.689786\pi\)
\(140\) −4.97979 + 1.35822i −0.420869 + 0.114791i
\(141\) 0.779875 1.35078i 0.0656774 0.113757i
\(142\) −0.722894 −0.0606639
\(143\) 7.51321 13.0133i 0.628286 1.08822i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −1.88867 + 7.17682i −0.156846 + 0.596003i
\(146\) −0.241445 + 0.139399i −0.0199822 + 0.0115367i
\(147\) 1.67139i 0.137854i
\(148\) 5.90346 1.46600i 0.485261 0.120504i
\(149\) −20.4186 −1.67275 −0.836376 0.548156i \(-0.815330\pi\)
−0.836376 + 0.548156i \(0.815330\pi\)
\(150\) 2.46118 4.35231i 0.200955 0.355364i
\(151\) 6.59299 11.4194i 0.536530 0.929297i −0.462558 0.886589i \(-0.653068\pi\)
0.999088 0.0427080i \(-0.0135985\pi\)
\(152\) −3.53639 2.04174i −0.286839 0.165607i
\(153\) 1.64189 2.84383i 0.132739 0.229910i
\(154\) 8.32555i 0.670892i
\(155\) −2.58756 + 9.83253i −0.207838 + 0.789768i
\(156\) 4.16629i 0.333570i
\(157\) −12.8251 + 7.40456i −1.02355 + 0.590948i −0.915131 0.403157i \(-0.867913\pi\)
−0.108421 + 0.994105i \(0.534579\pi\)
\(158\) 8.69122i 0.691436i
\(159\) −2.33919 −0.185510
\(160\) −1.57405 + 1.58819i −0.124440 + 0.125558i
\(161\) −1.49712 0.864361i −0.117989 0.0681212i
\(162\) 1.00000 0.0785674
\(163\) −5.57244 9.65175i −0.436467 0.755984i 0.560947 0.827852i \(-0.310437\pi\)
−0.997414 + 0.0718681i \(0.977104\pi\)
\(164\) −1.97387 3.41884i −0.154133 0.266966i
\(165\) 5.72807 + 5.67708i 0.445930 + 0.441960i
\(166\) 5.53660 + 3.19656i 0.429723 + 0.248101i
\(167\) −4.20425 + 7.28198i −0.325335 + 0.563496i −0.981580 0.191051i \(-0.938810\pi\)
0.656245 + 0.754548i \(0.272144\pi\)
\(168\) 1.15419 + 1.99912i 0.0890477 + 0.154235i
\(169\) −2.17899 3.77413i −0.167615 0.290317i
\(170\) −5.16884 + 5.21526i −0.396432 + 0.399992i
\(171\) 4.08347i 0.312271i
\(172\) −5.82942 + 10.0969i −0.444489 + 0.769878i
\(173\) −14.2350 + 8.21856i −1.08226 + 0.624846i −0.931506 0.363725i \(-0.881505\pi\)
−0.150758 + 0.988571i \(0.548172\pi\)
\(174\) 3.31885 0.251601
\(175\) 5.86009 + 9.94357i 0.442981 + 0.751664i
\(176\) −1.80333 3.12346i −0.135931 0.235440i
\(177\) −11.7215 −0.881042
\(178\) 5.28646 + 3.05214i 0.396237 + 0.228768i
\(179\) 1.46972i 0.109852i −0.998490 0.0549259i \(-0.982508\pi\)
0.998490 0.0549259i \(-0.0174922\pi\)
\(180\) −2.16244 0.569075i −0.161179 0.0424163i
\(181\) 2.61171 4.52361i 0.194127 0.336237i −0.752487 0.658607i \(-0.771146\pi\)
0.946614 + 0.322370i \(0.104479\pi\)
\(182\) −8.32890 4.80869i −0.617379 0.356444i
\(183\) 1.24604 + 2.15821i 0.0921100 + 0.159539i
\(184\) −0.748890 −0.0552089
\(185\) −6.63608 11.8728i −0.487894 0.872903i
\(186\) 4.54696 0.333399
\(187\) −5.92173 10.2567i −0.433040 0.750047i
\(188\) 1.35078 + 0.779875i 0.0985160 + 0.0568783i
\(189\) −1.15419 + 1.99912i −0.0839549 + 0.145414i
\(190\) −2.32380 + 8.83027i −0.168586 + 0.640615i
\(191\) 0.315810i 0.0228512i −0.999935 0.0114256i \(-0.996363\pi\)
0.999935 0.0114256i \(-0.00363697\pi\)
\(192\) 0.866025 + 0.500000i 0.0625000 + 0.0360844i
\(193\) −3.67336 −0.264414 −0.132207 0.991222i \(-0.542206\pi\)
−0.132207 + 0.991222i \(0.542206\pi\)
\(194\) −2.25861 3.91202i −0.162158 0.280867i
\(195\) 8.98780 2.45139i 0.643630 0.175548i
\(196\) 1.67139 0.119385
\(197\) −18.7472 + 10.8237i −1.33568 + 0.771157i −0.986164 0.165772i \(-0.946988\pi\)
−0.349519 + 0.936929i \(0.613655\pi\)
\(198\) 1.80333 3.12346i 0.128157 0.221975i
\(199\) 21.1121i 1.49660i −0.663360 0.748300i \(-0.730870\pi\)
0.663360 0.748300i \(-0.269130\pi\)
\(200\) 4.35231 + 2.46118i 0.307755 + 0.174032i
\(201\) −3.97101 6.87799i −0.280093 0.485136i
\(202\) 1.96486 + 3.40324i 0.138247 + 0.239451i
\(203\) −3.83058 + 6.63477i −0.268854 + 0.465669i
\(204\) 2.84383 + 1.64189i 0.199108 + 0.114955i
\(205\) −6.21394 + 6.26976i −0.434001 + 0.437899i
\(206\) −6.50018 11.2586i −0.452889 0.784427i
\(207\) −0.374445 0.648558i −0.0260257 0.0450779i
\(208\) −4.16629 −0.288880
\(209\) −12.7546 7.36385i −0.882252 0.509368i
\(210\) 3.63351 3.66615i 0.250736 0.252988i
\(211\) 22.4890 1.54821 0.774104 0.633059i \(-0.218201\pi\)
0.774104 + 0.633059i \(0.218201\pi\)
\(212\) 2.33919i 0.160656i
\(213\) 0.626045 0.361447i 0.0428959 0.0247659i
\(214\) 6.92237i 0.473204i
\(215\) 25.2116 + 6.63475i 1.71941 + 0.452486i
\(216\) 1.00000i 0.0680414i
\(217\) −5.24805 + 9.08989i −0.356261 + 0.617062i
\(218\) −8.88722 5.13104i −0.601919 0.347518i
\(219\) 0.139399 0.241445i 0.00941968 0.0163154i
\(220\) −5.67708 + 5.72807i −0.382749 + 0.386187i
\(221\) −13.6812 −0.920294
\(222\) −4.37955 + 4.22132i −0.293936 + 0.283317i
\(223\) 13.3114i 0.891397i 0.895183 + 0.445699i \(0.147045\pi\)
−0.895183 + 0.445699i \(0.852955\pi\)
\(224\) −1.99912 + 1.15419i −0.133571 + 0.0771175i
\(225\) 0.0447077 + 4.99980i 0.00298052 + 0.333320i
\(226\) −0.115280 + 0.199671i −0.00766832 + 0.0132819i
\(227\) −6.15062 + 10.6532i −0.408231 + 0.707077i −0.994692 0.102901i \(-0.967188\pi\)
0.586461 + 0.809978i \(0.300521\pi\)
\(228\) 4.08347 0.270434
\(229\) −3.47120 + 6.01230i −0.229383 + 0.397304i −0.957626 0.288016i \(-0.907004\pi\)
0.728242 + 0.685320i \(0.240338\pi\)
\(230\) 0.440638 + 1.61556i 0.0290548 + 0.106527i
\(231\) 4.16277 + 7.21014i 0.273890 + 0.474392i
\(232\) 3.31885i 0.217893i
\(233\) 6.75716i 0.442676i 0.975197 + 0.221338i \(0.0710424\pi\)
−0.975197 + 0.221338i \(0.928958\pi\)
\(234\) −2.08315 3.60811i −0.136179 0.235870i
\(235\) 0.887615 3.37287i 0.0579016 0.220022i
\(236\) 11.7215i 0.763004i
\(237\) 4.34561 + 7.52682i 0.282278 + 0.488919i
\(238\) −6.56464 + 3.79010i −0.425522 + 0.245675i
\(239\) 5.96439 3.44354i 0.385805 0.222744i −0.294536 0.955640i \(-0.595165\pi\)
0.680341 + 0.732896i \(0.261832\pi\)
\(240\) 0.569075 2.16244i 0.0367336 0.139585i
\(241\) 14.4718 + 8.35532i 0.932213 + 0.538213i 0.887511 0.460787i \(-0.152433\pi\)
0.0447019 + 0.999000i \(0.485766\pi\)
\(242\) −1.00401 1.73900i −0.0645403 0.111787i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) −2.15821 + 1.24604i −0.138165 + 0.0797696i
\(245\) −0.983422 3.60562i −0.0628286 0.230355i
\(246\) 3.41884 + 1.97387i 0.217977 + 0.125849i
\(247\) −14.7336 + 8.50646i −0.937478 + 0.541253i
\(248\) 4.54696i 0.288732i
\(249\) −6.39311 −0.405147
\(250\) 2.74858 10.8372i 0.173836 0.685406i
\(251\) 15.2154i 0.960385i −0.877163 0.480192i \(-0.840567\pi\)
0.877163 0.480192i \(-0.159433\pi\)
\(252\) −1.99912 1.15419i −0.125932 0.0727071i
\(253\) −2.70100 −0.169810
\(254\) 11.4021 + 6.58300i 0.715431 + 0.413054i
\(255\) 1.86871 7.10097i 0.117023 0.444680i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 2.53563 + 4.39185i 0.158168 + 0.273956i 0.934208 0.356728i \(-0.116108\pi\)
−0.776040 + 0.630684i \(0.782774\pi\)
\(258\) 11.6588i 0.725848i
\(259\) −3.38408 13.6274i −0.210277 0.846767i
\(260\) 2.45139 + 8.98780i 0.152029 + 0.557400i
\(261\) −2.87421 + 1.65943i −0.177909 + 0.102716i
\(262\) −14.1821 8.18806i −0.876176 0.505860i
\(263\) −4.34236 2.50706i −0.267761 0.154592i 0.360109 0.932910i \(-0.382740\pi\)
−0.627870 + 0.778318i \(0.716073\pi\)
\(264\) 3.12346 + 1.80333i 0.192236 + 0.110987i
\(265\) −5.04625 + 1.37635i −0.309989 + 0.0845485i
\(266\) −4.71310 + 8.16333i −0.288979 + 0.500526i
\(267\) −6.10428 −0.373576
\(268\) 6.87799 3.97101i 0.420140 0.242568i
\(269\) 6.90387 0.420936 0.210468 0.977601i \(-0.432501\pi\)
0.210468 + 0.977601i \(0.432501\pi\)
\(270\) 2.15727 0.588388i 0.131287 0.0358081i
\(271\) 11.0506 + 19.1402i 0.671275 + 1.16268i 0.977543 + 0.210737i \(0.0675865\pi\)
−0.306267 + 0.951946i \(0.599080\pi\)
\(272\) −1.64189 + 2.84383i −0.0995540 + 0.172433i
\(273\) 9.61738 0.582070
\(274\) −7.03744 + 4.06307i −0.425147 + 0.245459i
\(275\) 15.6973 + 8.87666i 0.946583 + 0.535283i
\(276\) 0.648558 0.374445i 0.0390386 0.0225390i
\(277\) −0.00385131 + 0.00667067i −0.000231403 + 0.000400802i −0.866141 0.499800i \(-0.833407\pi\)
0.865910 + 0.500200i \(0.166740\pi\)
\(278\) 5.13844 8.90004i 0.308183 0.533789i
\(279\) −3.93778 + 2.27348i −0.235749 + 0.136110i
\(280\) 3.66615 + 3.63351i 0.219094 + 0.217144i
\(281\) −21.1295 + 12.1991i −1.26048 + 0.727739i −0.973168 0.230097i \(-0.926095\pi\)
−0.287314 + 0.957837i \(0.592762\pi\)
\(282\) −1.55975 −0.0928818
\(283\) −12.8527 + 22.2615i −0.764012 + 1.32331i 0.176755 + 0.984255i \(0.443440\pi\)
−0.940767 + 0.339053i \(0.889893\pi\)
\(284\) 0.361447 + 0.626045i 0.0214479 + 0.0371489i
\(285\) −2.40266 8.80914i −0.142321 0.521808i
\(286\) −15.0264 −0.888530
\(287\) −7.89197 + 4.55643i −0.465848 + 0.268958i
\(288\) −1.00000 −0.0589256
\(289\) 3.10842 5.38394i 0.182848 0.316702i
\(290\) 7.15965 1.95277i 0.420429 0.114671i
\(291\) 3.91202 + 2.25861i 0.229327 + 0.132402i
\(292\) 0.241445 + 0.139399i 0.0141295 + 0.00815769i
\(293\) 8.92404 + 5.15230i 0.521348 + 0.301000i 0.737486 0.675362i \(-0.236013\pi\)
−0.216138 + 0.976363i \(0.569346\pi\)
\(294\) −1.44746 + 0.835693i −0.0844177 + 0.0487386i
\(295\) −25.2864 + 6.89678i −1.47223 + 0.401546i
\(296\) −4.22132 4.37955i −0.245359 0.254556i
\(297\) 3.60666i 0.209280i
\(298\) 10.2093 + 17.6830i 0.591407 + 1.02435i
\(299\) −1.56005 + 2.70208i −0.0902199 + 0.156265i
\(300\) −4.99980 + 0.0447077i −0.288664 + 0.00258120i
\(301\) 23.3074 + 13.4565i 1.34341 + 0.775621i
\(302\) −13.1860 −0.758768
\(303\) −3.40324 1.96486i −0.195511 0.112878i
\(304\) 4.08347i 0.234203i
\(305\) 3.95790 + 3.92267i 0.226629 + 0.224612i
\(306\) −3.28377 −0.187721
\(307\) 25.1735i 1.43673i −0.695666 0.718365i \(-0.744891\pi\)
0.695666 0.718365i \(-0.255109\pi\)
\(308\) −7.21014 + 4.16277i −0.410836 + 0.237196i
\(309\) 11.2586 + 6.50018i 0.640482 + 0.369782i
\(310\) 9.80900 2.67537i 0.557114 0.151951i
\(311\) −25.1339 + 14.5111i −1.42521 + 0.822847i −0.996738 0.0807069i \(-0.974282\pi\)
−0.428475 + 0.903554i \(0.640949\pi\)
\(312\) 3.60811 2.08315i 0.204269 0.117935i
\(313\) −11.8894 20.5930i −0.672028 1.16399i −0.977328 0.211731i \(-0.932090\pi\)
0.305300 0.952256i \(-0.401243\pi\)
\(314\) 12.8251 + 7.40456i 0.723760 + 0.417863i
\(315\) −1.31364 + 4.99174i −0.0740153 + 0.281252i
\(316\) −7.52682 + 4.34561i −0.423416 + 0.244460i
\(317\) −8.18665 + 4.72657i −0.459808 + 0.265470i −0.711964 0.702216i \(-0.752194\pi\)
0.252155 + 0.967687i \(0.418861\pi\)
\(318\) 1.16959 + 2.02580i 0.0655876 + 0.113601i
\(319\) 11.9700i 0.670190i
\(320\) 2.16244 + 0.569075i 0.120884 + 0.0318122i
\(321\) −3.46119 5.99495i −0.193185 0.334606i
\(322\) 1.72872i 0.0963380i
\(323\) 13.4092i 0.746107i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 17.9467 10.5766i 0.995505 0.586685i
\(326\) −5.57244 + 9.65175i −0.308629 + 0.534561i
\(327\) 10.2621 0.567494
\(328\) −1.97387 + 3.41884i −0.108989 + 0.188774i
\(329\) 1.80025 3.11812i 0.0992509 0.171908i
\(330\) 2.05246 7.79920i 0.112984 0.429332i
\(331\) −29.2152 + 16.8674i −1.60581 + 0.927115i −0.615517 + 0.788123i \(0.711053\pi\)
−0.990294 + 0.138992i \(0.955614\pi\)
\(332\) 6.39311i 0.350868i
\(333\) 1.68214 5.84555i 0.0921805 0.320334i
\(334\) 8.40850 0.460093
\(335\) −12.6134 12.5012i −0.689146 0.683011i
\(336\) 1.15419 1.99912i 0.0629662 0.109061i
\(337\) −29.0757 16.7869i −1.58385 0.914439i −0.994289 0.106717i \(-0.965966\pi\)
−0.589565 0.807721i \(-0.700701\pi\)
\(338\) −2.17899 + 3.77413i −0.118522 + 0.205285i
\(339\) 0.230560i 0.0125223i
\(340\) 7.10097 + 1.86871i 0.385104 + 0.101345i
\(341\) 16.3994i 0.888075i
\(342\) −3.53639 + 2.04174i −0.191226 + 0.110404i
\(343\) 20.0168i 1.08081i
\(344\) 11.6588 0.628603
\(345\) −1.18938 1.17879i −0.0640342 0.0634641i
\(346\) 14.2350 + 8.21856i 0.765277 + 0.441833i
\(347\) 11.3801 0.610915 0.305457 0.952206i \(-0.401191\pi\)
0.305457 + 0.952206i \(0.401191\pi\)
\(348\) −1.65943 2.87421i −0.0889546 0.154074i
\(349\) −6.76004 11.7087i −0.361856 0.626754i 0.626410 0.779494i \(-0.284524\pi\)
−0.988266 + 0.152740i \(0.951190\pi\)
\(350\) 5.68134 10.0468i 0.303680 0.537023i
\(351\) 3.60811 + 2.08315i 0.192587 + 0.111190i
\(352\) −1.80333 + 3.12346i −0.0961179 + 0.166481i
\(353\) −4.00690 6.94015i −0.213266 0.369387i 0.739469 0.673191i \(-0.235077\pi\)
−0.952735 + 0.303804i \(0.901743\pi\)
\(354\) 5.86075 + 10.1511i 0.311495 + 0.539526i
\(355\) 1.13787 1.14809i 0.0603921 0.0609345i
\(356\) 6.10428i 0.323526i
\(357\) 3.79010 6.56464i 0.200593 0.347438i
\(358\) −1.27281 + 0.734858i −0.0672702 + 0.0388384i
\(359\) 22.9329 1.21035 0.605176 0.796092i \(-0.293103\pi\)
0.605176 + 0.796092i \(0.293103\pi\)
\(360\) 0.588388 + 2.15727i 0.0310107 + 0.113698i
\(361\) −1.16263 2.01374i −0.0611913 0.105986i
\(362\) −5.22341 −0.274536
\(363\) 1.73900 + 1.00401i 0.0912738 + 0.0526970i
\(364\) 9.61738i 0.504088i
\(365\) 0.158656 0.602883i 0.00830446 0.0315563i
\(366\) 1.24604 2.15821i 0.0651316 0.112811i
\(367\) 8.26280 + 4.77053i 0.431315 + 0.249020i 0.699907 0.714234i \(-0.253225\pi\)
−0.268592 + 0.963254i \(0.586558\pi\)
\(368\) 0.374445 + 0.648558i 0.0195193 + 0.0338084i
\(369\) −3.94773 −0.205511
\(370\) −6.96408 + 11.6834i −0.362045 + 0.607391i
\(371\) −5.39973 −0.280340
\(372\) −2.27348 3.93778i −0.117874 0.204164i
\(373\) −20.0142 11.5552i −1.03630 0.598305i −0.117514 0.993071i \(-0.537492\pi\)
−0.918782 + 0.394766i \(0.870826\pi\)
\(374\) −5.92173 + 10.2567i −0.306206 + 0.530364i
\(375\) 3.03827 + 10.7596i 0.156895 + 0.555623i
\(376\) 1.55975i 0.0804380i
\(377\) 11.9748 + 6.91365i 0.616733 + 0.356071i
\(378\) 2.30838 0.118730
\(379\) −12.8937 22.3326i −0.662306 1.14715i −0.980008 0.198958i \(-0.936244\pi\)
0.317702 0.948191i \(-0.397089\pi\)
\(380\) 8.80914 2.40266i 0.451899 0.123254i
\(381\) −13.1660 −0.674515
\(382\) −0.273500 + 0.157905i −0.0139935 + 0.00807913i
\(383\) 16.4797 28.5437i 0.842075 1.45852i −0.0460621 0.998939i \(-0.514667\pi\)
0.888137 0.459578i \(-0.151999\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 13.2226 + 13.1049i 0.673884 + 0.667886i
\(386\) 1.83668 + 3.18122i 0.0934844 + 0.161920i
\(387\) 5.82942 + 10.0969i 0.296326 + 0.513252i
\(388\) −2.25861 + 3.91202i −0.114663 + 0.198603i
\(389\) −23.1816 13.3839i −1.17535 0.678590i −0.220418 0.975405i \(-0.570742\pi\)
−0.954935 + 0.296815i \(0.904076\pi\)
\(390\) −6.61687 6.55797i −0.335058 0.332076i
\(391\) 1.22959 + 2.12972i 0.0621832 + 0.107704i
\(392\) −0.835693 1.44746i −0.0422089 0.0731079i
\(393\) 16.3761 0.826066
\(394\) 18.7472 + 10.8237i 0.944471 + 0.545290i
\(395\) 13.8033 + 13.6804i 0.694521 + 0.688338i
\(396\) −3.60666 −0.181242
\(397\) 12.0526i 0.604905i −0.953164 0.302452i \(-0.902195\pi\)
0.953164 0.302452i \(-0.0978054\pi\)
\(398\) −18.2837 + 10.5561i −0.916477 + 0.529128i
\(399\) 9.42620i 0.471900i
\(400\) −0.0447077 4.99980i −0.00223539 0.249990i
\(401\) 17.7454i 0.886161i −0.896482 0.443080i \(-0.853886\pi\)
0.896482 0.443080i \(-0.146114\pi\)
\(402\) −3.97101 + 6.87799i −0.198056 + 0.343043i
\(403\) 16.4059 + 9.47198i 0.817238 + 0.471833i
\(404\) 1.96486 3.40324i 0.0977556 0.169318i
\(405\) −1.57405 + 1.58819i −0.0782154 + 0.0789179i
\(406\) 7.66117 0.380217
\(407\) −15.2249 15.7956i −0.754670 0.782956i
\(408\) 3.28377i 0.162571i
\(409\) −25.7232 + 14.8513i −1.27193 + 0.734349i −0.975351 0.220660i \(-0.929179\pi\)
−0.296578 + 0.955009i \(0.595846\pi\)
\(410\) 8.53674 + 2.24655i 0.421600 + 0.110949i
\(411\) 4.06307 7.03744i 0.200416 0.347131i
\(412\) −6.50018 + 11.2586i −0.320241 + 0.554673i
\(413\) −27.0577 −1.33142
\(414\) −0.374445 + 0.648558i −0.0184030 + 0.0318749i
\(415\) −13.7917 + 3.76163i −0.677006 + 0.184651i
\(416\) 2.08315 + 3.60811i 0.102135 + 0.176902i
\(417\) 10.2769i 0.503261i
\(418\) 14.7277i 0.720356i
\(419\) 9.44226 + 16.3545i 0.461285 + 0.798968i 0.999025 0.0441419i \(-0.0140554\pi\)
−0.537741 + 0.843110i \(0.680722\pi\)
\(420\) −4.99174 1.31364i −0.243572 0.0640991i
\(421\) 33.2036i 1.61825i −0.587639 0.809123i \(-0.699942\pi\)
0.587639 0.809123i \(-0.300058\pi\)
\(422\) −11.2445 19.4761i −0.547374 0.948080i
\(423\) 1.35078 0.779875i 0.0656774 0.0379188i
\(424\) −2.02580 + 1.16959i −0.0983814 + 0.0568005i
\(425\) −0.146810 16.4182i −0.00712133 0.796400i
\(426\) −0.626045 0.361447i −0.0303320 0.0175122i
\(427\) 2.87634 + 4.98196i 0.139196 + 0.241094i
\(428\) 5.99495 3.46119i 0.289777 0.167303i
\(429\) 13.0133 7.51321i 0.628286 0.362741i
\(430\) −6.85992 25.1512i −0.330815 1.21290i
\(431\) −10.1481 5.85900i −0.488816 0.282218i 0.235267 0.971931i \(-0.424404\pi\)
−0.724083 + 0.689713i \(0.757737\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) 13.5422i 0.650796i 0.945577 + 0.325398i \(0.105498\pi\)
−0.945577 + 0.325398i \(0.894502\pi\)
\(434\) 10.4961 0.503829
\(435\) −5.22405 + 5.27097i −0.250474 + 0.252724i
\(436\) 10.2621i 0.491465i
\(437\) 2.64837 + 1.52904i 0.126689 + 0.0731437i
\(438\) −0.278797 −0.0133214
\(439\) −26.5130 15.3073i −1.26539 0.730576i −0.291281 0.956637i \(-0.594082\pi\)
−0.974113 + 0.226062i \(0.927415\pi\)
\(440\) 7.79920 + 2.05246i 0.371812 + 0.0978473i
\(441\) 0.835693 1.44746i 0.0397949 0.0689268i
\(442\) 6.84058 + 11.8482i 0.325373 + 0.563563i
\(443\) 3.95356i 0.187839i −0.995580 0.0939197i \(-0.970060\pi\)
0.995580 0.0939197i \(-0.0299397\pi\)
\(444\) 5.84555 + 1.68214i 0.277417 + 0.0798307i
\(445\) −13.1686 + 3.59168i −0.624250 + 0.170262i
\(446\) 11.5280 6.65570i 0.545867 0.315157i
\(447\) −17.6830 10.2093i −0.836376 0.482882i
\(448\) 1.99912 + 1.15419i 0.0944493 + 0.0545303i
\(449\) 19.5007 + 11.2587i 0.920295 + 0.531333i 0.883729 0.467999i \(-0.155025\pi\)
0.0365659 + 0.999331i \(0.488358\pi\)
\(450\) 4.30760 2.53862i 0.203062 0.119672i
\(451\) −7.11907 + 12.3306i −0.335224 + 0.580625i
\(452\) 0.230560 0.0108446
\(453\) 11.4194 6.59299i 0.536530 0.309766i
\(454\) 12.3012 0.577326
\(455\) 20.7473 5.65875i 0.972646 0.265286i
\(456\) −2.04174 3.53639i −0.0956130 0.165607i
\(457\) −4.29461 + 7.43848i −0.200893 + 0.347957i −0.948816 0.315828i \(-0.897718\pi\)
0.747923 + 0.663785i \(0.231051\pi\)
\(458\) 6.94240 0.324397
\(459\) 2.84383 1.64189i 0.132739 0.0766367i
\(460\) 1.17879 1.18938i 0.0549615 0.0554552i
\(461\) 23.8184 13.7516i 1.10933 0.640474i 0.170677 0.985327i \(-0.445404\pi\)
0.938657 + 0.344853i \(0.112071\pi\)
\(462\) 4.16277 7.21014i 0.193670 0.335446i
\(463\) 7.63991 13.2327i 0.355057 0.614976i −0.632071 0.774911i \(-0.717795\pi\)
0.987128 + 0.159934i \(0.0511282\pi\)
\(464\) 2.87421 1.65943i 0.133432 0.0770369i
\(465\) −7.15716 + 7.22144i −0.331905 + 0.334886i
\(466\) 5.85187 3.37858i 0.271083 0.156510i
\(467\) 31.5781 1.46126 0.730631 0.682773i \(-0.239226\pi\)
0.730631 + 0.682773i \(0.239226\pi\)
\(468\) −2.08315 + 3.60811i −0.0962934 + 0.166785i
\(469\) −9.16659 15.8770i −0.423274 0.733132i
\(470\) −3.36480 + 0.917738i −0.155207 + 0.0423321i
\(471\) −14.8091 −0.682368
\(472\) −10.1511 + 5.86075i −0.467243 + 0.269763i
\(473\) 42.0495 1.93344
\(474\) 4.34561 7.52682i 0.199600 0.345718i
\(475\) −10.3664 17.5900i −0.475642 0.807083i
\(476\) 6.56464 + 3.79010i 0.300890 + 0.173719i
\(477\) −2.02580 1.16959i −0.0927549 0.0535520i
\(478\) −5.96439 3.44354i −0.272805 0.157504i
\(479\) 30.1785 17.4236i 1.37889 0.796104i 0.386866 0.922136i \(-0.373557\pi\)
0.992026 + 0.126032i \(0.0402241\pi\)
\(480\) −2.15727 + 0.588388i −0.0984653 + 0.0268561i
\(481\) −24.5955 + 6.10778i −1.12146 + 0.278491i
\(482\) 16.7106i 0.761148i
\(483\) −0.864361 1.49712i −0.0393298 0.0681212i
\(484\) −1.00401 + 1.73900i −0.0456369 + 0.0790455i
\(485\) 9.76821 + 2.57063i 0.443551 + 0.116726i
\(486\) 0.866025 + 0.500000i 0.0392837 + 0.0226805i
\(487\) 32.7397 1.48358 0.741789 0.670633i \(-0.233977\pi\)
0.741789 + 0.670633i \(0.233977\pi\)
\(488\) 2.15821 + 1.24604i 0.0976974 + 0.0564056i
\(489\) 11.1449i 0.503989i
\(490\) −2.63085 + 2.65448i −0.118850 + 0.119917i
\(491\) −13.2696 −0.598851 −0.299425 0.954120i \(-0.596795\pi\)
−0.299425 + 0.954120i \(0.596795\pi\)
\(492\) 3.94773i 0.177978i
\(493\) 9.43825 5.44918i 0.425077 0.245419i
\(494\) 14.7336 + 8.50646i 0.662897 + 0.382724i
\(495\) 2.12212 + 7.78054i 0.0953820 + 0.349709i
\(496\) 3.93778 2.27348i 0.176812 0.102082i
\(497\) 1.44515 0.834357i 0.0648238 0.0374260i
\(498\) 3.19656 + 5.53660i 0.143241 + 0.248101i
\(499\) −0.850905 0.491270i −0.0380917 0.0219923i 0.480833 0.876812i \(-0.340334\pi\)
−0.518925 + 0.854820i \(0.673668\pi\)
\(500\) −10.7596 + 3.03827i −0.481184 + 0.135875i
\(501\) −7.28198 + 4.20425i −0.325335 + 0.187832i
\(502\) −13.1769 + 7.60768i −0.588113 + 0.339547i
\(503\) 6.92273 + 11.9905i 0.308669 + 0.534631i 0.978072 0.208269i \(-0.0667830\pi\)
−0.669402 + 0.742900i \(0.733450\pi\)
\(504\) 2.30838i 0.102823i
\(505\) −8.49780 2.23631i −0.378147 0.0995144i
\(506\) 1.35050 + 2.33913i 0.0600370 + 0.103987i
\(507\) 4.35798i 0.193545i
\(508\) 13.1660i 0.584147i
\(509\) −3.70010 6.40875i −0.164004 0.284063i 0.772297 0.635261i \(-0.219108\pi\)
−0.936301 + 0.351198i \(0.885774\pi\)
\(510\) −7.08397 + 1.93213i −0.313684 + 0.0855562i
\(511\) 0.321785 0.557348i 0.0142349 0.0246556i
\(512\) 1.00000 0.0441942
\(513\) 2.04174 3.53639i 0.0901448 0.156135i
\(514\) 2.53563 4.39185i 0.111842 0.193716i
\(515\) 28.1125 + 7.39818i 1.23879 + 0.326003i
\(516\) −10.0969 + 5.82942i −0.444489 + 0.256626i
\(517\) 5.62550i 0.247409i
\(518\) −10.1097 + 9.74442i −0.444193 + 0.428145i
\(519\) −16.4371 −0.721510
\(520\) 6.55797 6.61687i 0.287586 0.290169i
\(521\) −15.1372 + 26.2185i −0.663175 + 1.14865i 0.316602 + 0.948558i \(0.397458\pi\)
−0.979777 + 0.200094i \(0.935875\pi\)
\(522\) 2.87421 + 1.65943i 0.125801 + 0.0726311i
\(523\) 14.5571 25.2137i 0.636539 1.10252i −0.349648 0.936881i \(-0.613699\pi\)
0.986187 0.165637i \(-0.0529680\pi\)
\(524\) 16.3761i 0.715394i
\(525\) 0.103202 + 11.5414i 0.00450412 + 0.503710i
\(526\) 5.01412i 0.218626i
\(527\) 12.9308 7.46559i 0.563274 0.325206i
\(528\) 3.60666i 0.156960i
\(529\) −22.4392 −0.975616
\(530\) 3.71508 + 3.68201i 0.161373 + 0.159936i
\(531\) −10.1511 5.86075i −0.440521 0.254335i
\(532\) 9.42620 0.408678
\(533\) 8.22370 + 14.2439i 0.356208 + 0.616970i
\(534\) 3.05214 + 5.28646i 0.132079 + 0.228768i
\(535\) −10.9941 10.8962i −0.475315 0.471083i
\(536\) −6.87799 3.97101i −0.297084 0.171521i
\(537\) 0.734858 1.27281i 0.0317115 0.0549259i
\(538\) −3.45193 5.97892i −0.148823 0.257770i
\(539\) −3.01406 5.22051i −0.129825 0.224863i
\(540\) −1.58819 1.57405i −0.0683449 0.0677365i
\(541\) 28.7306i 1.23522i 0.786483 + 0.617612i \(0.211900\pi\)
−0.786483 + 0.617612i \(0.788100\pi\)
\(542\) 11.0506 19.1402i 0.474663 0.822141i
\(543\) 4.52361 2.61171i 0.194127 0.112079i
\(544\) 3.28377 0.140791
\(545\) 22.1380 6.03808i 0.948290 0.258643i
\(546\) −4.80869 8.32890i −0.205793 0.356444i
\(547\) 32.4201 1.38618 0.693091 0.720850i \(-0.256248\pi\)
0.693091 + 0.720850i \(0.256248\pi\)
\(548\) 7.03744 + 4.06307i 0.300624 + 0.173566i
\(549\) 2.49208i 0.106359i
\(550\) −0.161246 18.0326i −0.00687554 0.768913i
\(551\) 6.77622 11.7367i 0.288676 0.500002i
\(552\) −0.648558 0.374445i −0.0276045 0.0159374i
\(553\) 10.0313 + 17.3747i 0.426575 + 0.738849i
\(554\) 0.00770262 0.000327253
\(555\) 0.189370 13.6002i 0.00803832 0.577294i
\(556\) −10.2769 −0.435837
\(557\) 6.76342 + 11.7146i 0.286575 + 0.496363i 0.972990 0.230848i \(-0.0741499\pi\)
−0.686415 + 0.727210i \(0.740817\pi\)
\(558\) 3.93778 + 2.27348i 0.166700 + 0.0962441i
\(559\) 24.2871 42.0664i 1.02723 1.77922i
\(560\) 1.31364 4.99174i 0.0555114 0.210939i
\(561\) 11.8435i 0.500032i
\(562\) 21.1295 + 12.1991i 0.891295 + 0.514589i
\(563\) −25.2768 −1.06529 −0.532645 0.846339i \(-0.678802\pi\)
−0.532645 + 0.846339i \(0.678802\pi\)
\(564\) 0.779875 + 1.35078i 0.0328387 + 0.0568783i
\(565\) −0.135659 0.497380i −0.00570721 0.0209249i
\(566\) 25.7053 1.08048
\(567\) −1.99912 + 1.15419i −0.0839549 + 0.0484714i
\(568\) 0.361447 0.626045i 0.0151660 0.0262682i
\(569\) 43.4411i 1.82114i −0.413350 0.910572i \(-0.635641\pi\)
0.413350 0.910572i \(-0.364359\pi\)
\(570\) −6.42760 + 6.48534i −0.269223 + 0.271641i
\(571\) 18.5642 + 32.1541i 0.776886 + 1.34561i 0.933729 + 0.357982i \(0.116535\pi\)
−0.156843 + 0.987624i \(0.550132\pi\)
\(572\) 7.51321 + 13.0133i 0.314143 + 0.544112i
\(573\) 0.157905 0.273500i 0.00659658 0.0114256i
\(574\) 7.89197 + 4.55643i 0.329404 + 0.190182i
\(575\) −3.25940 1.84316i −0.135926 0.0768649i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −12.4724 21.6029i −0.519235 0.899341i −0.999750 0.0223548i \(-0.992884\pi\)
0.480515 0.876986i \(-0.340450\pi\)
\(578\) −6.21683 −0.258586
\(579\) −3.18122 1.83668i −0.132207 0.0763297i
\(580\) −5.27097 5.22405i −0.218865 0.216917i
\(581\) −14.7577 −0.612254
\(582\) 4.51721i 0.187244i
\(583\) −7.30637 + 4.21833i −0.302599 + 0.174706i
\(584\) 0.278797i 0.0115367i
\(585\) 9.00936 + 2.37093i 0.372491 + 0.0980259i
\(586\) 10.3046i 0.425679i
\(587\) −12.3953 + 21.4693i −0.511608 + 0.886131i 0.488301 + 0.872675i \(0.337617\pi\)
−0.999909 + 0.0134561i \(0.995717\pi\)
\(588\) 1.44746 + 0.835693i 0.0596923 + 0.0344634i
\(589\) 9.28369 16.0798i 0.382528 0.662557i
\(590\) 18.6160 + 18.4503i 0.766408 + 0.759586i
\(591\) −21.6474 −0.890455
\(592\) −1.68214 + 5.84555i −0.0691354 + 0.240250i
\(593\) 30.1735i 1.23908i 0.784966 + 0.619539i \(0.212680\pi\)
−0.784966 + 0.619539i \(0.787320\pi\)
\(594\) 3.12346 1.80333i 0.128157 0.0739916i
\(595\) 4.31370 16.3917i 0.176844 0.671995i
\(596\) 10.2093 17.6830i 0.418188 0.724323i
\(597\) 10.5561 18.2837i 0.432031 0.748300i
\(598\) 3.12010 0.127590
\(599\) 5.95677 10.3174i 0.243387 0.421559i −0.718290 0.695744i \(-0.755075\pi\)
0.961677 + 0.274185i \(0.0884082\pi\)
\(600\) 2.53862 + 4.30760i 0.103639 + 0.175857i
\(601\) 18.2150 + 31.5493i 0.743006 + 1.28692i 0.951120 + 0.308820i \(0.0999341\pi\)
−0.208114 + 0.978105i \(0.566733\pi\)
\(602\) 26.9130i 1.09689i
\(603\) 7.94202i 0.323424i
\(604\) 6.59299 + 11.4194i 0.268265 + 0.464649i
\(605\) 4.34224 + 1.14272i 0.176537 + 0.0464580i
\(606\) 3.92973i 0.159634i
\(607\) −2.82022 4.88477i −0.114469 0.198267i 0.803098 0.595847i \(-0.203183\pi\)
−0.917567 + 0.397580i \(0.869850\pi\)
\(608\) 3.53639 2.04174i 0.143420 0.0828033i
\(609\) −6.63477 + 3.83058i −0.268854 + 0.155223i
\(610\) 1.41818 5.38898i 0.0574205 0.218194i
\(611\) −5.62776 3.24919i −0.227675 0.131448i
\(612\) 1.64189 + 2.84383i 0.0663693 + 0.114955i
\(613\) −1.63128 + 0.941819i −0.0658867 + 0.0380397i −0.532581 0.846379i \(-0.678778\pi\)
0.466695 + 0.884418i \(0.345445\pi\)
\(614\) −21.8009 + 12.5868i −0.879814 + 0.507961i
\(615\) −8.51631 + 2.32280i −0.343411 + 0.0936642i
\(616\) 7.21014 + 4.16277i 0.290505 + 0.167723i
\(617\) −22.4253 + 12.9473i −0.902810 + 0.521238i −0.878111 0.478457i \(-0.841196\pi\)
−0.0246992 + 0.999695i \(0.507863\pi\)
\(618\) 13.0004i 0.522951i
\(619\) 18.2303 0.732737 0.366368 0.930470i \(-0.380601\pi\)
0.366368 + 0.930470i \(0.380601\pi\)
\(620\) −7.22144 7.15716i −0.290020 0.287438i
\(621\) 0.748890i 0.0300519i
\(622\) 25.1339 + 14.5111i 1.00778 + 0.581841i
\(623\) −14.0910 −0.564544
\(624\) −3.60811 2.08315i −0.144440 0.0833926i
\(625\) 12.8852 + 21.4236i 0.515407 + 0.856946i
\(626\) −11.8894 + 20.5930i −0.475196 + 0.823063i
\(627\) −7.36385 12.7546i −0.294084 0.509368i
\(628\) 14.8091i 0.590948i
\(629\) −5.52376 + 19.1954i −0.220247 + 0.765373i
\(630\) 4.97979 1.35822i 0.198400 0.0541128i
\(631\) 20.7274 11.9669i 0.825143 0.476397i −0.0270438 0.999634i \(-0.508609\pi\)
0.852187 + 0.523238i \(0.175276\pi\)
\(632\) 7.52682 + 4.34561i 0.299401 + 0.172859i
\(633\) 19.4761 + 11.2445i 0.774104 + 0.446929i
\(634\) 8.18665 + 4.72657i 0.325134 + 0.187716i
\(635\) −28.4026 + 7.74671i −1.12712 + 0.307419i
\(636\) 1.16959 2.02580i 0.0463774 0.0803281i
\(637\) −6.96348 −0.275903
\(638\) 10.3663 5.98499i 0.410406 0.236948i
\(639\) 0.722894 0.0285972
\(640\) −0.588388 2.15727i −0.0232581 0.0852735i
\(641\) 23.8781 + 41.3581i 0.943128 + 1.63355i 0.759456 + 0.650559i \(0.225465\pi\)
0.183672 + 0.982988i \(0.441201\pi\)
\(642\) −3.46119 + 5.99495i −0.136602 + 0.236602i
\(643\) 41.6635 1.64305 0.821524 0.570175i \(-0.193124\pi\)
0.821524 + 0.570175i \(0.193124\pi\)
\(644\) 1.49712 0.864361i 0.0589947 0.0340606i
\(645\) 18.5165 + 18.3517i 0.729086 + 0.722596i
\(646\) 11.6127 6.70460i 0.456896 0.263789i
\(647\) 14.5351 25.1755i 0.571433 0.989751i −0.424986 0.905200i \(-0.639721\pi\)
0.996419 0.0845511i \(-0.0269456\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −36.6117 + 21.1377i −1.43713 + 0.829729i
\(650\) −18.1330 10.2540i −0.711234 0.402195i
\(651\) −9.08989 + 5.24805i −0.356261 + 0.205687i
\(652\) 11.1449 0.436467
\(653\) 23.6468 40.9575i 0.925371 1.60279i 0.134407 0.990926i \(-0.457087\pi\)
0.790964 0.611863i \(-0.209580\pi\)
\(654\) −5.13104 8.88722i −0.200640 0.347518i
\(655\) 35.3277 9.63551i 1.38037 0.376491i
\(656\) 3.94773 0.154133
\(657\) 0.241445 0.139399i 0.00941968 0.00543846i
\(658\) −3.60050 −0.140362
\(659\) 9.93900 17.2149i 0.387169 0.670596i −0.604899 0.796302i \(-0.706786\pi\)
0.992067 + 0.125707i \(0.0401198\pi\)
\(660\) −7.78054 + 2.12212i −0.302857 + 0.0826033i
\(661\) −5.66878 3.27287i −0.220490 0.127300i 0.385687 0.922630i \(-0.373964\pi\)
−0.606177 + 0.795330i \(0.707298\pi\)
\(662\) 29.2152 + 16.8674i 1.13548 + 0.655570i
\(663\) −11.8482 6.84058i −0.460147 0.265666i
\(664\) −5.53660 + 3.19656i −0.214862 + 0.124050i
\(665\) −5.54626 20.3348i −0.215075 0.788551i
\(666\) −5.90346 + 1.46600i −0.228754 + 0.0568064i
\(667\) 2.48546i 0.0962372i
\(668\) −4.20425 7.28198i −0.162667 0.281748i
\(669\) −6.65570 + 11.5280i −0.257324 + 0.445699i
\(670\) −4.51960 + 17.1741i −0.174607 + 0.663495i
\(671\) 7.78392 + 4.49405i 0.300495 + 0.173491i
\(672\) −2.30838 −0.0890477
\(673\) −38.8931 22.4549i −1.49922 0.865574i −0.499218 0.866477i \(-0.666379\pi\)
−1.00000 0.000903078i \(0.999713\pi\)
\(674\) 33.5737i 1.29321i
\(675\) −2.46118 + 4.35231i −0.0947309 + 0.167520i
\(676\) 4.35798 0.167615
\(677\) 27.1822i 1.04470i −0.852732 0.522348i \(-0.825056\pi\)
0.852732 0.522348i \(-0.174944\pi\)
\(678\) −0.199671 + 0.115280i −0.00766832 + 0.00442731i
\(679\) 9.03043 + 5.21372i 0.346556 + 0.200084i
\(680\) −1.93213 7.08397i −0.0740939 0.271658i
\(681\) −10.6532 + 6.15062i −0.408231 + 0.235692i
\(682\) 14.2023 8.19968i 0.543833 0.313982i
\(683\) 24.2086 + 41.9305i 0.926316 + 1.60443i 0.789431 + 0.613840i \(0.210376\pi\)
0.136885 + 0.990587i \(0.456291\pi\)
\(684\) 3.53639 + 2.04174i 0.135217 + 0.0780677i
\(685\) 4.62438 17.5723i 0.176688 0.671403i
\(686\) −17.3351 + 10.0084i −0.661857 + 0.382123i
\(687\) −6.01230 + 3.47120i −0.229383 + 0.132435i
\(688\) −5.82942 10.0969i −0.222245 0.384939i
\(689\) 9.74574i 0.371283i
\(690\) −0.426175 + 1.61943i −0.0162242 + 0.0616507i
\(691\) −18.3449 31.7743i −0.697872 1.20875i −0.969203 0.246264i \(-0.920797\pi\)
0.271330 0.962486i \(-0.412536\pi\)
\(692\) 16.4371i 0.624846i
\(693\) 8.32555i 0.316261i
\(694\) −5.69004 9.85544i −0.215991 0.374107i
\(695\) 6.04679 + 22.1700i 0.229368 + 0.840955i
\(696\) −1.65943 + 2.87421i −0.0629004 + 0.108947i
\(697\) 12.9635 0.491026
\(698\) −6.76004 + 11.7087i −0.255871 + 0.443182i
\(699\) −3.37858 + 5.85187i −0.127790 + 0.221338i
\(700\) −11.5414 + 0.103202i −0.436225 + 0.00390068i
\(701\) 39.0071 22.5207i 1.47328 0.850597i 0.473729 0.880670i \(-0.342907\pi\)
0.999548 + 0.0300735i \(0.00957412\pi\)
\(702\) 4.16629i 0.157247i
\(703\) 5.98637 + 24.1066i 0.225780 + 0.909198i
\(704\) 3.60666 0.135931
\(705\) 2.45513 2.47718i 0.0924656 0.0932961i
\(706\) −4.00690 + 6.94015i −0.150802 + 0.261196i
\(707\) −7.85597 4.53565i −0.295454 0.170581i
\(708\) 5.86075 10.1511i 0.220260 0.381502i
\(709\) 41.1960i 1.54715i −0.633705 0.773575i \(-0.718467\pi\)
0.633705 0.773575i \(-0.281533\pi\)
\(710\) −1.56322 0.411381i −0.0586665 0.0154388i
\(711\) 8.69122i 0.325946i
\(712\) −5.28646 + 3.05214i −0.198119 + 0.114384i
\(713\) 3.40517i 0.127525i
\(714\) −7.58019 −0.283682
\(715\) 23.6524 23.8648i 0.884549 0.892494i
\(716\) 1.27281 + 0.734858i 0.0475672 + 0.0274629i
\(717\) 6.88709 0.257203
\(718\) −11.4664 19.8605i −0.427924 0.741186i
\(719\) 9.93211 + 17.2029i 0.370405 + 0.641560i 0.989628 0.143655i \(-0.0458856\pi\)
−0.619223 + 0.785215i \(0.712552\pi\)
\(720\) 1.57405 1.58819i 0.0586615 0.0591884i
\(721\) 25.9892 + 15.0049i 0.967889 + 0.558811i
\(722\) −1.16263 + 2.01374i −0.0432688 + 0.0749437i
\(723\) 8.35532 + 14.4718i 0.310738 + 0.538213i
\(724\) 2.61171 + 4.52361i 0.0970633 + 0.168119i
\(725\) −8.16830 + 14.4447i −0.303363 + 0.536461i
\(726\) 2.00802i 0.0745248i
\(727\) −5.99437 + 10.3825i −0.222319 + 0.385067i −0.955512 0.294953i \(-0.904696\pi\)
0.733193 + 0.680021i \(0.238029\pi\)
\(728\) 8.32890 4.80869i 0.308689 0.178222i
\(729\) −1.00000 −0.0370370
\(730\) −0.601440 + 0.164041i −0.0222603 + 0.00607142i
\(731\) −19.1425 33.1558i −0.708011 1.22631i
\(732\) −2.49208 −0.0921100
\(733\) −14.4350 8.33404i −0.533168 0.307825i 0.209137 0.977886i \(-0.432934\pi\)
−0.742306 + 0.670061i \(0.766268\pi\)
\(734\) 9.54106i 0.352167i
\(735\) 0.951143 3.61427i 0.0350834 0.133314i
\(736\) 0.374445 0.648558i 0.0138022 0.0239062i
\(737\) −24.8066 14.3221i −0.913762 0.527561i
\(738\) 1.97387 + 3.41884i 0.0726590 + 0.125849i
\(739\) 13.8748 0.510394 0.255197 0.966889i \(-0.417860\pi\)
0.255197 + 0.966889i \(0.417860\pi\)
\(740\) 13.6002 + 0.189370i 0.499952 + 0.00696139i
\(741\) −17.0129 −0.624986
\(742\) 2.69987 + 4.67631i 0.0991152 + 0.171673i
\(743\) −43.4777 25.1019i −1.59504 0.920899i −0.992423 0.122871i \(-0.960790\pi\)
−0.602621 0.798028i \(-0.705877\pi\)
\(744\) −2.27348 + 3.93778i −0.0833498 + 0.144366i
\(745\) −44.1539 11.6197i −1.61767 0.425712i
\(746\) 23.1104i 0.846132i
\(747\) −5.53660 3.19656i −0.202574 0.116956i
\(748\) 11.8435 0.433040
\(749\) −7.98973 13.8386i −0.291938 0.505652i
\(750\) 7.79895 8.01101i 0.284777 0.292521i
\(751\) 26.7710 0.976888 0.488444 0.872595i \(-0.337565\pi\)
0.488444 + 0.872595i \(0.337565\pi\)
\(752\) −1.35078 + 0.779875i −0.0492580 + 0.0284391i
\(753\) 7.60768 13.1769i 0.277239 0.480192i
\(754\) 13.8273i 0.503561i
\(755\) 20.7554 20.9419i 0.755368 0.762153i
\(756\) −1.15419 1.99912i −0.0419775 0.0727071i
\(757\) 0.848563 + 1.46975i 0.0308416 + 0.0534191i 0.881034 0.473053i \(-0.156848\pi\)
−0.850193 + 0.526472i \(0.823515\pi\)
\(758\) −12.8937 + 22.3326i −0.468321 + 0.811156i
\(759\) −2.33913 1.35050i −0.0849051 0.0490200i
\(760\) −6.48534 6.42760i −0.235248 0.233154i
\(761\) 13.8079 + 23.9160i 0.500536 + 0.866953i 1.00000 0.000618665i \(0.000196927\pi\)
−0.499464 + 0.866335i \(0.666470\pi\)
\(762\) 6.58300 + 11.4021i 0.238477 + 0.413054i
\(763\) 23.6888 0.857591
\(764\) 0.273500 + 0.157905i 0.00989487 + 0.00571281i
\(765\) 5.16884 5.21526i 0.186880 0.188558i
\(766\) −32.9595 −1.19087
\(767\) 48.8352i 1.76334i
\(768\) −0.866025 + 0.500000i −0.0312500 + 0.0180422i
\(769\) 41.1203i 1.48284i 0.671043 + 0.741418i \(0.265846\pi\)
−0.671043 + 0.741418i \(0.734154\pi\)
\(770\) 4.73786 18.0035i 0.170741 0.648802i
\(771\) 5.07127i 0.182637i
\(772\) 1.83668 3.18122i 0.0661035 0.114495i
\(773\) −3.69664 2.13426i −0.132959 0.0767639i 0.432045 0.901852i \(-0.357792\pi\)
−0.565004 + 0.825088i \(0.691125\pi\)
\(774\) 5.82942 10.0969i 0.209534 0.362924i
\(775\) −11.1909 + 19.7898i −0.401989 + 0.710869i
\(776\) 4.51721 0.162158
\(777\)