Defining parameters
Level: | \( N \) | \(=\) | \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 1100.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(1080\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(1100, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 918 | 74 | 844 |
Cusp forms | 882 | 74 | 808 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(1100, [\chi])\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(1100, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(1100, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(550, [\chi])\)\(^{\oplus 2}\)