Properties

Label 1100.6.b.g
Level $1100$
Weight $6$
Character orbit 1100.b
Analytic conductor $176.422$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(176.422201794\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 1622x^{8} + 834457x^{6} + 142814980x^{4} + 7536339200x^{2} + 102851055616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{3} + (\beta_{8} + 2 \beta_{6} - \beta_{5}) q^{7} + (\beta_{2} + \beta_1 - 94) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{5} q^{3} + (\beta_{8} + 2 \beta_{6} - \beta_{5}) q^{7} + (\beta_{2} + \beta_1 - 94) q^{9} + 121 q^{11} + (\beta_{9} - 10 \beta_{6} + 6 \beta_{5}) q^{13} + (2 \beta_{9} - \beta_{7} + \cdots - 18 \beta_{5}) q^{17}+ \cdots + (121 \beta_{2} + 121 \beta_1 - 11374) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 942 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 942 q^{9} + 1210 q^{11} - 204 q^{19} + 2936 q^{21} + 1484 q^{29} + 6264 q^{31} - 24064 q^{39} + 14308 q^{41} - 68526 q^{49} + 58028 q^{51} - 145456 q^{59} + 146804 q^{61} - 94248 q^{69} + 172240 q^{71} - 186640 q^{79} + 267570 q^{81} - 44328 q^{89} + 56808 q^{91} - 113982 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} + 1622x^{8} + 834457x^{6} + 142814980x^{4} + 7536339200x^{2} + 102851055616 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{8} - 1150\nu^{6} - 361857\nu^{4} + 7974524\nu^{2} + 11923811072 ) / 37065600 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{8} + 1150\nu^{6} + 361857\nu^{4} + 29091076\nu^{2} + 92856448 ) / 7413120 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 523\nu^{8} + 917350\nu^{6} + 470788311\nu^{4} + 62742981148\nu^{2} + 1437134748544 ) / 1964476800 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -89\nu^{8} - 140180\nu^{6} - 69962343\nu^{4} - 11252548604\nu^{2} - 360898841792 ) / 65482560 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -191\nu^{9} - 149450\nu^{7} + 25023513\nu^{5} + 30746832484\nu^{3} + 6197142977152\nu ) / 2971771545600 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 191\nu^{9} + 149450\nu^{7} - 25023513\nu^{5} - 30746832484\nu^{3} - 3225371431552\nu ) / 1188708618240 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 7903919 \nu^{9} - 14101529450 \nu^{7} - 7104734436183 \nu^{5} + \cdots + 42\!\cdots\!68 \nu ) / 315007783833600 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 2078879 \nu^{9} - 3308763050 \nu^{7} - 1611893475303 \nu^{5} - 231250877339804 \nu^{3} - 74\!\cdots\!12 \nu ) / 78751945958400 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 1768013 \nu^{9} + 2764610750 \nu^{7} + 1353872201541 \nu^{5} + 208727640039188 \nu^{3} + 70\!\cdots\!64 \nu ) / 24231367987200 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{6} + 5\beta_{5} ) / 5 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 5\beta _1 - 1621 ) / 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -19\beta_{9} - 66\beta_{8} + 13\beta_{7} - 1362\beta_{6} - 2942\beta_{5} ) / 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -81\beta_{4} - 291\beta_{3} - 977\beta_{2} - 3676\beta _1 + 961251 ) / 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 17375\beta_{9} + 57810\beta_{8} - 9725\beta_{7} + 864142\beta_{6} + 1937870\beta_{5} ) / 5 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 72189\beta_{4} + 290439\beta_{3} + 658905\beta_{2} + 2523864\beta _1 - 634780691 ) / 5 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -13070823\beta_{9} - 42786882\beta_{8} + 6520101\beta_{7} - 598816718\beta_{6} - 1307441534\beta_{5} ) / 5 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -53706933\beta_{4} - 228704463\beta_{3} - 396231937\beta_{2} - 1717712648\beta _1 + 428854743499 ) / 5 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 9445173919 \beta_{9} + 30428365746 \beta_{8} - 4283109613 \beta_{7} + 427403807262 \beta_{6} + 887744127662 \beta_{5} ) / 5 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
749.1
25.7722i
26.3640i
7.57706i
13.5744i
4.58904i
4.58904i
13.5744i
7.57706i
26.3640i
25.7722i
0 29.7722i 0 0 0 54.8255i 0 −643.385 0
749.2 0 22.3640i 0 0 0 139.452i 0 −257.147 0
749.3 0 11.5771i 0 0 0 76.8335i 0 108.972 0
749.4 0 9.57436i 0 0 0 205.693i 0 151.332 0
749.5 0 8.58904i 0 0 0 218.249i 0 169.228 0
749.6 0 8.58904i 0 0 0 218.249i 0 169.228 0
749.7 0 9.57436i 0 0 0 205.693i 0 151.332 0
749.8 0 11.5771i 0 0 0 76.8335i 0 108.972 0
749.9 0 22.3640i 0 0 0 139.452i 0 −257.147 0
749.10 0 29.7722i 0 0 0 54.8255i 0 −643.385 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 749.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.b.g 10
5.b even 2 1 inner 1100.6.b.g 10
5.c odd 4 1 220.6.a.e 5
5.c odd 4 1 1100.6.a.g 5
20.e even 4 1 880.6.a.p 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.6.a.e 5 5.c odd 4 1
880.6.a.p 5 20.e even 4 1
1100.6.a.g 5 5.c odd 4 1
1100.6.b.g 10 1.a even 1 1 trivial
1100.6.b.g 10 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{10} + 1686T_{3}^{8} + 887481T_{3}^{6} + 173788324T_{3}^{4} + 14084763264T_{3}^{2} + 401813996544 \) acting on \(S_{6}^{\mathrm{new}}(1100, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} \) Copy content Toggle raw display
$3$ \( T^{10} + \cdots + 401813996544 \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( T^{10} + \cdots + 69\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( (T - 121)^{10} \) Copy content Toggle raw display
$13$ \( T^{10} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 53\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( (T^{5} + \cdots - 696671609378624)^{2} \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 78\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( (T^{5} + \cdots - 56\!\cdots\!08)^{2} \) Copy content Toggle raw display
$31$ \( (T^{5} + \cdots + 58\!\cdots\!60)^{2} \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots + 13\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( (T^{5} + \cdots - 17\!\cdots\!60)^{2} \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots + 39\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots + 91\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{5} + \cdots - 80\!\cdots\!04)^{2} \) Copy content Toggle raw display
$61$ \( (T^{5} + \cdots + 81\!\cdots\!24)^{2} \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 59\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( (T^{5} + \cdots - 13\!\cdots\!96)^{2} \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots + 14\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T^{5} + \cdots - 27\!\cdots\!12)^{2} \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 21\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( (T^{5} + \cdots - 53\!\cdots\!64)^{2} \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 31\!\cdots\!56 \) Copy content Toggle raw display
show more
show less