Properties

Label 1110.2.a.l
Level $1110$
Weight $2$
Character orbit 1110.a
Self dual yes
Analytic conductor $8.863$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + 3q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + 3q^{7} + q^{8} + q^{9} + q^{10} + q^{11} - q^{12} + q^{13} + 3q^{14} - q^{15} + q^{16} - q^{17} + q^{18} - 5q^{19} + q^{20} - 3q^{21} + q^{22} + 7q^{23} - q^{24} + q^{25} + q^{26} - q^{27} + 3q^{28} - 2q^{29} - q^{30} + 2q^{31} + q^{32} - q^{33} - q^{34} + 3q^{35} + q^{36} + q^{37} - 5q^{38} - q^{39} + q^{40} + 4q^{41} - 3q^{42} - 12q^{43} + q^{44} + q^{45} + 7q^{46} + 12q^{47} - q^{48} + 2q^{49} + q^{50} + q^{51} + q^{52} - 9q^{53} - q^{54} + q^{55} + 3q^{56} + 5q^{57} - 2q^{58} + 10q^{59} - q^{60} + 14q^{61} + 2q^{62} + 3q^{63} + q^{64} + q^{65} - q^{66} + 2q^{67} - q^{68} - 7q^{69} + 3q^{70} + 2q^{71} + q^{72} - 9q^{73} + q^{74} - q^{75} - 5q^{76} + 3q^{77} - q^{78} + 4q^{79} + q^{80} + q^{81} + 4q^{82} - q^{83} - 3q^{84} - q^{85} - 12q^{86} + 2q^{87} + q^{88} + q^{89} + q^{90} + 3q^{91} + 7q^{92} - 2q^{93} + 12q^{94} - 5q^{95} - q^{96} - 8q^{97} + 2q^{98} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 1.00000 −1.00000 3.00000 1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(-1\)
\(37\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1110.2.a.l 1
3.b odd 2 1 3330.2.a.e 1
4.b odd 2 1 8880.2.a.y 1
5.b even 2 1 5550.2.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.2.a.l 1 1.a even 1 1 trivial
3330.2.a.e 1 3.b odd 2 1
5550.2.a.m 1 5.b even 2 1
8880.2.a.y 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1110))\):

\( T_{7} - 3 \)
\( T_{11} - 1 \)
\( T_{13} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( 1 + T \)
$5$ \( -1 + T \)
$7$ \( -3 + T \)
$11$ \( -1 + T \)
$13$ \( -1 + T \)
$17$ \( 1 + T \)
$19$ \( 5 + T \)
$23$ \( -7 + T \)
$29$ \( 2 + T \)
$31$ \( -2 + T \)
$37$ \( -1 + T \)
$41$ \( -4 + T \)
$43$ \( 12 + T \)
$47$ \( -12 + T \)
$53$ \( 9 + T \)
$59$ \( -10 + T \)
$61$ \( -14 + T \)
$67$ \( -2 + T \)
$71$ \( -2 + T \)
$73$ \( 9 + T \)
$79$ \( -4 + T \)
$83$ \( 1 + T \)
$89$ \( -1 + T \)
$97$ \( 8 + T \)
show more
show less