Properties

Label 111.2.e
Level $111$
Weight $2$
Character orbit 111.e
Rep. character $\chi_{111}(10,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $16$
Newform subspaces $2$
Sturm bound $25$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 111 = 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 111.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(25\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(111, [\chi])\).

Total New Old
Modular forms 28 16 12
Cusp forms 20 16 4
Eisenstein series 8 0 8

Trace form

\( 16 q - 2 q^{3} - 10 q^{4} + 4 q^{5} - 2 q^{7} + 12 q^{8} - 8 q^{9} + 4 q^{10} - 16 q^{11} - 6 q^{12} - 4 q^{13} + 12 q^{14} - 14 q^{16} + 4 q^{17} - 2 q^{19} + 10 q^{20} + 2 q^{21} - 10 q^{22} - 12 q^{23}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(111, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
111.2.e.a 111.e 37.c $6$ $0.886$ 6.0.1415907.1 None 111.2.e.a \(0\) \(3\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{2})q^{2}+(1+\beta _{4})q^{3}+(-1+\cdots)q^{4}+\cdots\)
111.2.e.b 111.e 37.c $10$ $0.886$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 111.2.e.b \(0\) \(-5\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{2}+(-1+\beta _{6})q^{3}+(-2+2\beta _{6}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(111, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(111, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)