Properties

Label 1100.6.b.b.749.2
Level $1100$
Weight $6$
Character 1100.749
Analytic conductor $176.422$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(176.422201794\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{1761})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 881x^{2} + 193600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 749.2
Root \(-20.4821i\) of defining polynomial
Character \(\chi\) \(=\) 1100.749
Dual form 1100.6.b.b.749.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.4821i q^{3} +39.4107i q^{7} +111.161 q^{9} -121.000 q^{11} +1182.68i q^{13} -2195.77i q^{17} -1866.37 q^{19} +452.519 q^{21} -337.644i q^{23} -4066.52i q^{27} +5432.02 q^{29} +139.481 q^{31} +1389.34i q^{33} +5943.41i q^{37} +13579.7 q^{39} +4630.43 q^{41} +1155.36i q^{43} +3413.28i q^{47} +15253.8 q^{49} -25212.1 q^{51} -5651.62i q^{53} +21430.0i q^{57} -13627.0 q^{59} -34279.1 q^{61} +4380.91i q^{63} -9963.03i q^{67} -3876.87 q^{69} -19869.0 q^{71} +51656.5i q^{73} -4768.69i q^{77} -50960.7 q^{79} -19680.3 q^{81} +8628.02i q^{83} -62371.2i q^{87} +29938.4 q^{89} -46610.2 q^{91} -1601.54i q^{93} +48871.1i q^{97} -13450.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 1150 q^{9} - 484 q^{11} - 6878 q^{19} + 11294 q^{21} + 10062 q^{29} - 8926 q^{31} + 1108 q^{39} + 39336 q^{41} + 6042 q^{49} - 164718 q^{51} - 101676 q^{59} - 88354 q^{61} + 248196 q^{69} - 2178 q^{71}+ \cdots + 139150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 11.4821i − 0.736579i −0.929711 0.368290i \(-0.879943\pi\)
0.929711 0.368290i \(-0.120057\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 39.4107i 0.303997i 0.988381 + 0.151998i \(0.0485708\pi\)
−0.988381 + 0.151998i \(0.951429\pi\)
\(8\) 0 0
\(9\) 111.161 0.457451
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) 1182.68i 1.94092i 0.241256 + 0.970461i \(0.422441\pi\)
−0.241256 + 0.970461i \(0.577559\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2195.77i − 1.84274i −0.388687 0.921370i \(-0.627071\pi\)
0.388687 0.921370i \(-0.372929\pi\)
\(18\) 0 0
\(19\) −1866.37 −1.18608 −0.593041 0.805172i \(-0.702073\pi\)
−0.593041 + 0.805172i \(0.702073\pi\)
\(20\) 0 0
\(21\) 452.519 0.223918
\(22\) 0 0
\(23\) − 337.644i − 0.133088i −0.997783 0.0665440i \(-0.978803\pi\)
0.997783 0.0665440i \(-0.0211973\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 4066.52i − 1.07353i
\(28\) 0 0
\(29\) 5432.02 1.19941 0.599703 0.800223i \(-0.295285\pi\)
0.599703 + 0.800223i \(0.295285\pi\)
\(30\) 0 0
\(31\) 139.481 0.0260682 0.0130341 0.999915i \(-0.495851\pi\)
0.0130341 + 0.999915i \(0.495851\pi\)
\(32\) 0 0
\(33\) 1389.34i 0.222087i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5943.41i 0.713726i 0.934157 + 0.356863i \(0.116154\pi\)
−0.934157 + 0.356863i \(0.883846\pi\)
\(38\) 0 0
\(39\) 13579.7 1.42964
\(40\) 0 0
\(41\) 4630.43 0.430191 0.215096 0.976593i \(-0.430994\pi\)
0.215096 + 0.976593i \(0.430994\pi\)
\(42\) 0 0
\(43\) 1155.36i 0.0952897i 0.998864 + 0.0476449i \(0.0151716\pi\)
−0.998864 + 0.0476449i \(0.984828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3413.28i 0.225386i 0.993630 + 0.112693i \(0.0359477\pi\)
−0.993630 + 0.112693i \(0.964052\pi\)
\(48\) 0 0
\(49\) 15253.8 0.907586
\(50\) 0 0
\(51\) −25212.1 −1.35732
\(52\) 0 0
\(53\) − 5651.62i − 0.276365i −0.990407 0.138183i \(-0.955874\pi\)
0.990407 0.138183i \(-0.0441261\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 21430.0i 0.873644i
\(58\) 0 0
\(59\) −13627.0 −0.509649 −0.254825 0.966987i \(-0.582018\pi\)
−0.254825 + 0.966987i \(0.582018\pi\)
\(60\) 0 0
\(61\) −34279.1 −1.17952 −0.589760 0.807579i \(-0.700778\pi\)
−0.589760 + 0.807579i \(0.700778\pi\)
\(62\) 0 0
\(63\) 4380.91i 0.139064i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 9963.03i − 0.271147i −0.990767 0.135573i \(-0.956712\pi\)
0.990767 0.135573i \(-0.0432877\pi\)
\(68\) 0 0
\(69\) −3876.87 −0.0980299
\(70\) 0 0
\(71\) −19869.0 −0.467769 −0.233884 0.972264i \(-0.575144\pi\)
−0.233884 + 0.972264i \(0.575144\pi\)
\(72\) 0 0
\(73\) 51656.5i 1.13453i 0.823534 + 0.567267i \(0.191999\pi\)
−0.823534 + 0.567267i \(0.808001\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4768.69i − 0.0916584i
\(78\) 0 0
\(79\) −50960.7 −0.918686 −0.459343 0.888259i \(-0.651915\pi\)
−0.459343 + 0.888259i \(0.651915\pi\)
\(80\) 0 0
\(81\) −19680.3 −0.333288
\(82\) 0 0
\(83\) 8628.02i 0.137472i 0.997635 + 0.0687362i \(0.0218967\pi\)
−0.997635 + 0.0687362i \(0.978103\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 62371.2i − 0.883457i
\(88\) 0 0
\(89\) 29938.4 0.400640 0.200320 0.979731i \(-0.435802\pi\)
0.200320 + 0.979731i \(0.435802\pi\)
\(90\) 0 0
\(91\) −46610.2 −0.590034
\(92\) 0 0
\(93\) − 1601.54i − 0.0192013i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 48871.1i 0.527379i 0.964608 + 0.263690i \(0.0849394\pi\)
−0.964608 + 0.263690i \(0.915061\pi\)
\(98\) 0 0
\(99\) −13450.4 −0.137927
\(100\) 0 0
\(101\) −46237.3 −0.451013 −0.225506 0.974242i \(-0.572404\pi\)
−0.225506 + 0.974242i \(0.572404\pi\)
\(102\) 0 0
\(103\) 156417.i 1.45275i 0.687297 + 0.726376i \(0.258797\pi\)
−0.687297 + 0.726376i \(0.741203\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 144650.i − 1.22140i −0.791861 0.610702i \(-0.790887\pi\)
0.791861 0.610702i \(-0.209113\pi\)
\(108\) 0 0
\(109\) 15491.8 0.124892 0.0624462 0.998048i \(-0.480110\pi\)
0.0624462 + 0.998048i \(0.480110\pi\)
\(110\) 0 0
\(111\) 68243.0 0.525715
\(112\) 0 0
\(113\) − 7502.99i − 0.0552762i −0.999618 0.0276381i \(-0.991201\pi\)
0.999618 0.0276381i \(-0.00879860\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 131467.i 0.887877i
\(118\) 0 0
\(119\) 86536.7 0.560187
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) − 53167.2i − 0.316870i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 282664.i 1.55511i 0.628813 + 0.777556i \(0.283541\pi\)
−0.628813 + 0.777556i \(0.716459\pi\)
\(128\) 0 0
\(129\) 13266.0 0.0701884
\(130\) 0 0
\(131\) 148305. 0.755052 0.377526 0.925999i \(-0.376775\pi\)
0.377526 + 0.925999i \(0.376775\pi\)
\(132\) 0 0
\(133\) − 73555.1i − 0.360565i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 94749.1i 0.431294i 0.976471 + 0.215647i \(0.0691861\pi\)
−0.976471 + 0.215647i \(0.930814\pi\)
\(138\) 0 0
\(139\) −379277. −1.66502 −0.832511 0.554009i \(-0.813097\pi\)
−0.832511 + 0.554009i \(0.813097\pi\)
\(140\) 0 0
\(141\) 39191.7 0.166015
\(142\) 0 0
\(143\) − 143104.i − 0.585210i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 175146.i − 0.668509i
\(148\) 0 0
\(149\) 346333. 1.27799 0.638996 0.769210i \(-0.279350\pi\)
0.638996 + 0.769210i \(0.279350\pi\)
\(150\) 0 0
\(151\) −65850.9 −0.235028 −0.117514 0.993071i \(-0.537492\pi\)
−0.117514 + 0.993071i \(0.537492\pi\)
\(152\) 0 0
\(153\) − 244083.i − 0.842963i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 367291.i 1.18922i 0.804015 + 0.594609i \(0.202693\pi\)
−0.804015 + 0.594609i \(0.797307\pi\)
\(158\) 0 0
\(159\) −64892.7 −0.203565
\(160\) 0 0
\(161\) 13306.8 0.0404583
\(162\) 0 0
\(163\) 481404.i 1.41919i 0.704609 + 0.709596i \(0.251122\pi\)
−0.704609 + 0.709596i \(0.748878\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 600777.i 1.66695i 0.552558 + 0.833475i \(0.313652\pi\)
−0.552558 + 0.833475i \(0.686348\pi\)
\(168\) 0 0
\(169\) −1.02744e6 −2.76718
\(170\) 0 0
\(171\) −207467. −0.542575
\(172\) 0 0
\(173\) − 401433.i − 1.01976i −0.860245 0.509880i \(-0.829690\pi\)
0.860245 0.509880i \(-0.170310\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 156468.i 0.375397i
\(178\) 0 0
\(179\) −547366. −1.27687 −0.638433 0.769677i \(-0.720417\pi\)
−0.638433 + 0.769677i \(0.720417\pi\)
\(180\) 0 0
\(181\) 605472. 1.37372 0.686859 0.726791i \(-0.258989\pi\)
0.686859 + 0.726791i \(0.258989\pi\)
\(182\) 0 0
\(183\) 393597.i 0.868810i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 265688.i 0.555607i
\(188\) 0 0
\(189\) 160264. 0.326349
\(190\) 0 0
\(191\) 49593.8 0.0983657 0.0491829 0.998790i \(-0.484338\pi\)
0.0491829 + 0.998790i \(0.484338\pi\)
\(192\) 0 0
\(193\) 899272.i 1.73779i 0.494994 + 0.868896i \(0.335170\pi\)
−0.494994 + 0.868896i \(0.664830\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 279635.i − 0.513365i −0.966496 0.256683i \(-0.917371\pi\)
0.966496 0.256683i \(-0.0826295\pi\)
\(198\) 0 0
\(199\) 822226. 1.47183 0.735917 0.677072i \(-0.236752\pi\)
0.735917 + 0.677072i \(0.236752\pi\)
\(200\) 0 0
\(201\) −114397. −0.199721
\(202\) 0 0
\(203\) 214079.i 0.364615i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 37532.7i − 0.0608812i
\(208\) 0 0
\(209\) 225831. 0.357617
\(210\) 0 0
\(211\) −534284. −0.826164 −0.413082 0.910694i \(-0.635548\pi\)
−0.413082 + 0.910694i \(0.635548\pi\)
\(212\) 0 0
\(213\) 228139.i 0.344549i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 5497.05i 0.00792466i
\(218\) 0 0
\(219\) 593126. 0.835674
\(220\) 0 0
\(221\) 2.59689e6 3.57662
\(222\) 0 0
\(223\) 25689.6i 0.0345936i 0.999850 + 0.0172968i \(0.00550601\pi\)
−0.999850 + 0.0172968i \(0.994494\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 519615.i − 0.669295i −0.942343 0.334647i \(-0.891383\pi\)
0.942343 0.334647i \(-0.108617\pi\)
\(228\) 0 0
\(229\) −566856. −0.714305 −0.357153 0.934046i \(-0.616252\pi\)
−0.357153 + 0.934046i \(0.616252\pi\)
\(230\) 0 0
\(231\) −54754.8 −0.0675137
\(232\) 0 0
\(233\) 250125.i 0.301834i 0.988546 + 0.150917i \(0.0482226\pi\)
−0.988546 + 0.150917i \(0.951777\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 585137.i 0.676685i
\(238\) 0 0
\(239\) 1.29750e6 1.46931 0.734654 0.678442i \(-0.237344\pi\)
0.734654 + 0.678442i \(0.237344\pi\)
\(240\) 0 0
\(241\) 582411. 0.645932 0.322966 0.946411i \(-0.395320\pi\)
0.322966 + 0.946411i \(0.395320\pi\)
\(242\) 0 0
\(243\) − 762192.i − 0.828035i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 2.20732e6i − 2.30209i
\(248\) 0 0
\(249\) 99068.1 0.101259
\(250\) 0 0
\(251\) 1.75979e6 1.76310 0.881550 0.472091i \(-0.156501\pi\)
0.881550 + 0.472091i \(0.156501\pi\)
\(252\) 0 0
\(253\) 40854.9i 0.0401275i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 539156.i − 0.509192i −0.967048 0.254596i \(-0.918058\pi\)
0.967048 0.254596i \(-0.0819424\pi\)
\(258\) 0 0
\(259\) −234234. −0.216970
\(260\) 0 0
\(261\) 603826. 0.548669
\(262\) 0 0
\(263\) 2.20351e6i 1.96438i 0.187881 + 0.982192i \(0.439838\pi\)
−0.187881 + 0.982192i \(0.560162\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 343757.i − 0.295103i
\(268\) 0 0
\(269\) 731509. 0.616366 0.308183 0.951327i \(-0.400279\pi\)
0.308183 + 0.951327i \(0.400279\pi\)
\(270\) 0 0
\(271\) 446543. 0.369352 0.184676 0.982799i \(-0.440876\pi\)
0.184676 + 0.982799i \(0.440876\pi\)
\(272\) 0 0
\(273\) 535184.i 0.434607i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.60933e6i 1.26022i 0.776507 + 0.630109i \(0.216990\pi\)
−0.776507 + 0.630109i \(0.783010\pi\)
\(278\) 0 0
\(279\) 15504.8 0.0119249
\(280\) 0 0
\(281\) −836866. −0.632252 −0.316126 0.948717i \(-0.602382\pi\)
−0.316126 + 0.948717i \(0.602382\pi\)
\(282\) 0 0
\(283\) 1.43720e6i 1.06672i 0.845887 + 0.533362i \(0.179072\pi\)
−0.845887 + 0.533362i \(0.820928\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 182488.i 0.130777i
\(288\) 0 0
\(289\) −3.40154e6 −2.39569
\(290\) 0 0
\(291\) 561145. 0.388456
\(292\) 0 0
\(293\) 977430.i 0.665146i 0.943078 + 0.332573i \(0.107917\pi\)
−0.943078 + 0.332573i \(0.892083\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 492049.i 0.323681i
\(298\) 0 0
\(299\) 399324. 0.258314
\(300\) 0 0
\(301\) −45533.5 −0.0289677
\(302\) 0 0
\(303\) 530903.i 0.332207i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 242927.i 0.147106i 0.997291 + 0.0735528i \(0.0234337\pi\)
−0.997291 + 0.0735528i \(0.976566\pi\)
\(308\) 0 0
\(309\) 1.79600e6 1.07007
\(310\) 0 0
\(311\) −1.93118e6 −1.13220 −0.566098 0.824338i \(-0.691548\pi\)
−0.566098 + 0.824338i \(0.691548\pi\)
\(312\) 0 0
\(313\) 1.03171e6i 0.595249i 0.954683 + 0.297625i \(0.0961944\pi\)
−0.954683 + 0.297625i \(0.903806\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2.05142e6i − 1.14659i −0.819351 0.573293i \(-0.805666\pi\)
0.819351 0.573293i \(-0.194334\pi\)
\(318\) 0 0
\(319\) −657274. −0.361634
\(320\) 0 0
\(321\) −1.66089e6 −0.899661
\(322\) 0 0
\(323\) 4.09812e6i 2.18564i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 177879.i − 0.0919931i
\(328\) 0 0
\(329\) −134520. −0.0685166
\(330\) 0 0
\(331\) 1.58685e6 0.796095 0.398047 0.917365i \(-0.369688\pi\)
0.398047 + 0.917365i \(0.369688\pi\)
\(332\) 0 0
\(333\) 660673.i 0.326494i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.33349e6i 1.11926i 0.828742 + 0.559630i \(0.189057\pi\)
−0.828742 + 0.559630i \(0.810943\pi\)
\(338\) 0 0
\(339\) −86150.3 −0.0407153
\(340\) 0 0
\(341\) −16877.2 −0.00785987
\(342\) 0 0
\(343\) 1.26354e6i 0.579900i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 194423.i − 0.0866811i −0.999060 0.0433406i \(-0.986200\pi\)
0.999060 0.0433406i \(-0.0138000\pi\)
\(348\) 0 0
\(349\) 744025. 0.326982 0.163491 0.986545i \(-0.447725\pi\)
0.163491 + 0.986545i \(0.447725\pi\)
\(350\) 0 0
\(351\) 4.80938e6 2.08364
\(352\) 0 0
\(353\) 257236.i 0.109874i 0.998490 + 0.0549370i \(0.0174958\pi\)
−0.998490 + 0.0549370i \(0.982504\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 993626.i − 0.412622i
\(358\) 0 0
\(359\) 1.04798e6 0.429157 0.214579 0.976707i \(-0.431162\pi\)
0.214579 + 0.976707i \(0.431162\pi\)
\(360\) 0 0
\(361\) 1.00726e6 0.406792
\(362\) 0 0
\(363\) − 168110.i − 0.0669618i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.52808e6i 0.979772i 0.871787 + 0.489886i \(0.162962\pi\)
−0.871787 + 0.489886i \(0.837038\pi\)
\(368\) 0 0
\(369\) 514721. 0.196791
\(370\) 0 0
\(371\) 222734. 0.0840141
\(372\) 0 0
\(373\) 398673.i 0.148370i 0.997245 + 0.0741848i \(0.0236355\pi\)
−0.997245 + 0.0741848i \(0.976365\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.42433e6i 2.32795i
\(378\) 0 0
\(379\) 41188.8 0.0147293 0.00736463 0.999973i \(-0.497656\pi\)
0.00736463 + 0.999973i \(0.497656\pi\)
\(380\) 0 0
\(381\) 3.24559e6 1.14546
\(382\) 0 0
\(383\) 2.53931e6i 0.884543i 0.896881 + 0.442271i \(0.145827\pi\)
−0.896881 + 0.442271i \(0.854173\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 128430.i 0.0435904i
\(388\) 0 0
\(389\) 3.99822e6 1.33965 0.669827 0.742518i \(-0.266368\pi\)
0.669827 + 0.742518i \(0.266368\pi\)
\(390\) 0 0
\(391\) −741387. −0.245247
\(392\) 0 0
\(393\) − 1.70286e6i − 0.556156i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 5.04861e6i − 1.60766i −0.594856 0.803832i \(-0.702791\pi\)
0.594856 0.803832i \(-0.297209\pi\)
\(398\) 0 0
\(399\) −844570. −0.265585
\(400\) 0 0
\(401\) 4.71689e6 1.46485 0.732427 0.680845i \(-0.238387\pi\)
0.732427 + 0.680845i \(0.238387\pi\)
\(402\) 0 0
\(403\) 164962.i 0.0505964i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 719152.i − 0.215196i
\(408\) 0 0
\(409\) 1.19007e6 0.351775 0.175887 0.984410i \(-0.443721\pi\)
0.175887 + 0.984410i \(0.443721\pi\)
\(410\) 0 0
\(411\) 1.08792e6 0.317682
\(412\) 0 0
\(413\) − 537051.i − 0.154932i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.35491e6i 1.22642i
\(418\) 0 0
\(419\) −6.85301e6 −1.90698 −0.953491 0.301422i \(-0.902539\pi\)
−0.953491 + 0.301422i \(0.902539\pi\)
\(420\) 0 0
\(421\) 6.62822e6 1.82260 0.911300 0.411743i \(-0.135080\pi\)
0.911300 + 0.411743i \(0.135080\pi\)
\(422\) 0 0
\(423\) 379422.i 0.103103i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 1.35096e6i − 0.358570i
\(428\) 0 0
\(429\) −1.64314e6 −0.431054
\(430\) 0 0
\(431\) −1.04575e6 −0.271165 −0.135582 0.990766i \(-0.543291\pi\)
−0.135582 + 0.990766i \(0.543291\pi\)
\(432\) 0 0
\(433\) − 934093.i − 0.239425i −0.992809 0.119713i \(-0.961803\pi\)
0.992809 0.119713i \(-0.0381973\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 630169.i 0.157853i
\(438\) 0 0
\(439\) −3.24978e6 −0.804809 −0.402404 0.915462i \(-0.631825\pi\)
−0.402404 + 0.915462i \(0.631825\pi\)
\(440\) 0 0
\(441\) 1.69562e6 0.415176
\(442\) 0 0
\(443\) − 3.11830e6i − 0.754933i −0.926023 0.377466i \(-0.876795\pi\)
0.926023 0.377466i \(-0.123205\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 3.97664e6i − 0.941343i
\(448\) 0 0
\(449\) −3.36184e6 −0.786976 −0.393488 0.919330i \(-0.628732\pi\)
−0.393488 + 0.919330i \(0.628732\pi\)
\(450\) 0 0
\(451\) −560282. −0.129708
\(452\) 0 0
\(453\) 756109.i 0.173117i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.98953e6i 0.893575i 0.894640 + 0.446787i \(0.147432\pi\)
−0.894640 + 0.446787i \(0.852568\pi\)
\(458\) 0 0
\(459\) −8.92913e6 −1.97823
\(460\) 0 0
\(461\) −4.93053e6 −1.08054 −0.540271 0.841491i \(-0.681678\pi\)
−0.540271 + 0.841491i \(0.681678\pi\)
\(462\) 0 0
\(463\) 6.61725e6i 1.43458i 0.696774 + 0.717290i \(0.254618\pi\)
−0.696774 + 0.717290i \(0.745382\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.80218e6i 0.806752i 0.915034 + 0.403376i \(0.132163\pi\)
−0.915034 + 0.403376i \(0.867837\pi\)
\(468\) 0 0
\(469\) 392650. 0.0824277
\(470\) 0 0
\(471\) 4.21729e6 0.875954
\(472\) 0 0
\(473\) − 139798.i − 0.0287309i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 628237.i − 0.126424i
\(478\) 0 0
\(479\) −2.57373e6 −0.512536 −0.256268 0.966606i \(-0.582493\pi\)
−0.256268 + 0.966606i \(0.582493\pi\)
\(480\) 0 0
\(481\) −7.02914e6 −1.38529
\(482\) 0 0
\(483\) − 152790.i − 0.0298007i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.87913e6i 1.88754i 0.330603 + 0.943770i \(0.392748\pi\)
−0.330603 + 0.943770i \(0.607252\pi\)
\(488\) 0 0
\(489\) 5.52755e6 1.04535
\(490\) 0 0
\(491\) −9.45632e6 −1.77018 −0.885092 0.465415i \(-0.845905\pi\)
−0.885092 + 0.465415i \(0.845905\pi\)
\(492\) 0 0
\(493\) − 1.19274e7i − 2.21019i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 783053.i − 0.142200i
\(498\) 0 0
\(499\) 1.64467e6 0.295684 0.147842 0.989011i \(-0.452767\pi\)
0.147842 + 0.989011i \(0.452767\pi\)
\(500\) 0 0
\(501\) 6.89821e6 1.22784
\(502\) 0 0
\(503\) 1.04146e7i 1.83536i 0.397315 + 0.917682i \(0.369942\pi\)
−0.397315 + 0.917682i \(0.630058\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.17972e7i 2.03825i
\(508\) 0 0
\(509\) 8.06523e6 1.37982 0.689910 0.723896i \(-0.257650\pi\)
0.689910 + 0.723896i \(0.257650\pi\)
\(510\) 0 0
\(511\) −2.03582e6 −0.344895
\(512\) 0 0
\(513\) 7.58965e6i 1.27329i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 413007.i − 0.0679565i
\(518\) 0 0
\(519\) −4.60931e6 −0.751134
\(520\) 0 0
\(521\) −7.28702e6 −1.17613 −0.588065 0.808814i \(-0.700110\pi\)
−0.588065 + 0.808814i \(0.700110\pi\)
\(522\) 0 0
\(523\) − 5.73656e6i − 0.917059i −0.888679 0.458530i \(-0.848376\pi\)
0.888679 0.458530i \(-0.151624\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 306268.i − 0.0480370i
\(528\) 0 0
\(529\) 6.32234e6 0.982288
\(530\) 0 0
\(531\) −1.51479e6 −0.233140
\(532\) 0 0
\(533\) 5.47631e6i 0.834968i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.28493e6i 0.940513i
\(538\) 0 0
\(539\) −1.84571e6 −0.273647
\(540\) 0 0
\(541\) 5.90660e6 0.867650 0.433825 0.900997i \(-0.357164\pi\)
0.433825 + 0.900997i \(0.357164\pi\)
\(542\) 0 0
\(543\) − 6.95211e6i − 1.01185i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 5.14720e6i − 0.735534i −0.929918 0.367767i \(-0.880122\pi\)
0.929918 0.367767i \(-0.119878\pi\)
\(548\) 0 0
\(549\) −3.81049e6 −0.539572
\(550\) 0 0
\(551\) −1.01382e7 −1.42259
\(552\) 0 0
\(553\) − 2.00839e6i − 0.279278i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 9.30363e6i − 1.27062i −0.772259 0.635308i \(-0.780873\pi\)
0.772259 0.635308i \(-0.219127\pi\)
\(558\) 0 0
\(559\) −1.36642e6 −0.184950
\(560\) 0 0
\(561\) 3.05066e6 0.409249
\(562\) 0 0
\(563\) 1.00562e7i 1.33709i 0.743670 + 0.668547i \(0.233083\pi\)
−0.743670 + 0.668547i \(0.766917\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 775614.i − 0.101318i
\(568\) 0 0
\(569\) −933127. −0.120826 −0.0604130 0.998173i \(-0.519242\pi\)
−0.0604130 + 0.998173i \(0.519242\pi\)
\(570\) 0 0
\(571\) 1.07508e7 1.37990 0.689952 0.723855i \(-0.257632\pi\)
0.689952 + 0.723855i \(0.257632\pi\)
\(572\) 0 0
\(573\) − 569442.i − 0.0724541i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 387934.i − 0.0485086i −0.999706 0.0242543i \(-0.992279\pi\)
0.999706 0.0242543i \(-0.00772114\pi\)
\(578\) 0 0
\(579\) 1.03256e7 1.28002
\(580\) 0 0
\(581\) −340036. −0.0417912
\(582\) 0 0
\(583\) 683846.i 0.0833273i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.14459e7i − 1.37105i −0.728049 0.685525i \(-0.759573\pi\)
0.728049 0.685525i \(-0.240427\pi\)
\(588\) 0 0
\(589\) −260324. −0.0309191
\(590\) 0 0
\(591\) −3.21081e6 −0.378134
\(592\) 0 0
\(593\) − 8.28060e6i − 0.966997i −0.875345 0.483499i \(-0.839366\pi\)
0.875345 0.483499i \(-0.160634\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 9.44091e6i − 1.08412i
\(598\) 0 0
\(599\) 133370. 0.0151876 0.00759382 0.999971i \(-0.497583\pi\)
0.00759382 + 0.999971i \(0.497583\pi\)
\(600\) 0 0
\(601\) −8.78786e6 −0.992424 −0.496212 0.868201i \(-0.665276\pi\)
−0.496212 + 0.868201i \(0.665276\pi\)
\(602\) 0 0
\(603\) − 1.10750e6i − 0.124036i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 1.50026e7i − 1.65271i −0.563151 0.826354i \(-0.690411\pi\)
0.563151 0.826354i \(-0.309589\pi\)
\(608\) 0 0
\(609\) 2.45809e6 0.268568
\(610\) 0 0
\(611\) −4.03681e6 −0.437457
\(612\) 0 0
\(613\) 1.21629e7i 1.30733i 0.756785 + 0.653664i \(0.226769\pi\)
−0.756785 + 0.653664i \(0.773231\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.77990e6i 0.293979i 0.989138 + 0.146989i \(0.0469583\pi\)
−0.989138 + 0.146989i \(0.953042\pi\)
\(618\) 0 0
\(619\) 2.84183e6 0.298107 0.149053 0.988829i \(-0.452377\pi\)
0.149053 + 0.988829i \(0.452377\pi\)
\(620\) 0 0
\(621\) −1.37303e6 −0.142874
\(622\) 0 0
\(623\) 1.17989e6i 0.121793i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 2.59303e6i − 0.263414i
\(628\) 0 0
\(629\) 1.30503e7 1.31521
\(630\) 0 0
\(631\) 1.36584e7 1.36561 0.682806 0.730599i \(-0.260759\pi\)
0.682806 + 0.730599i \(0.260759\pi\)
\(632\) 0 0
\(633\) 6.13473e6i 0.608535i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.80403e7i 1.76155i
\(638\) 0 0
\(639\) −2.20865e6 −0.213981
\(640\) 0 0
\(641\) 1.47678e7 1.41961 0.709807 0.704396i \(-0.248782\pi\)
0.709807 + 0.704396i \(0.248782\pi\)
\(642\) 0 0
\(643\) − 1.42372e7i − 1.35799i −0.734143 0.678995i \(-0.762416\pi\)
0.734143 0.678995i \(-0.237584\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 8.49593e6i − 0.797903i −0.916972 0.398951i \(-0.869374\pi\)
0.916972 0.398951i \(-0.130626\pi\)
\(648\) 0 0
\(649\) 1.64887e6 0.153665
\(650\) 0 0
\(651\) 63117.9 0.00583714
\(652\) 0 0
\(653\) 1.41649e7i 1.29996i 0.759952 + 0.649979i \(0.225222\pi\)
−0.759952 + 0.649979i \(0.774778\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5.74216e6i 0.518994i
\(658\) 0 0
\(659\) −1.39876e7 −1.25467 −0.627335 0.778749i \(-0.715855\pi\)
−0.627335 + 0.778749i \(0.715855\pi\)
\(660\) 0 0
\(661\) −1.75134e7 −1.55908 −0.779538 0.626355i \(-0.784546\pi\)
−0.779538 + 0.626355i \(0.784546\pi\)
\(662\) 0 0
\(663\) − 2.98178e7i − 2.63446i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.83409e6i − 0.159626i
\(668\) 0 0
\(669\) 294972. 0.0254809
\(670\) 0 0
\(671\) 4.14777e6 0.355638
\(672\) 0 0
\(673\) 1.13007e7i 0.961758i 0.876787 + 0.480879i \(0.159682\pi\)
−0.876787 + 0.480879i \(0.840318\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 9.15138e6i − 0.767388i −0.923460 0.383694i \(-0.874652\pi\)
0.923460 0.383694i \(-0.125348\pi\)
\(678\) 0 0
\(679\) −1.92604e6 −0.160321
\(680\) 0 0
\(681\) −5.96629e6 −0.492989
\(682\) 0 0
\(683\) 3.66856e6i 0.300915i 0.988616 + 0.150458i \(0.0480747\pi\)
−0.988616 + 0.150458i \(0.951925\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 6.50871e6i 0.526142i
\(688\) 0 0
\(689\) 6.68405e6 0.536404
\(690\) 0 0
\(691\) −7.24875e6 −0.577521 −0.288761 0.957401i \(-0.593243\pi\)
−0.288761 + 0.957401i \(0.593243\pi\)
\(692\) 0 0
\(693\) − 530091.i − 0.0419292i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.01673e7i − 0.792731i
\(698\) 0 0
\(699\) 2.87197e6 0.222325
\(700\) 0 0
\(701\) −1.67191e7 −1.28505 −0.642523 0.766267i \(-0.722112\pi\)
−0.642523 + 0.766267i \(0.722112\pi\)
\(702\) 0 0
\(703\) − 1.10926e7i − 0.846537i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1.82224e6i − 0.137106i
\(708\) 0 0
\(709\) −9.11227e6 −0.680786 −0.340393 0.940283i \(-0.610560\pi\)
−0.340393 + 0.940283i \(0.610560\pi\)
\(710\) 0 0
\(711\) −5.66482e6 −0.420254
\(712\) 0 0
\(713\) − 47095.0i − 0.00346937i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 1.48981e7i − 1.08226i
\(718\) 0 0
\(719\) 1.02074e7 0.736368 0.368184 0.929753i \(-0.379980\pi\)
0.368184 + 0.929753i \(0.379980\pi\)
\(720\) 0 0
\(721\) −6.16451e6 −0.441632
\(722\) 0 0
\(723\) − 6.68732e6i − 0.475780i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 3.96570e6i − 0.278281i −0.990273 0.139140i \(-0.955566\pi\)
0.990273 0.139140i \(-0.0444340\pi\)
\(728\) 0 0
\(729\) −1.35339e7 −0.943201
\(730\) 0 0
\(731\) 2.53690e6 0.175594
\(732\) 0 0
\(733\) 3.49709e6i 0.240407i 0.992749 + 0.120203i \(0.0383547\pi\)
−0.992749 + 0.120203i \(0.961645\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.20553e6i 0.0817539i
\(738\) 0 0
\(739\) 1.53549e7 1.03428 0.517138 0.855902i \(-0.326997\pi\)
0.517138 + 0.855902i \(0.326997\pi\)
\(740\) 0 0
\(741\) −2.53448e7 −1.69568
\(742\) 0 0
\(743\) − 1.99982e7i − 1.32898i −0.747296 0.664491i \(-0.768648\pi\)
0.747296 0.664491i \(-0.231352\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 959095.i 0.0628869i
\(748\) 0 0
\(749\) 5.70076e6 0.371303
\(750\) 0 0
\(751\) 1.89895e7 1.22861 0.614305 0.789069i \(-0.289436\pi\)
0.614305 + 0.789069i \(0.289436\pi\)
\(752\) 0 0
\(753\) − 2.02062e7i − 1.29866i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.47833e7i 1.57188i 0.618304 + 0.785939i \(0.287820\pi\)
−0.618304 + 0.785939i \(0.712180\pi\)
\(758\) 0 0
\(759\) 469101. 0.0295571
\(760\) 0 0
\(761\) 2.62584e7 1.64364 0.821820 0.569747i \(-0.192959\pi\)
0.821820 + 0.569747i \(0.192959\pi\)
\(762\) 0 0
\(763\) 610543.i 0.0379669i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1.61164e7i − 0.989190i
\(768\) 0 0
\(769\) −1.92359e7 −1.17300 −0.586500 0.809950i \(-0.699494\pi\)
−0.586500 + 0.809950i \(0.699494\pi\)
\(770\) 0 0
\(771\) −6.19066e6 −0.375060
\(772\) 0 0
\(773\) 7.49718e6i 0.451283i 0.974210 + 0.225642i \(0.0724478\pi\)
−0.974210 + 0.225642i \(0.927552\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.68950e6i 0.159816i
\(778\) 0 0
\(779\) −8.64212e6 −0.510242
\(780\) 0 0
\(781\) 2.40415e6 0.141038
\(782\) 0 0
\(783\) − 2.20894e7i − 1.28760i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.48570e7i 0.855053i 0.904003 + 0.427526i \(0.140615\pi\)
−0.904003 + 0.427526i \(0.859385\pi\)
\(788\) 0 0
\(789\) 2.53010e7 1.44692
\(790\) 0 0
\(791\) 295698. 0.0168038
\(792\) 0 0
\(793\) − 4.05412e7i − 2.28936i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 2.89236e7i − 1.61290i −0.591303 0.806450i \(-0.701386\pi\)
0.591303 0.806450i \(-0.298614\pi\)
\(798\) 0 0
\(799\) 7.49477e6 0.415328
\(800\) 0 0
\(801\) 3.32797e6 0.183273
\(802\) 0 0
\(803\) − 6.25043e6i − 0.342075i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 8.39928e6i − 0.454003i
\(808\) 0 0
\(809\) 1.97152e7 1.05908 0.529541 0.848285i \(-0.322364\pi\)
0.529541 + 0.848285i \(0.322364\pi\)
\(810\) 0 0
\(811\) −6.00642e6 −0.320674 −0.160337 0.987062i \(-0.551258\pi\)
−0.160337 + 0.987062i \(0.551258\pi\)
\(812\) 0 0
\(813\) − 5.12727e6i − 0.272057i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2.15633e6i − 0.113021i
\(818\) 0 0
\(819\) −5.18121e6 −0.269912
\(820\) 0 0
\(821\) −3.12629e7 −1.61872 −0.809361 0.587312i \(-0.800186\pi\)
−0.809361 + 0.587312i \(0.800186\pi\)
\(822\) 0 0
\(823\) − 1.43689e7i − 0.739474i −0.929137 0.369737i \(-0.879448\pi\)
0.929137 0.369737i \(-0.120552\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3.13803e7i − 1.59549i −0.602997 0.797744i \(-0.706027\pi\)
0.602997 0.797744i \(-0.293973\pi\)
\(828\) 0 0
\(829\) −1.74548e6 −0.0882121 −0.0441060 0.999027i \(-0.514044\pi\)
−0.0441060 + 0.999027i \(0.514044\pi\)
\(830\) 0 0
\(831\) 1.84785e7 0.928251
\(832\) 0 0
\(833\) − 3.34938e7i − 1.67244i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 567203.i − 0.0279850i
\(838\) 0 0
\(839\) −3.04376e7 −1.49281 −0.746406 0.665491i \(-0.768222\pi\)
−0.746406 + 0.665491i \(0.768222\pi\)
\(840\) 0 0
\(841\) 8.99566e6 0.438574
\(842\) 0 0
\(843\) 9.60901e6i 0.465704i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 577012.i 0.0276361i
\(848\) 0 0
\(849\) 1.65022e7 0.785726
\(850\) 0 0
\(851\) 2.00675e6 0.0949883
\(852\) 0 0
\(853\) 2.05924e6i 0.0969022i 0.998826 + 0.0484511i \(0.0154285\pi\)
−0.998826 + 0.0484511i \(0.984571\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.90177e7i 1.34962i 0.737993 + 0.674809i \(0.235774\pi\)
−0.737993 + 0.674809i \(0.764226\pi\)
\(858\) 0 0
\(859\) −4.14336e7 −1.91589 −0.957943 0.286958i \(-0.907356\pi\)
−0.957943 + 0.286958i \(0.907356\pi\)
\(860\) 0 0
\(861\) 2.09536e6 0.0963274
\(862\) 0 0
\(863\) 3.45945e7i 1.58117i 0.612349 + 0.790587i \(0.290225\pi\)
−0.612349 + 0.790587i \(0.709775\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 3.90569e7i 1.76462i
\(868\) 0 0
\(869\) 6.16624e6 0.276994
\(870\) 0 0
\(871\) 1.17831e7 0.526275
\(872\) 0 0
\(873\) 5.43254e6i 0.241250i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.03277e6i 0.308764i 0.988011 + 0.154382i \(0.0493387\pi\)
−0.988011 + 0.154382i \(0.950661\pi\)
\(878\) 0 0
\(879\) 1.12230e7 0.489933
\(880\) 0 0
\(881\) 1.30800e7 0.567762 0.283881 0.958860i \(-0.408378\pi\)
0.283881 + 0.958860i \(0.408378\pi\)
\(882\) 0 0
\(883\) − 1.87695e6i − 0.0810125i −0.999179 0.0405062i \(-0.987103\pi\)
0.999179 0.0405062i \(-0.0128971\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 5.77221e6i − 0.246339i −0.992386 0.123170i \(-0.960694\pi\)
0.992386 0.123170i \(-0.0393059\pi\)
\(888\) 0 0
\(889\) −1.11400e7 −0.472749
\(890\) 0 0
\(891\) 2.38132e6 0.100490
\(892\) 0 0
\(893\) − 6.37046e6i − 0.267327i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 4.58509e6i − 0.190268i
\(898\) 0 0
\(899\) 757665. 0.0312664
\(900\) 0 0
\(901\) −1.24096e7 −0.509269
\(902\) 0 0
\(903\) 522822.i 0.0213370i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 3.37177e7i − 1.36094i −0.732774 0.680472i \(-0.761775\pi\)
0.732774 0.680472i \(-0.238225\pi\)
\(908\) 0 0
\(909\) −5.13976e6 −0.206316
\(910\) 0 0
\(911\) −1.06739e6 −0.0426116 −0.0213058 0.999773i \(-0.506782\pi\)
−0.0213058 + 0.999773i \(0.506782\pi\)
\(912\) 0 0
\(913\) − 1.04399e6i − 0.0414495i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.84479e6i 0.229533i
\(918\) 0 0
\(919\) −3.23736e7 −1.26445 −0.632225 0.774785i \(-0.717858\pi\)
−0.632225 + 0.774785i \(0.717858\pi\)
\(920\) 0 0
\(921\) 2.78932e6 0.108355
\(922\) 0 0
\(923\) − 2.34987e7i − 0.907903i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.73874e7i 0.664563i
\(928\) 0 0
\(929\) 4.75549e7 1.80782 0.903911 0.427721i \(-0.140683\pi\)
0.903911 + 0.427721i \(0.140683\pi\)
\(930\) 0 0
\(931\) −2.84693e7 −1.07647
\(932\) 0 0
\(933\) 2.21740e7i 0.833952i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 5.71529e6i − 0.212662i −0.994331 0.106331i \(-0.966090\pi\)
0.994331 0.106331i \(-0.0339103\pi\)
\(938\) 0 0
\(939\) 1.18463e7 0.438448
\(940\) 0 0
\(941\) −4.66044e7 −1.71575 −0.857873 0.513862i \(-0.828214\pi\)
−0.857873 + 0.513862i \(0.828214\pi\)
\(942\) 0 0
\(943\) − 1.56344e6i − 0.0572533i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.59416e7i 0.577641i 0.957383 + 0.288820i \(0.0932630\pi\)
−0.957383 + 0.288820i \(0.906737\pi\)
\(948\) 0 0
\(949\) −6.10930e7 −2.20204
\(950\) 0 0
\(951\) −2.35547e7 −0.844551
\(952\) 0 0
\(953\) 2.31743e6i 0.0826560i 0.999146 + 0.0413280i \(0.0131589\pi\)
−0.999146 + 0.0413280i \(0.986841\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 7.54691e6i 0.266372i
\(958\) 0 0
\(959\) −3.73412e6 −0.131112
\(960\) 0 0
\(961\) −2.86097e7 −0.999320
\(962\) 0 0
\(963\) − 1.60794e7i − 0.558732i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 3.54405e7i − 1.21880i −0.792862 0.609401i \(-0.791410\pi\)
0.792862 0.609401i \(-0.208590\pi\)
\(968\) 0 0
\(969\) 4.70552e7 1.60990
\(970\) 0 0
\(971\) −4.41218e7 −1.50178 −0.750888 0.660429i \(-0.770374\pi\)
−0.750888 + 0.660429i \(0.770374\pi\)
\(972\) 0 0
\(973\) − 1.49476e7i − 0.506161i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.53807e7i − 0.515513i −0.966210 0.257757i \(-0.917017\pi\)
0.966210 0.257757i \(-0.0829833\pi\)
\(978\) 0 0
\(979\) −3.62255e6 −0.120797
\(980\) 0 0
\(981\) 1.72208e6 0.0571321
\(982\) 0 0
\(983\) − 3.82728e7i − 1.26330i −0.775253 0.631650i \(-0.782378\pi\)
0.775253 0.631650i \(-0.217622\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.54457e6i 0.0504679i
\(988\) 0 0
\(989\) 390100. 0.0126819
\(990\) 0 0
\(991\) −3.12166e6 −0.100972 −0.0504860 0.998725i \(-0.516077\pi\)
−0.0504860 + 0.998725i \(0.516077\pi\)
\(992\) 0 0
\(993\) − 1.82204e7i − 0.586387i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.26050e7i 0.401610i 0.979631 + 0.200805i \(0.0643558\pi\)
−0.979631 + 0.200805i \(0.935644\pi\)
\(998\) 0 0
\(999\) 2.41690e7 0.766205
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.6.b.b.749.2 4
5.2 odd 4 1100.6.a.c.1.1 2
5.3 odd 4 220.6.a.a.1.2 2
5.4 even 2 inner 1100.6.b.b.749.3 4
20.3 even 4 880.6.a.h.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.6.a.a.1.2 2 5.3 odd 4
880.6.a.h.1.1 2 20.3 even 4
1100.6.a.c.1.1 2 5.2 odd 4
1100.6.b.b.749.2 4 1.1 even 1 trivial
1100.6.b.b.749.3 4 5.4 even 2 inner