Properties

Label 1110.2.a.n
Level $1110$
Weight $2$
Character orbit 1110.a
Self dual yes
Analytic conductor $8.863$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + q^{8} + q^{9} - q^{10} + 3q^{11} + q^{12} + 2q^{13} - q^{14} - q^{15} + q^{16} + 3q^{17} + q^{18} + 2q^{19} - q^{20} - q^{21} + 3q^{22} + q^{24} + q^{25} + 2q^{26} + q^{27} - q^{28} - 3q^{29} - q^{30} - q^{31} + q^{32} + 3q^{33} + 3q^{34} + q^{35} + q^{36} + q^{37} + 2q^{38} + 2q^{39} - q^{40} + 9q^{41} - q^{42} + 11q^{43} + 3q^{44} - q^{45} + q^{48} - 6q^{49} + q^{50} + 3q^{51} + 2q^{52} - 9q^{53} + q^{54} - 3q^{55} - q^{56} + 2q^{57} - 3q^{58} - 6q^{59} - q^{60} - q^{61} - q^{62} - q^{63} + q^{64} - 2q^{65} + 3q^{66} + 8q^{67} + 3q^{68} + q^{70} - 12q^{71} + q^{72} + 8q^{73} + q^{74} + q^{75} + 2q^{76} - 3q^{77} + 2q^{78} - 4q^{79} - q^{80} + q^{81} + 9q^{82} - 6q^{83} - q^{84} - 3q^{85} + 11q^{86} - 3q^{87} + 3q^{88} - 6q^{89} - q^{90} - 2q^{91} - q^{93} - 2q^{95} + q^{96} - 13q^{97} - 6q^{98} + 3q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 −1.00000 1.00000 −1.00000 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(37\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1110.2.a.n 1
3.b odd 2 1 3330.2.a.h 1
4.b odd 2 1 8880.2.a.g 1
5.b even 2 1 5550.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.2.a.n 1 1.a even 1 1 trivial
3330.2.a.h 1 3.b odd 2 1
5550.2.a.g 1 5.b even 2 1
8880.2.a.g 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1110))\):

\( T_{7} + 1 \)
\( T_{11} - 3 \)
\( T_{13} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( -1 + T \)
$5$ \( 1 + T \)
$7$ \( 1 + T \)
$11$ \( -3 + T \)
$13$ \( -2 + T \)
$17$ \( -3 + T \)
$19$ \( -2 + T \)
$23$ \( T \)
$29$ \( 3 + T \)
$31$ \( 1 + T \)
$37$ \( -1 + T \)
$41$ \( -9 + T \)
$43$ \( -11 + T \)
$47$ \( T \)
$53$ \( 9 + T \)
$59$ \( 6 + T \)
$61$ \( 1 + T \)
$67$ \( -8 + T \)
$71$ \( 12 + T \)
$73$ \( -8 + T \)
$79$ \( 4 + T \)
$83$ \( 6 + T \)
$89$ \( 6 + T \)
$97$ \( 13 + T \)
show more
show less