Properties

Label 1100.6.b.c
Level $1100$
Weight $6$
Character orbit 1100.b
Analytic conductor $176.422$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(176.422201794\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{31})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 15x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 3 \beta_1) q^{3} + (3 \beta_{3} - 134 \beta_1) q^{7} + (6 \beta_{2} - 262) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} - 3 \beta_1) q^{3} + (3 \beta_{3} - 134 \beta_1) q^{7} + (6 \beta_{2} - 262) q^{9} - 121 q^{11} + ( - 5 \beta_{3} + 616 \beta_1) q^{13} + ( - 47 \beta_{3} + 62 \beta_1) q^{17} + (31 \beta_{2} - 972) q^{19} + (143 \beta_{2} - 1890) q^{21} + ( - 59 \beta_{3} + 1673 \beta_1) q^{23} + ( - 37 \beta_{3} + 3033 \beta_1) q^{27} + (78 \beta_{2} + 3288) q^{29} + ( - 371 \beta_{2} + 1249) q^{31} + ( - 121 \beta_{3} + 363 \beta_1) q^{33} + ( - 94 \beta_{3} + 7337 \beta_1) q^{37} + ( - 631 \beta_{2} + 4328) q^{39} + ( - 477 \beta_{2} - 3252) q^{41} + (644 \beta_{3} + 5814 \beta_1) q^{43} + (522 \beta_{3} - 18408 \beta_1) q^{47} + (804 \beta_{2} - 5613) q^{49} + ( - 203 \beta_{2} + 23498) q^{51} + ( - 1150 \beta_{3} - 1646 \beta_1) q^{53} + ( - 1065 \beta_{3} + 18292 \beta_1) q^{57} + ( - 585 \beta_{2} - 6063) q^{59} + ( - 562 \beta_{2} + 36564) q^{61} + ( - 1590 \beta_{3} + 44036 \beta_1) q^{63} + ( - 1733 \beta_{3} - 14667 \beta_1) q^{67} + ( - 1850 \beta_{2} + 34283) q^{69} + ( - 951 \beta_{2} - 23061) q^{71} + (799 \beta_{3} + 4120 \beta_1) q^{73} + ( - 363 \beta_{3} + 16214 \beta_1) q^{77} + (852 \beta_{2} + 7390) q^{79} + ( - 1686 \beta_{2} - 36215) q^{81} + (802 \beta_{3} - 37282 \beta_1) q^{83} + (3054 \beta_{3} + 28824 \beta_1) q^{87} + (650 \beta_{2} + 16849) q^{89} + ( - 2518 \beta_{2} + 89984) q^{91} + (2362 \beta_{3} - 187763 \beta_1) q^{93} + ( - 3188 \beta_{3} - 63081 \beta_1) q^{97} + ( - 726 \beta_{2} + 31702) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 1048 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 1048 q^{9} - 484 q^{11} - 3888 q^{19} - 7560 q^{21} + 13152 q^{29} + 4996 q^{31} + 17312 q^{39} - 13008 q^{41} - 22452 q^{49} + 93992 q^{51} - 24252 q^{59} + 146256 q^{61} + 137132 q^{69} - 92244 q^{71} + 29560 q^{79} - 144860 q^{81} + 67396 q^{89} + 359936 q^{91} + 126808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 15x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 7\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 23\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 8\nu^{2} - 60 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 4\beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 60 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{2} + 92\beta_1 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
749.1
−2.78388 + 0.500000i
2.78388 0.500000i
2.78388 + 0.500000i
−2.78388 0.500000i
0 25.2711i 0 0 0 200.813i 0 −395.626 0
749.2 0 19.2711i 0 0 0 67.1868i 0 −128.374 0
749.3 0 19.2711i 0 0 0 67.1868i 0 −128.374 0
749.4 0 25.2711i 0 0 0 200.813i 0 −395.626 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.b.c 4
5.b even 2 1 inner 1100.6.b.c 4
5.c odd 4 1 44.6.a.b 2
5.c odd 4 1 1100.6.a.b 2
15.e even 4 1 396.6.a.f 2
20.e even 4 1 176.6.a.g 2
40.i odd 4 1 704.6.a.n 2
40.k even 4 1 704.6.a.m 2
55.e even 4 1 484.6.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.6.a.b 2 5.c odd 4 1
176.6.a.g 2 20.e even 4 1
396.6.a.f 2 15.e even 4 1
484.6.a.d 2 55.e even 4 1
704.6.a.m 2 40.k even 4 1
704.6.a.n 2 40.i odd 4 1
1100.6.a.b 2 5.c odd 4 1
1100.6.b.c 4 1.a even 1 1 trivial
1100.6.b.c 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 1010T_{3}^{2} + 237169 \) acting on \(S_{6}^{\mathrm{new}}(1100, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 1010 T^{2} + 237169 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 44840 T^{2} + 182034064 \) Copy content Toggle raw display
$11$ \( (T + 121)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 134730107136 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 1192070912400 \) Copy content Toggle raw display
$19$ \( (T^{2} + 1944 T + 468128)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 1149940956609 \) Copy content Toggle raw display
$29$ \( (T^{2} - 6576 T + 7793280)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2498 T - 66709935)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 24\!\cdots\!69 \) Copy content Toggle raw display
$41$ \( (T^{2} + 6504 T - 102278880)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 42\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( (T^{2} + 12126 T - 132983631)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 73128 T + 1180267472)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 16\!\cdots\!25 \) Copy content Toggle raw display
$71$ \( (T^{2} + 46122 T + 83226825)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 89\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T^{2} - 14780 T - 305436284)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} - 33698 T + 74328801)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 11\!\cdots\!69 \) Copy content Toggle raw display
show more
show less