Properties

Label 1100.6.a.h
Level $1100$
Weight $6$
Character orbit 1100.a
Self dual yes
Analytic conductor $176.422$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(176.422201794\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 1111x^{6} + 2926x^{5} + 349410x^{4} - 822682x^{3} - 25635603x^{2} + 144346581x - 191266515 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 3) q^{3} + ( - \beta_{3} - 12) q^{7} + (\beta_{2} + 6 \beta_1 + 45) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 - 3) q^{3} + ( - \beta_{3} - 12) q^{7} + (\beta_{2} + 6 \beta_1 + 45) q^{9} + 121 q^{11} + ( - \beta_{7} - \beta_{3} - \beta_{2} + \cdots - 39) q^{13}+ \cdots + (121 \beta_{2} + 726 \beta_1 + 5445) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 27 q^{3} - 95 q^{7} + 377 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 27 q^{3} - 95 q^{7} + 377 q^{9} + 968 q^{11} - 294 q^{13} - 515 q^{17} - 354 q^{19} - 588 q^{21} - 3073 q^{23} - 8502 q^{27} + 2743 q^{29} + 3768 q^{31} - 3267 q^{33} - 9252 q^{37} - 10027 q^{39} + 8756 q^{41} - 15290 q^{43} - 8516 q^{47} + 27341 q^{49} + 4707 q^{51} - 30475 q^{53} - 1903 q^{57} + 20400 q^{59} + 10511 q^{61} + 63122 q^{63} + 616 q^{67} + 72452 q^{69} + 31862 q^{71} + 37377 q^{73} - 11495 q^{77} - 71679 q^{79} - 7228 q^{81} + 61543 q^{83} - 30217 q^{87} - 14961 q^{89} + 132641 q^{91} + 95881 q^{93} - 186419 q^{97} + 45617 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} - 1111x^{6} + 2926x^{5} + 349410x^{4} - 822682x^{3} - 25635603x^{2} + 144346581x - 191266515 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 279 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 825345 \nu^{7} + 783568 \nu^{6} - 910438423 \nu^{5} - 1580309025 \nu^{4} + \cdots + 31044799336977 ) / 47468672334 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 4095023 \nu^{7} + 12041912 \nu^{6} - 4641936961 \nu^{5} - 13781533885 \nu^{4} + \cdots + 195753145100283 ) / 94937344668 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 6134627 \nu^{7} + 9108780 \nu^{6} - 6618941513 \nu^{5} - 10741456993 \nu^{4} + \cdots + 287736307934139 ) / 94937344668 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 6828901 \nu^{7} - 6879444 \nu^{6} + 7638226531 \nu^{5} + 11107254299 \nu^{4} + \cdots - 371975085413541 ) / 94937344668 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 7269631 \nu^{7} - 25702260 \nu^{6} + 7909869757 \nu^{5} + 28732488365 \nu^{4} + \cdots - 212606712127179 ) / 94937344668 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 279 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} - 2\beta_{6} - \beta_{5} - 2\beta_{4} - 4\beta_{3} + \beta_{2} + 481\beta _1 - 26 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 19\beta_{7} + 14\beta_{6} + 31\beta_{5} + 32\beta_{4} - 53\beta_{3} + 582\beta_{2} + 198\beta _1 + 134507 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 860 \beta_{7} - 1309 \beta_{6} - 587 \beta_{5} - 1810 \beta_{4} - 2531 \beta_{3} - 232 \beta_{2} + \cdots + 46988 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 12050 \beta_{7} + 12901 \beta_{6} + 24968 \beta_{5} + 29995 \beta_{4} - 60763 \beta_{3} + \cdots + 71560444 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 589710 \beta_{7} - 761367 \beta_{6} - 277851 \beta_{5} - 1295784 \beta_{4} - 1442160 \beta_{3} + \cdots - 14616537 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
23.6316
22.3000
6.06056
4.75672
2.15294
−13.1518
−17.8741
−24.8760
0 −26.6316 0 0 0 210.828 0 466.240 0
1.2 0 −25.3000 0 0 0 −150.442 0 397.092 0
1.3 0 −9.06056 0 0 0 −199.386 0 −160.906 0
1.4 0 −7.75672 0 0 0 86.6415 0 −182.833 0
1.5 0 −5.15294 0 0 0 −47.7885 0 −216.447 0
1.6 0 10.1518 0 0 0 122.703 0 −139.941 0
1.7 0 14.8741 0 0 0 −166.492 0 −21.7626 0
1.8 0 21.8760 0 0 0 48.9354 0 235.558 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.a.h 8
5.b even 2 1 1100.6.a.k yes 8
5.c odd 4 2 1100.6.b.i 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1100.6.a.h 8 1.a even 1 1 trivial
1100.6.a.k yes 8 5.b even 2 1
1100.6.b.i 16 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 27 T_{3}^{7} - 796 T_{3}^{6} - 20845 T_{3}^{5} + 164040 T_{3}^{4} + 4174435 T_{3}^{3} + \cdots - 806019876 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1100))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 27 T^{7} + \cdots - 806019876 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( (T - 121)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots - 89\!\cdots\!25 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 75\!\cdots\!08 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots - 11\!\cdots\!89 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots - 35\!\cdots\!77 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots - 14\!\cdots\!19 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 62\!\cdots\!25 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots - 30\!\cdots\!52 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots - 31\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 11\!\cdots\!68 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 96\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 75\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 30\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 39\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 36\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 41\!\cdots\!88 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 89\!\cdots\!08 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 80\!\cdots\!47 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots - 34\!\cdots\!19 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots - 23\!\cdots\!41 \) Copy content Toggle raw display
show more
show less