Properties

Label 1104.2.m.a
Level $1104$
Weight $2$
Character orbit 1104.m
Analytic conductor $8.815$
Analytic rank $0$
Dimension $6$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1104 = 2^{4} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1104.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.81548438315\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.8869743.1
Defining polynomial: \(x^{6} - 3 x^{3} + 8\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 69)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{3} -\beta_{3} q^{9} +O(q^{10})\) \( q -\beta_{2} q^{3} -\beta_{3} q^{9} + ( -\beta_{2} - \beta_{3} - \beta_{4} ) q^{13} -\beta_{5} q^{23} -5 q^{25} + ( -2 + \beta_{5} ) q^{27} + ( -3 \beta_{2} - \beta_{3} + \beta_{4} ) q^{29} + ( -\beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{4} ) q^{31} + ( 4 + \beta_{1} - 2 \beta_{3} - \beta_{4} + \beta_{5} ) q^{39} + ( 2 \beta_{1} + 3 \beta_{2} - \beta_{3} - \beta_{4} ) q^{41} + ( \beta_{1} - 3 \beta_{2} - 2 \beta_{3} + \beta_{4} ) q^{47} + 7 q^{49} -2 \beta_{5} q^{59} + ( -2 \beta_{1} + \beta_{2} - \beta_{4} ) q^{69} + ( 3 \beta_{1} + 3 \beta_{2} - 2 \beta_{3} - \beta_{4} ) q^{71} + ( -2 \beta_{1} + 5 \beta_{2} - \beta_{3} + \beta_{4} ) q^{73} + 5 \beta_{2} q^{75} + ( 2 \beta_{1} + \beta_{2} + \beta_{4} ) q^{81} + ( -8 - \beta_{1} - 2 \beta_{3} + \beta_{4} + \beta_{5} ) q^{87} + ( -1 + 2 \beta_{1} - \beta_{3} - 2 \beta_{4} + 2 \beta_{5} ) q^{93} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + O(q^{10}) \) \( 6q - 30q^{25} - 12q^{27} + 24q^{39} + 42q^{49} - 48q^{87} - 6q^{93} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - 3 x^{3} + 8\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{5} + \nu^{2} + 8 \nu \)\()/4\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{4} - \nu \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{5} + 7 \nu^{2} \)\()/4\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{5} - \nu^{2} + 4 \nu \)\()/2\)
\(\beta_{5}\)\(=\)\( 2 \nu^{3} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{4} + 2 \beta_{1}\)\()/6\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{4} + 3 \beta_{3} + \beta_{1}\)\()/6\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{5} + 3\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(\beta_{4} + 12 \beta_{2} + 2 \beta_{1}\)\()/6\)
\(\nu^{5}\)\(=\)\((\)\(-7 \beta_{4} - 3 \beta_{3} + 7 \beta_{1}\)\()/6\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1104\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(277\) \(415\) \(737\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
689.1
−0.261988 + 1.38973i
−0.261988 1.38973i
1.33454 + 0.467979i
1.33454 0.467979i
−1.07255 0.921756i
−1.07255 + 0.921756i
0 −1.60074 0.661546i 0 0 0 0 0 2.12471 + 2.11792i 0
689.2 0 −1.60074 + 0.661546i 0 0 0 0 0 2.12471 2.11792i 0
689.3 0 0.227452 1.71705i 0 0 0 0 0 −2.89653 0.781094i 0
689.4 0 0.227452 + 1.71705i 0 0 0 0 0 −2.89653 + 0.781094i 0
689.5 0 1.37328 1.05550i 0 0 0 0 0 0.771819 2.89902i 0
689.6 0 1.37328 + 1.05550i 0 0 0 0 0 0.771819 + 2.89902i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 689.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
3.b odd 2 1 inner
69.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1104.2.m.a 6
3.b odd 2 1 inner 1104.2.m.a 6
4.b odd 2 1 69.2.c.a 6
12.b even 2 1 69.2.c.a 6
23.b odd 2 1 CM 1104.2.m.a 6
69.c even 2 1 inner 1104.2.m.a 6
92.b even 2 1 69.2.c.a 6
276.h odd 2 1 69.2.c.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
69.2.c.a 6 4.b odd 2 1
69.2.c.a 6 12.b even 2 1
69.2.c.a 6 92.b even 2 1
69.2.c.a 6 276.h odd 2 1
1104.2.m.a 6 1.a even 1 1 trivial
1104.2.m.a 6 3.b odd 2 1 inner
1104.2.m.a 6 23.b odd 2 1 CM
1104.2.m.a 6 69.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{2}^{\mathrm{new}}(1104, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \)
$3$ \( 27 + 4 T^{3} + T^{6} \)
$5$ \( T^{6} \)
$7$ \( T^{6} \)
$11$ \( T^{6} \)
$13$ \( ( -74 - 39 T + T^{3} )^{2} \)
$17$ \( T^{6} \)
$19$ \( T^{6} \)
$23$ \( ( 23 + T^{2} )^{3} \)
$29$ \( 18032 + 7569 T^{2} + 174 T^{4} + T^{6} \)
$31$ \( ( 344 - 93 T + T^{3} )^{2} \)
$37$ \( T^{6} \)
$41$ \( 94208 + 15129 T^{2} + 246 T^{4} + T^{6} \)
$43$ \( T^{6} \)
$47$ \( 412988 + 19881 T^{2} + 282 T^{4} + T^{6} \)
$53$ \( T^{6} \)
$59$ \( ( 92 + T^{2} )^{3} \)
$61$ \( T^{6} \)
$67$ \( T^{6} \)
$71$ \( 48668 + 45369 T^{2} + 426 T^{4} + T^{6} \)
$73$ \( ( -1226 - 219 T + T^{3} )^{2} \)
$79$ \( T^{6} \)
$83$ \( T^{6} \)
$89$ \( T^{6} \)
$97$ \( T^{6} \)
show more
show less