Properties

Label 1104.2.q
Level $1104$
Weight $2$
Character orbit 1104.q
Rep. character $\chi_{1104}(91,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $192$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1104 = 2^{4} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1104.q (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 368 \)
Character field: \(\Q(i)\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1104, [\chi])\).

Total New Old
Modular forms 392 192 200
Cusp forms 376 192 184
Eisenstein series 16 0 16

Trace form

\( 192q - 8q^{4} + O(q^{10}) \) \( 192q - 8q^{4} - 8q^{18} - 16q^{23} - 8q^{24} + 40q^{26} + 32q^{29} + 40q^{32} - 8q^{36} + 8q^{46} + 32q^{48} - 192q^{49} + 96q^{50} + 104q^{52} - 8q^{54} + 40q^{58} + 24q^{62} - 56q^{64} + 16q^{69} + 72q^{70} + 8q^{72} - 32q^{77} - 192q^{81} - 120q^{82} + 32q^{85} + 48q^{92} + 32q^{94} + 40q^{96} + 72q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1104, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1104, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1104, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(368, [\chi])\)\(^{\oplus 2}\)