Properties

Label 1100.6.b.d
Level $1100$
Weight $6$
Character orbit 1100.b
Analytic conductor $176.422$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(176.422201794\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 150x^{3} + 11449x^{2} - 6848x + 2048 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{3} + (2 \beta_{5} + 7 \beta_{4} - 24 \beta_{3}) q^{7} + (5 \beta_{2} + 3 \beta_1 + 34) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{4} q^{3} + (2 \beta_{5} + 7 \beta_{4} - 24 \beta_{3}) q^{7} + (5 \beta_{2} + 3 \beta_1 + 34) q^{9} - 121 q^{11} + (12 \beta_{5} - 16 \beta_{4} - 181 \beta_{3}) q^{13} + (29 \beta_{5} - 9 \beta_{4} + 5 \beta_{3}) q^{17} + ( - 34 \beta_{2} + 47 \beta_1 + 1242) q^{19} + (75 \beta_{2} + 9 \beta_1 - 1647) q^{21} + ( - 73 \beta_{5} + \cdots + 824 \beta_{3}) q^{23}+ \cdots + ( - 605 \beta_{2} - 363 \beta_1 - 4114) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 208 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 208 q^{9} - 726 q^{11} + 7290 q^{19} - 9750 q^{21} - 16946 q^{29} - 10090 q^{31} + 13852 q^{39} - 37412 q^{41} - 16936 q^{49} - 1838 q^{51} + 132828 q^{59} - 57610 q^{61} + 86292 q^{69} + 16098 q^{71} + 225492 q^{79} - 153562 q^{81} - 187658 q^{89} - 164108 q^{91} - 25168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 150x^{3} + 11449x^{2} - 6848x + 2048 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -80\nu^{5} - 8381\nu^{4} - 8720\nu^{3} - 6000\nu^{2} + 5120\nu - 67928919 ) / 1561615 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -310\nu^{5} + 6564\nu^{4} - 33790\nu^{3} - 23250\nu^{2} + 19840\nu + 45155361 ) / 1561615 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2897\nu^{5} - 4922\nu^{4} + 3450\nu^{3} + 529598\nu^{2} + 33233153\nu - 9900128 ) / 4997168 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 198459\nu^{5} - 341494\nu^{4} + 706390\nu^{3} + 25815730\nu^{2} + 2326285571\nu - 692973856 ) / 49971680 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -218709\nu^{5} + 367274\nu^{4} + 209590\nu^{3} - 30457710\nu^{2} - 2459288461\nu + 732644576 ) / 24985840 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{5} + 4\beta_{4} + 4\beta_{3} + 3\beta_{2} + 2\beta _1 + 5 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{5} - 10\beta_{4} + 144\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 234\beta_{5} + 388\beta_{4} + 748\beta_{3} - 311\beta_{2} - 234\beta _1 - 1185 ) / 16 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 40\beta_{2} - 155\beta _1 - 7899 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -26878\beta_{5} - 39036\beta_{4} - 124476\beta_{3} - 32957\beta_{2} - 26878\beta _1 - 215995 ) / 16 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
749.1
−6.98601 6.98601i
0.297901 0.297901i
7.68811 7.68811i
7.68811 + 7.68811i
0.297901 + 0.297901i
−6.98601 + 6.98601i
0 20.0937i 0 0 0 228.057i 0 −160.758 0
749.2 0 13.9603i 0 0 0 9.35268i 0 48.1099 0
749.3 0 5.13342i 0 0 0 82.4100i 0 216.648 0
749.4 0 5.13342i 0 0 0 82.4100i 0 216.648 0
749.5 0 13.9603i 0 0 0 9.35268i 0 48.1099 0
749.6 0 20.0937i 0 0 0 228.057i 0 −160.758 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 749.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.b.d 6
5.b even 2 1 inner 1100.6.b.d 6
5.c odd 4 1 220.6.a.b 3
5.c odd 4 1 1100.6.a.d 3
20.e even 4 1 880.6.a.j 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.6.a.b 3 5.c odd 4 1
880.6.a.j 3 20.e even 4 1
1100.6.a.d 3 5.c odd 4 1
1100.6.b.d 6 1.a even 1 1 trivial
1100.6.b.d 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 625T_{3}^{4} + 94464T_{3}^{2} + 2073600 \) acting on \(S_{6}^{\mathrm{new}}(1100, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 625 T^{4} + \cdots + 2073600 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 30897202176 \) Copy content Toggle raw display
$11$ \( (T + 121)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T^{3} - 3645 T^{2} + \cdots + 13139307248)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 64\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( (T^{3} + 8473 T^{2} + \cdots - 57124516620)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 5045 T^{2} + \cdots - 63522375360)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 24\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( (T^{3} + 18706 T^{2} + \cdots + 25081114200)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 43\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( (T^{3} + \cdots + 27595270294560)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 28805 T^{2} + \cdots - 230105423484)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 92\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{3} - 8049 T^{2} + \cdots - 259369439040)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots + 159067707906944)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 72\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots - 854013774895068)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 49\!\cdots\!44 \) Copy content Toggle raw display
show more
show less