Properties

Label 1100.6.b.a
Level $1100$
Weight $6$
Character orbit 1100.b
Analytic conductor $176.422$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(176.422201794\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 7 i q^{3} + 50 i q^{7} + 194 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 7 i q^{3} + 50 i q^{7} + 194 q^{9} + 121 q^{11} - 380 i q^{13} + 1154 i q^{17} + 1824 q^{19} - 350 q^{21} + 3591 i q^{23} + 3059 i q^{27} - 8032 q^{29} - 2945 q^{31} + 847 i q^{33} - 6979 i q^{37} + 2660 q^{39} - 520 q^{41} - 2486 i q^{43} + 6920 i q^{47} + 14307 q^{49} - 8078 q^{51} - 13718 i q^{53} + 12768 i q^{57} + 31779 q^{59} + 34156 q^{61} + 9700 i q^{63} + 61503 i q^{67} - 25137 q^{69} - 14971 q^{71} - 36444 i q^{73} + 6050 i q^{77} + 28538 q^{79} + 25729 q^{81} + 77482 i q^{83} - 56224 i q^{87} - 36271 q^{89} + 19000 q^{91} - 20615 i q^{93} + 49799 i q^{97} + 23474 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 388 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 388 q^{9} + 242 q^{11} + 3648 q^{19} - 700 q^{21} - 16064 q^{29} - 5890 q^{31} + 5320 q^{39} - 1040 q^{41} + 28614 q^{49} - 16156 q^{51} + 63558 q^{59} + 68312 q^{61} - 50274 q^{69} - 29942 q^{71} + 57076 q^{79} + 51458 q^{81} - 72542 q^{89} + 38000 q^{91} + 46948 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
749.1
1.00000i
1.00000i
0 7.00000i 0 0 0 50.0000i 0 194.000 0
749.2 0 7.00000i 0 0 0 50.0000i 0 194.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.b.a 2
5.b even 2 1 inner 1100.6.b.a 2
5.c odd 4 1 44.6.a.a 1
5.c odd 4 1 1100.6.a.a 1
15.e even 4 1 396.6.a.e 1
20.e even 4 1 176.6.a.a 1
40.i odd 4 1 704.6.a.d 1
40.k even 4 1 704.6.a.g 1
55.e even 4 1 484.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.6.a.a 1 5.c odd 4 1
176.6.a.a 1 20.e even 4 1
396.6.a.e 1 15.e even 4 1
484.6.a.b 1 55.e even 4 1
704.6.a.d 1 40.i odd 4 1
704.6.a.g 1 40.k even 4 1
1100.6.a.a 1 5.c odd 4 1
1100.6.b.a 2 1.a even 1 1 trivial
1100.6.b.a 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 49 \) acting on \(S_{6}^{\mathrm{new}}(1100, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 49 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2500 \) Copy content Toggle raw display
$11$ \( (T - 121)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 144400 \) Copy content Toggle raw display
$17$ \( T^{2} + 1331716 \) Copy content Toggle raw display
$19$ \( (T - 1824)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 12895281 \) Copy content Toggle raw display
$29$ \( (T + 8032)^{2} \) Copy content Toggle raw display
$31$ \( (T + 2945)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 48706441 \) Copy content Toggle raw display
$41$ \( (T + 520)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 6180196 \) Copy content Toggle raw display
$47$ \( T^{2} + 47886400 \) Copy content Toggle raw display
$53$ \( T^{2} + 188183524 \) Copy content Toggle raw display
$59$ \( (T - 31779)^{2} \) Copy content Toggle raw display
$61$ \( (T - 34156)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 3782619009 \) Copy content Toggle raw display
$71$ \( (T + 14971)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1328165136 \) Copy content Toggle raw display
$79$ \( (T - 28538)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 6003460324 \) Copy content Toggle raw display
$89$ \( (T + 36271)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 2479940401 \) Copy content Toggle raw display
show more
show less