Properties

Label 1100.6.b.f
Level $1100$
Weight $6$
Character orbit 1100.b
Analytic conductor $176.422$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(176.422201794\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1202x^{6} + 449473x^{4} + 53281872x^{2} + 1947986496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{4} - \beta_{2} + 3 \beta_1) q^{7} + (\beta_{7} - \beta_{5} - 58) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + ( - \beta_{4} - \beta_{2} + 3 \beta_1) q^{7} + (\beta_{7} - \beta_{5} - 58) q^{9} + 121 q^{11} + ( - 3 \beta_{6} - 3 \beta_{4} + \cdots - 12 \beta_1) q^{13}+ \cdots + (121 \beta_{7} - 121 \beta_{5} - 7018) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 460 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 460 q^{9} + 968 q^{11} - 1732 q^{19} - 6104 q^{21} + 30608 q^{29} - 19016 q^{31} + 29136 q^{39} - 19992 q^{41} + 30260 q^{49} - 30116 q^{51} + 44776 q^{59} - 168528 q^{61} + 197216 q^{69} - 41688 q^{71} + 23424 q^{79} - 188408 q^{81} + 301044 q^{89} - 177432 q^{91} - 55660 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 1202x^{6} + 449473x^{4} + 53281872x^{2} + 1947986496 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 1202\nu^{5} + 405337\nu^{3} + 26756136\nu ) / 2118528 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 601\nu^{2} + 44136 ) / 48 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -121\nu^{7} - 128891\nu^{5} - 39451714\nu^{3} - 2667829104\nu ) / 19596384 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} + 1001\nu^{4} + 279352\nu^{2} + 16269408 ) / 10656 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 317\nu^{7} + 325864\nu^{5} + 92156867\nu^{3} + 4618824120\nu ) / 39192768 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{6} + 1001\nu^{4} + 290008\nu^{2} + 19476864 ) / 10656 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} - \beta_{5} - 301 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -9\beta_{6} - 15\beta_{4} - 42\beta_{2} - 451\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -601\beta_{7} + 601\beta_{5} + 48\beta_{3} + 136765 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 5217\beta_{6} + 9879\beta_{4} + 39834\beta_{2} + 227011\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 322249\beta_{7} - 311593\beta_{5} - 48048\beta_{3} - 69086221 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -2622801\beta_{6} - 5794503\beta_{4} - 28737786\beta_{2} - 116816371\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
749.1
23.2360i
22.1144i
9.84560i
8.72399i
8.72399i
9.84560i
22.1144i
23.2360i
0 23.2360i 0 0 0 63.7039i 0 −296.911 0
749.2 0 22.1144i 0 0 0 130.428i 0 −246.045 0
749.3 0 9.84560i 0 0 0 11.6329i 0 146.064 0
749.4 0 8.72399i 0 0 0 175.764i 0 166.892 0
749.5 0 8.72399i 0 0 0 175.764i 0 166.892 0
749.6 0 9.84560i 0 0 0 11.6329i 0 146.064 0
749.7 0 22.1144i 0 0 0 130.428i 0 −246.045 0
749.8 0 23.2360i 0 0 0 63.7039i 0 −296.911 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 749.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.b.f 8
5.b even 2 1 inner 1100.6.b.f 8
5.c odd 4 1 220.6.a.d 4
5.c odd 4 1 1100.6.a.e 4
20.e even 4 1 880.6.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.6.a.d 4 5.c odd 4 1
880.6.a.m 4 20.e even 4 1
1100.6.a.e 4 5.c odd 4 1
1100.6.b.f 8 1.a even 1 1 trivial
1100.6.b.f 8 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 1202T_{3}^{6} + 449473T_{3}^{4} + 53281872T_{3}^{2} + 1947986496 \) acting on \(S_{6}^{\mathrm{new}}(1100, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + \cdots + 1947986496 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 288611034965136 \) Copy content Toggle raw display
$11$ \( (T - 121)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 12\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 18\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( (T^{4} + 866 T^{3} + \cdots - 313652697344)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 15\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( (T^{4} - 15304 T^{3} + \cdots + 379396794636)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots - 659542417773824)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 91\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots - 89\!\cdots\!04)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 86\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 17\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 65\!\cdots\!36)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots - 89\!\cdots\!64)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 19\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 29\!\cdots\!24)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 73\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 30\!\cdots\!24)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 38\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots - 45\!\cdots\!44)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 57\!\cdots\!36 \) Copy content Toggle raw display
show more
show less