Properties

Label 1100.6.a.c.1.2
Level $1100$
Weight $6$
Character 1100.1
Self dual yes
Analytic conductor $176.422$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(176.422201794\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1761}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-20.4821\) of defining polynomial
Character \(\chi\) \(=\) 1100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+30.4821 q^{3} +170.411 q^{7} +686.161 q^{9} +O(q^{10})\) \(q+30.4821 q^{3} +170.411 q^{7} +686.161 q^{9} -121.000 q^{11} +427.322 q^{13} -1874.77 q^{17} +1572.63 q^{19} +5194.48 q^{21} -4198.36 q^{23} +13508.5 q^{27} +401.017 q^{29} -4602.48 q^{31} -3688.34 q^{33} +8366.41 q^{37} +13025.7 q^{39} +15037.6 q^{41} +13744.6 q^{43} +26465.3 q^{47} +12232.8 q^{49} -57146.9 q^{51} +12854.6 q^{53} +47937.0 q^{57} +37211.0 q^{59} -9897.88 q^{61} +116929. q^{63} +646.966 q^{67} -127975. q^{69} +18780.0 q^{71} +40997.5 q^{73} -20619.7 q^{77} -67294.7 q^{79} +245030. q^{81} -97038.0 q^{83} +12223.8 q^{87} -50878.6 q^{89} +72820.2 q^{91} -140293. q^{93} -53822.9 q^{97} -83025.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 19 q^{3} + 131 q^{7} + 575 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 19 q^{3} + 131 q^{7} + 575 q^{9} - 242 q^{11} + 1610 q^{13} + 321 q^{17} + 3439 q^{19} + 5647 q^{21} - 4536 q^{23} + 17575 q^{27} - 5031 q^{29} - 4463 q^{31} - 2299 q^{33} + 2423 q^{37} - 554 q^{39} + 19668 q^{41} + 14900 q^{43} + 23052 q^{47} - 3021 q^{49} - 82359 q^{51} + 7203 q^{53} + 26507 q^{57} + 50838 q^{59} - 44177 q^{61} + 121310 q^{63} + 10610 q^{67} - 124098 q^{69} - 1089 q^{71} + 92654 q^{73} - 15851 q^{77} - 16334 q^{79} + 225350 q^{81} - 88410 q^{83} + 74595 q^{87} - 80817 q^{89} + 26210 q^{91} - 141895 q^{93} - 102694 q^{97} - 69575 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 30.4821 1.95543 0.977715 0.209937i \(-0.0673258\pi\)
0.977715 + 0.209937i \(0.0673258\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 170.411 1.31447 0.657237 0.753684i \(-0.271725\pi\)
0.657237 + 0.753684i \(0.271725\pi\)
\(8\) 0 0
\(9\) 686.161 2.82371
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) 427.322 0.701288 0.350644 0.936509i \(-0.385963\pi\)
0.350644 + 0.936509i \(0.385963\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1874.77 −1.57335 −0.786674 0.617368i \(-0.788199\pi\)
−0.786674 + 0.617368i \(0.788199\pi\)
\(18\) 0 0
\(19\) 1572.63 0.999404 0.499702 0.866197i \(-0.333443\pi\)
0.499702 + 0.866197i \(0.333443\pi\)
\(20\) 0 0
\(21\) 5194.48 2.57036
\(22\) 0 0
\(23\) −4198.36 −1.65485 −0.827427 0.561573i \(-0.810196\pi\)
−0.827427 + 0.561573i \(0.810196\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 13508.5 3.56613
\(28\) 0 0
\(29\) 401.017 0.0885457 0.0442729 0.999019i \(-0.485903\pi\)
0.0442729 + 0.999019i \(0.485903\pi\)
\(30\) 0 0
\(31\) −4602.48 −0.860177 −0.430088 0.902787i \(-0.641518\pi\)
−0.430088 + 0.902787i \(0.641518\pi\)
\(32\) 0 0
\(33\) −3688.34 −0.589584
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8366.41 1.00470 0.502348 0.864665i \(-0.332470\pi\)
0.502348 + 0.864665i \(0.332470\pi\)
\(38\) 0 0
\(39\) 13025.7 1.37132
\(40\) 0 0
\(41\) 15037.6 1.39707 0.698535 0.715576i \(-0.253836\pi\)
0.698535 + 0.715576i \(0.253836\pi\)
\(42\) 0 0
\(43\) 13744.6 1.13361 0.566803 0.823853i \(-0.308180\pi\)
0.566803 + 0.823853i \(0.308180\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 26465.3 1.74756 0.873780 0.486322i \(-0.161662\pi\)
0.873780 + 0.486322i \(0.161662\pi\)
\(48\) 0 0
\(49\) 12232.8 0.727840
\(50\) 0 0
\(51\) −57146.9 −3.07657
\(52\) 0 0
\(53\) 12854.6 0.628593 0.314297 0.949325i \(-0.398231\pi\)
0.314297 + 0.949325i \(0.398231\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 47937.0 1.95426
\(58\) 0 0
\(59\) 37211.0 1.39168 0.695842 0.718195i \(-0.255031\pi\)
0.695842 + 0.718195i \(0.255031\pi\)
\(60\) 0 0
\(61\) −9897.88 −0.340579 −0.170289 0.985394i \(-0.554470\pi\)
−0.170289 + 0.985394i \(0.554470\pi\)
\(62\) 0 0
\(63\) 116929. 3.71169
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 646.966 0.0176074 0.00880368 0.999961i \(-0.497198\pi\)
0.00880368 + 0.999961i \(0.497198\pi\)
\(68\) 0 0
\(69\) −127975. −3.23595
\(70\) 0 0
\(71\) 18780.0 0.442131 0.221065 0.975259i \(-0.429047\pi\)
0.221065 + 0.975259i \(0.429047\pi\)
\(72\) 0 0
\(73\) 40997.5 0.900431 0.450216 0.892920i \(-0.351347\pi\)
0.450216 + 0.892920i \(0.351347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −20619.7 −0.396329
\(78\) 0 0
\(79\) −67294.7 −1.21315 −0.606573 0.795028i \(-0.707456\pi\)
−0.606573 + 0.795028i \(0.707456\pi\)
\(80\) 0 0
\(81\) 245030. 4.14961
\(82\) 0 0
\(83\) −97038.0 −1.54613 −0.773066 0.634325i \(-0.781278\pi\)
−0.773066 + 0.634325i \(0.781278\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 12223.8 0.173145
\(88\) 0 0
\(89\) −50878.6 −0.680863 −0.340432 0.940269i \(-0.610573\pi\)
−0.340432 + 0.940269i \(0.610573\pi\)
\(90\) 0 0
\(91\) 72820.2 0.921824
\(92\) 0 0
\(93\) −140293. −1.68202
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −53822.9 −0.580815 −0.290407 0.956903i \(-0.593791\pi\)
−0.290407 + 0.956903i \(0.593791\pi\)
\(98\) 0 0
\(99\) −83025.4 −0.851379
\(100\) 0 0
\(101\) −119759. −1.16816 −0.584082 0.811695i \(-0.698545\pi\)
−0.584082 + 0.811695i \(0.698545\pi\)
\(102\) 0 0
\(103\) 105473. 0.979596 0.489798 0.871836i \(-0.337071\pi\)
0.489798 + 0.871836i \(0.337071\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19514.1 −0.164774 −0.0823871 0.996600i \(-0.526254\pi\)
−0.0823871 + 0.996600i \(0.526254\pi\)
\(108\) 0 0
\(109\) −146588. −1.18177 −0.590885 0.806756i \(-0.701221\pi\)
−0.590885 + 0.806756i \(0.701221\pi\)
\(110\) 0 0
\(111\) 255026. 1.96461
\(112\) 0 0
\(113\) −134319. −0.989558 −0.494779 0.869019i \(-0.664751\pi\)
−0.494779 + 0.869019i \(0.664751\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 293211. 1.98023
\(118\) 0 0
\(119\) −319480. −2.06812
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) 458377. 2.73187
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 204792. 1.12669 0.563345 0.826222i \(-0.309514\pi\)
0.563345 + 0.826222i \(0.309514\pi\)
\(128\) 0 0
\(129\) 418966. 2.21669
\(130\) 0 0
\(131\) 158250. 0.805687 0.402843 0.915269i \(-0.368022\pi\)
0.402843 + 0.915269i \(0.368022\pi\)
\(132\) 0 0
\(133\) 267992. 1.31369
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −193533. −0.880955 −0.440477 0.897764i \(-0.645191\pi\)
−0.440477 + 0.897764i \(0.645191\pi\)
\(138\) 0 0
\(139\) 63034.6 0.276721 0.138361 0.990382i \(-0.455817\pi\)
0.138361 + 0.990382i \(0.455817\pi\)
\(140\) 0 0
\(141\) 806718. 3.41723
\(142\) 0 0
\(143\) −51705.9 −0.211446
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 372882. 1.42324
\(148\) 0 0
\(149\) −49184.0 −0.181492 −0.0907461 0.995874i \(-0.528925\pi\)
−0.0907461 + 0.995874i \(0.528925\pi\)
\(150\) 0 0
\(151\) 61300.9 0.218788 0.109394 0.993998i \(-0.465109\pi\)
0.109394 + 0.993998i \(0.465109\pi\)
\(152\) 0 0
\(153\) −1.28639e6 −4.44267
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 215550. 0.697910 0.348955 0.937139i \(-0.386537\pi\)
0.348955 + 0.937139i \(0.386537\pi\)
\(158\) 0 0
\(159\) 391836. 1.22917
\(160\) 0 0
\(161\) −715445. −2.17526
\(162\) 0 0
\(163\) 363443. 1.07144 0.535719 0.844396i \(-0.320041\pi\)
0.535719 + 0.844396i \(0.320041\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −506400. −1.40508 −0.702542 0.711642i \(-0.747952\pi\)
−0.702542 + 0.711642i \(0.747952\pi\)
\(168\) 0 0
\(169\) −188689. −0.508195
\(170\) 0 0
\(171\) 1.07907e6 2.82202
\(172\) 0 0
\(173\) 654807. 1.66341 0.831703 0.555221i \(-0.187366\pi\)
0.831703 + 0.555221i \(0.187366\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.13427e6 2.72134
\(178\) 0 0
\(179\) −654658. −1.52715 −0.763576 0.645718i \(-0.776558\pi\)
−0.763576 + 0.645718i \(0.776558\pi\)
\(180\) 0 0
\(181\) 333040. 0.755614 0.377807 0.925884i \(-0.376678\pi\)
0.377807 + 0.925884i \(0.376678\pi\)
\(182\) 0 0
\(183\) −301708. −0.665978
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 226847. 0.474383
\(188\) 0 0
\(189\) 2.30199e6 4.68758
\(190\) 0 0
\(191\) −26109.8 −0.0517869 −0.0258934 0.999665i \(-0.508243\pi\)
−0.0258934 + 0.999665i \(0.508243\pi\)
\(192\) 0 0
\(193\) 459949. 0.888824 0.444412 0.895822i \(-0.353413\pi\)
0.444412 + 0.895822i \(0.353413\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 52356.8 0.0961185 0.0480593 0.998844i \(-0.484696\pi\)
0.0480593 + 0.998844i \(0.484696\pi\)
\(198\) 0 0
\(199\) 139469. 0.249658 0.124829 0.992178i \(-0.460162\pi\)
0.124829 + 0.992178i \(0.460162\pi\)
\(200\) 0 0
\(201\) 19720.9 0.0344300
\(202\) 0 0
\(203\) 68337.5 0.116391
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.88075e6 −4.67282
\(208\) 0 0
\(209\) −190288. −0.301332
\(210\) 0 0
\(211\) 36639.5 0.0566556 0.0283278 0.999599i \(-0.490982\pi\)
0.0283278 + 0.999599i \(0.490982\pi\)
\(212\) 0 0
\(213\) 572456. 0.864556
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −784312. −1.13068
\(218\) 0 0
\(219\) 1.24969e6 1.76073
\(220\) 0 0
\(221\) −801128. −1.10337
\(222\) 0 0
\(223\) −567182. −0.763765 −0.381883 0.924211i \(-0.624724\pi\)
−0.381883 + 0.924211i \(0.624724\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −423993. −0.546128 −0.273064 0.961996i \(-0.588037\pi\)
−0.273064 + 0.961996i \(0.588037\pi\)
\(228\) 0 0
\(229\) −960980. −1.21095 −0.605474 0.795865i \(-0.707016\pi\)
−0.605474 + 0.795865i \(0.707016\pi\)
\(230\) 0 0
\(231\) −628532. −0.774993
\(232\) 0 0
\(233\) 57215.6 0.0690438 0.0345219 0.999404i \(-0.489009\pi\)
0.0345219 + 0.999404i \(0.489009\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.05128e6 −2.37222
\(238\) 0 0
\(239\) −334253. −0.378513 −0.189256 0.981928i \(-0.560608\pi\)
−0.189256 + 0.981928i \(0.560608\pi\)
\(240\) 0 0
\(241\) 711829. 0.789465 0.394733 0.918796i \(-0.370837\pi\)
0.394733 + 0.918796i \(0.370837\pi\)
\(242\) 0 0
\(243\) 4.18649e6 4.54814
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 672017. 0.700870
\(248\) 0 0
\(249\) −2.95793e6 −3.02335
\(250\) 0 0
\(251\) −763017. −0.764451 −0.382226 0.924069i \(-0.624842\pi\)
−0.382226 + 0.924069i \(0.624842\pi\)
\(252\) 0 0
\(253\) 508001. 0.498957
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −49015.6 −0.0462915 −0.0231458 0.999732i \(-0.507368\pi\)
−0.0231458 + 0.999732i \(0.507368\pi\)
\(258\) 0 0
\(259\) 1.42573e6 1.32065
\(260\) 0 0
\(261\) 275162. 0.250027
\(262\) 0 0
\(263\) 74875.7 0.0667500 0.0333750 0.999443i \(-0.489374\pi\)
0.0333750 + 0.999443i \(0.489374\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.55089e6 −1.33138
\(268\) 0 0
\(269\) 514243. 0.433299 0.216649 0.976249i \(-0.430487\pi\)
0.216649 + 0.976249i \(0.430487\pi\)
\(270\) 0 0
\(271\) −1.20920e6 −1.00017 −0.500086 0.865976i \(-0.666698\pi\)
−0.500086 + 0.865976i \(0.666698\pi\)
\(272\) 0 0
\(273\) 2.21971e6 1.80256
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −473442. −0.370738 −0.185369 0.982669i \(-0.559348\pi\)
−0.185369 + 0.982669i \(0.559348\pi\)
\(278\) 0 0
\(279\) −3.15804e6 −2.42889
\(280\) 0 0
\(281\) −1.28353e6 −0.969709 −0.484855 0.874595i \(-0.661127\pi\)
−0.484855 + 0.874595i \(0.661127\pi\)
\(282\) 0 0
\(283\) −908348. −0.674196 −0.337098 0.941469i \(-0.609445\pi\)
−0.337098 + 0.941469i \(0.609445\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.56256e6 1.83641
\(288\) 0 0
\(289\) 2.09489e6 1.47543
\(290\) 0 0
\(291\) −1.64064e6 −1.13574
\(292\) 0 0
\(293\) 2.80346e6 1.90777 0.953885 0.300173i \(-0.0970445\pi\)
0.953885 + 0.300173i \(0.0970445\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.63453e6 −1.07523
\(298\) 0 0
\(299\) −1.79405e6 −1.16053
\(300\) 0 0
\(301\) 2.34223e6 1.49009
\(302\) 0 0
\(303\) −3.65050e6 −2.28426
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.70355e6 1.63715 0.818576 0.574399i \(-0.194764\pi\)
0.818576 + 0.574399i \(0.194764\pi\)
\(308\) 0 0
\(309\) 3.21503e6 1.91553
\(310\) 0 0
\(311\) −1.48422e6 −0.870154 −0.435077 0.900393i \(-0.643279\pi\)
−0.435077 + 0.900393i \(0.643279\pi\)
\(312\) 0 0
\(313\) −1.26860e6 −0.731920 −0.365960 0.930631i \(-0.619259\pi\)
−0.365960 + 0.930631i \(0.619259\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.55654e6 −0.869987 −0.434994 0.900434i \(-0.643249\pi\)
−0.434994 + 0.900434i \(0.643249\pi\)
\(318\) 0 0
\(319\) −48523.0 −0.0266975
\(320\) 0 0
\(321\) −594832. −0.322205
\(322\) 0 0
\(323\) −2.94831e6 −1.57241
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4.46832e6 −2.31087
\(328\) 0 0
\(329\) 4.50997e6 2.29712
\(330\) 0 0
\(331\) −1.95192e6 −0.979245 −0.489623 0.871934i \(-0.662865\pi\)
−0.489623 + 0.871934i \(0.662865\pi\)
\(332\) 0 0
\(333\) 5.74070e6 2.83697
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.70471e6 1.77697 0.888483 0.458910i \(-0.151760\pi\)
0.888483 + 0.458910i \(0.151760\pi\)
\(338\) 0 0
\(339\) −4.09433e6 −1.93501
\(340\) 0 0
\(341\) 556900. 0.259353
\(342\) 0 0
\(343\) −779493. −0.357748
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.52580e6 1.57193 0.785966 0.618270i \(-0.212166\pi\)
0.785966 + 0.618270i \(0.212166\pi\)
\(348\) 0 0
\(349\) −2.44140e6 −1.07294 −0.536469 0.843920i \(-0.680242\pi\)
−0.536469 + 0.843920i \(0.680242\pi\)
\(350\) 0 0
\(351\) 5.77247e6 2.50088
\(352\) 0 0
\(353\) −2.38265e6 −1.01771 −0.508855 0.860852i \(-0.669931\pi\)
−0.508855 + 0.860852i \(0.669931\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −9.73844e6 −4.04407
\(358\) 0 0
\(359\) −2.84069e6 −1.16329 −0.581645 0.813443i \(-0.697591\pi\)
−0.581645 + 0.813443i \(0.697591\pi\)
\(360\) 0 0
\(361\) −2949.44 −0.00119116
\(362\) 0 0
\(363\) 446289. 0.177766
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3.96602e6 −1.53706 −0.768529 0.639815i \(-0.779011\pi\)
−0.768529 + 0.639815i \(0.779011\pi\)
\(368\) 0 0
\(369\) 1.03182e7 3.94491
\(370\) 0 0
\(371\) 2.19056e6 0.826269
\(372\) 0 0
\(373\) 2.96949e6 1.10512 0.552560 0.833473i \(-0.313651\pi\)
0.552560 + 0.833473i \(0.313651\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 171363. 0.0620961
\(378\) 0 0
\(379\) −2.50239e6 −0.894865 −0.447433 0.894318i \(-0.647662\pi\)
−0.447433 + 0.894318i \(0.647662\pi\)
\(380\) 0 0
\(381\) 6.24251e6 2.20316
\(382\) 0 0
\(383\) −500750. −0.174431 −0.0872155 0.996189i \(-0.527797\pi\)
−0.0872155 + 0.996189i \(0.527797\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.43103e6 3.20097
\(388\) 0 0
\(389\) 2.52051e6 0.844530 0.422265 0.906473i \(-0.361235\pi\)
0.422265 + 0.906473i \(0.361235\pi\)
\(390\) 0 0
\(391\) 7.87094e6 2.60366
\(392\) 0 0
\(393\) 4.82381e6 1.57546
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.44499e6 1.41545 0.707726 0.706487i \(-0.249721\pi\)
0.707726 + 0.706487i \(0.249721\pi\)
\(398\) 0 0
\(399\) 8.16897e6 2.56883
\(400\) 0 0
\(401\) 1.49785e6 0.465165 0.232583 0.972577i \(-0.425282\pi\)
0.232583 + 0.972577i \(0.425282\pi\)
\(402\) 0 0
\(403\) −1.96674e6 −0.603232
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.01234e6 −0.302927
\(408\) 0 0
\(409\) −1.37262e6 −0.405733 −0.202867 0.979206i \(-0.565026\pi\)
−0.202867 + 0.979206i \(0.565026\pi\)
\(410\) 0 0
\(411\) −5.89930e6 −1.72264
\(412\) 0 0
\(413\) 6.34114e6 1.82933
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.92143e6 0.541109
\(418\) 0 0
\(419\) 676711. 0.188308 0.0941539 0.995558i \(-0.469985\pi\)
0.0941539 + 0.995558i \(0.469985\pi\)
\(420\) 0 0
\(421\) 1.31227e6 0.360842 0.180421 0.983590i \(-0.442254\pi\)
0.180421 + 0.983590i \(0.442254\pi\)
\(422\) 0 0
\(423\) 1.81594e7 4.93459
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.68670e6 −0.447682
\(428\) 0 0
\(429\) −1.57611e6 −0.413468
\(430\) 0 0
\(431\) −3.43100e6 −0.889666 −0.444833 0.895613i \(-0.646737\pi\)
−0.444833 + 0.895613i \(0.646737\pi\)
\(432\) 0 0
\(433\) −4.34873e6 −1.11466 −0.557330 0.830291i \(-0.688174\pi\)
−0.557330 + 0.830291i \(0.688174\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.60244e6 −1.65387
\(438\) 0 0
\(439\) 1.40000e6 0.346709 0.173355 0.984859i \(-0.444539\pi\)
0.173355 + 0.984859i \(0.444539\pi\)
\(440\) 0 0
\(441\) 8.39366e6 2.05520
\(442\) 0 0
\(443\) 3.05910e6 0.740600 0.370300 0.928912i \(-0.379255\pi\)
0.370300 + 0.928912i \(0.379255\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.49923e6 −0.354895
\(448\) 0 0
\(449\) −3.37359e6 −0.789726 −0.394863 0.918740i \(-0.629208\pi\)
−0.394863 + 0.918740i \(0.629208\pi\)
\(450\) 0 0
\(451\) −1.81955e6 −0.421232
\(452\) 0 0
\(453\) 1.86858e6 0.427825
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 469470. 0.105152 0.0525760 0.998617i \(-0.483257\pi\)
0.0525760 + 0.998617i \(0.483257\pi\)
\(458\) 0 0
\(459\) −2.53253e7 −5.61077
\(460\) 0 0
\(461\) 4.29980e6 0.942315 0.471158 0.882049i \(-0.343836\pi\)
0.471158 + 0.882049i \(0.343836\pi\)
\(462\) 0 0
\(463\) −8.43399e6 −1.82844 −0.914220 0.405218i \(-0.867196\pi\)
−0.914220 + 0.405218i \(0.867196\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.72944e6 −0.366955 −0.183477 0.983024i \(-0.558735\pi\)
−0.183477 + 0.983024i \(0.558735\pi\)
\(468\) 0 0
\(469\) 110250. 0.0231444
\(470\) 0 0
\(471\) 6.57044e6 1.36471
\(472\) 0 0
\(473\) −1.66310e6 −0.341795
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 8.82033e6 1.77496
\(478\) 0 0
\(479\) −1.64804e6 −0.328193 −0.164096 0.986444i \(-0.552471\pi\)
−0.164096 + 0.986444i \(0.552471\pi\)
\(480\) 0 0
\(481\) 3.57515e6 0.704581
\(482\) 0 0
\(483\) −2.18083e7 −4.25357
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7.41742e6 −1.41720 −0.708599 0.705612i \(-0.750672\pi\)
−0.708599 + 0.705612i \(0.750672\pi\)
\(488\) 0 0
\(489\) 1.10785e7 2.09512
\(490\) 0 0
\(491\) 8.33455e6 1.56019 0.780097 0.625658i \(-0.215170\pi\)
0.780097 + 0.625658i \(0.215170\pi\)
\(492\) 0 0
\(493\) −751813. −0.139313
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.20032e6 0.581169
\(498\) 0 0
\(499\) −7.22844e6 −1.29955 −0.649775 0.760127i \(-0.725137\pi\)
−0.649775 + 0.760127i \(0.725137\pi\)
\(500\) 0 0
\(501\) −1.54361e7 −2.74754
\(502\) 0 0
\(503\) 899953. 0.158599 0.0792994 0.996851i \(-0.474732\pi\)
0.0792994 + 0.996851i \(0.474732\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5.75165e6 −0.993740
\(508\) 0 0
\(509\) −8.32180e6 −1.42371 −0.711857 0.702325i \(-0.752146\pi\)
−0.711857 + 0.702325i \(0.752146\pi\)
\(510\) 0 0
\(511\) 6.98642e6 1.18359
\(512\) 0 0
\(513\) 2.12438e7 3.56400
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −3.20230e6 −0.526909
\(518\) 0 0
\(519\) 1.99599e7 3.25267
\(520\) 0 0
\(521\) −6.88886e6 −1.11187 −0.555934 0.831227i \(-0.687639\pi\)
−0.555934 + 0.831227i \(0.687639\pi\)
\(522\) 0 0
\(523\) 6.43946e6 1.02943 0.514713 0.857363i \(-0.327899\pi\)
0.514713 + 0.857363i \(0.327899\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.62858e6 1.35336
\(528\) 0 0
\(529\) 1.11899e7 1.73854
\(530\) 0 0
\(531\) 2.55327e7 3.92971
\(532\) 0 0
\(533\) 6.42588e6 0.979748
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.99554e7 −2.98624
\(538\) 0 0
\(539\) −1.48017e6 −0.219452
\(540\) 0 0
\(541\) 2.04534e6 0.300451 0.150225 0.988652i \(-0.452000\pi\)
0.150225 + 0.988652i \(0.452000\pi\)
\(542\) 0 0
\(543\) 1.01518e7 1.47755
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 7.46715e6 1.06705 0.533527 0.845783i \(-0.320866\pi\)
0.533527 + 0.845783i \(0.320866\pi\)
\(548\) 0 0
\(549\) −6.79153e6 −0.961694
\(550\) 0 0
\(551\) 630649. 0.0884930
\(552\) 0 0
\(553\) −1.14677e7 −1.59465
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.14446e6 0.566018 0.283009 0.959117i \(-0.408667\pi\)
0.283009 + 0.959117i \(0.408667\pi\)
\(558\) 0 0
\(559\) 5.87338e6 0.794985
\(560\) 0 0
\(561\) 6.91478e6 0.927622
\(562\) 0 0
\(563\) −9.56825e6 −1.27222 −0.636109 0.771599i \(-0.719457\pi\)
−0.636109 + 0.771599i \(0.719457\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.17558e7 5.45455
\(568\) 0 0
\(569\) −4.51090e6 −0.584093 −0.292047 0.956404i \(-0.594336\pi\)
−0.292047 + 0.956404i \(0.594336\pi\)
\(570\) 0 0
\(571\) 1.13956e7 1.46268 0.731338 0.682016i \(-0.238896\pi\)
0.731338 + 0.682016i \(0.238896\pi\)
\(572\) 0 0
\(573\) −795882. −0.101266
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7.19639e6 0.899860 0.449930 0.893064i \(-0.351449\pi\)
0.449930 + 0.893064i \(0.351449\pi\)
\(578\) 0 0
\(579\) 1.40202e7 1.73803
\(580\) 0 0
\(581\) −1.65363e7 −2.03235
\(582\) 0 0
\(583\) −1.55541e6 −0.189528
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.78491e6 0.573163 0.286582 0.958056i \(-0.407481\pi\)
0.286582 + 0.958056i \(0.407481\pi\)
\(588\) 0 0
\(589\) −7.23798e6 −0.859664
\(590\) 0 0
\(591\) 1.59595e6 0.187953
\(592\) 0 0
\(593\) −1.25901e7 −1.47025 −0.735126 0.677931i \(-0.762877\pi\)
−0.735126 + 0.677931i \(0.762877\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.25132e6 0.488188
\(598\) 0 0
\(599\) −7.28664e6 −0.829775 −0.414887 0.909873i \(-0.636179\pi\)
−0.414887 + 0.909873i \(0.636179\pi\)
\(600\) 0 0
\(601\) −1.37664e6 −0.155465 −0.0777326 0.996974i \(-0.524768\pi\)
−0.0777326 + 0.996974i \(0.524768\pi\)
\(602\) 0 0
\(603\) 443923. 0.0497180
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −9.37512e6 −1.03277 −0.516387 0.856356i \(-0.672723\pi\)
−0.516387 + 0.856356i \(0.672723\pi\)
\(608\) 0 0
\(609\) 2.08307e6 0.227594
\(610\) 0 0
\(611\) 1.13092e7 1.22554
\(612\) 0 0
\(613\) 1.65526e6 0.177916 0.0889580 0.996035i \(-0.471646\pi\)
0.0889580 + 0.996035i \(0.471646\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.39771e6 0.993823 0.496912 0.867801i \(-0.334467\pi\)
0.496912 + 0.867801i \(0.334467\pi\)
\(618\) 0 0
\(619\) −1.02554e7 −1.07579 −0.537894 0.843013i \(-0.680780\pi\)
−0.537894 + 0.843013i \(0.680780\pi\)
\(620\) 0 0
\(621\) −5.67134e7 −5.90142
\(622\) 0 0
\(623\) −8.67025e6 −0.894977
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −5.80037e6 −0.589233
\(628\) 0 0
\(629\) −1.56851e7 −1.58074
\(630\) 0 0
\(631\) −4.45162e6 −0.445087 −0.222543 0.974923i \(-0.571436\pi\)
−0.222543 + 0.974923i \(0.571436\pi\)
\(632\) 0 0
\(633\) 1.11685e6 0.110786
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 5.22734e6 0.510425
\(638\) 0 0
\(639\) 1.28861e7 1.24845
\(640\) 0 0
\(641\) −1.35274e6 −0.130038 −0.0650189 0.997884i \(-0.520711\pi\)
−0.0650189 + 0.997884i \(0.520711\pi\)
\(642\) 0 0
\(643\) −7.81676e6 −0.745589 −0.372795 0.927914i \(-0.621600\pi\)
−0.372795 + 0.927914i \(0.621600\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.84310e6 −0.548760 −0.274380 0.961621i \(-0.588473\pi\)
−0.274380 + 0.961621i \(0.588473\pi\)
\(648\) 0 0
\(649\) −4.50253e6 −0.419609
\(650\) 0 0
\(651\) −2.39075e7 −2.21096
\(652\) 0 0
\(653\) 9.90242e6 0.908779 0.454390 0.890803i \(-0.349857\pi\)
0.454390 + 0.890803i \(0.349857\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.81309e7 2.54255
\(658\) 0 0
\(659\) −1.62524e7 −1.45782 −0.728910 0.684610i \(-0.759973\pi\)
−0.728910 + 0.684610i \(0.759973\pi\)
\(660\) 0 0
\(661\) 957911. 0.0852749 0.0426375 0.999091i \(-0.486424\pi\)
0.0426375 + 0.999091i \(0.486424\pi\)
\(662\) 0 0
\(663\) −2.44201e7 −2.15756
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.68361e6 −0.146530
\(668\) 0 0
\(669\) −1.72889e7 −1.49349
\(670\) 0 0
\(671\) 1.19764e6 0.102688
\(672\) 0 0
\(673\) 1.57601e7 1.34128 0.670642 0.741781i \(-0.266019\pi\)
0.670642 + 0.741781i \(0.266019\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.91072e7 −1.60223 −0.801116 0.598510i \(-0.795760\pi\)
−0.801116 + 0.598510i \(0.795760\pi\)
\(678\) 0 0
\(679\) −9.17200e6 −0.763465
\(680\) 0 0
\(681\) −1.29242e7 −1.06791
\(682\) 0 0
\(683\) −6.87828e6 −0.564193 −0.282097 0.959386i \(-0.591030\pi\)
−0.282097 + 0.959386i \(0.591030\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2.92927e7 −2.36792
\(688\) 0 0
\(689\) 5.49306e6 0.440825
\(690\) 0 0
\(691\) 1.77961e7 1.41785 0.708925 0.705284i \(-0.249181\pi\)
0.708925 + 0.705284i \(0.249181\pi\)
\(692\) 0 0
\(693\) −1.41484e7 −1.11912
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −2.81919e7 −2.19808
\(698\) 0 0
\(699\) 1.74405e6 0.135010
\(700\) 0 0
\(701\) −7.13494e6 −0.548398 −0.274199 0.961673i \(-0.588413\pi\)
−0.274199 + 0.961673i \(0.588413\pi\)
\(702\) 0 0
\(703\) 1.31572e7 1.00410
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.04082e7 −1.53552
\(708\) 0 0
\(709\) 1.55820e6 0.116414 0.0582072 0.998305i \(-0.481462\pi\)
0.0582072 + 0.998305i \(0.481462\pi\)
\(710\) 0 0
\(711\) −4.61749e7 −3.42557
\(712\) 0 0
\(713\) 1.93229e7 1.42347
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.01887e7 −0.740155
\(718\) 0 0
\(719\) 2.14780e6 0.154943 0.0774714 0.996995i \(-0.475315\pi\)
0.0774714 + 0.996995i \(0.475315\pi\)
\(720\) 0 0
\(721\) 1.79737e7 1.28765
\(722\) 0 0
\(723\) 2.16981e7 1.54374
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −7.24128e6 −0.508135 −0.254068 0.967186i \(-0.581769\pi\)
−0.254068 + 0.967186i \(0.581769\pi\)
\(728\) 0 0
\(729\) 6.80707e7 4.74396
\(730\) 0 0
\(731\) −2.57680e7 −1.78356
\(732\) 0 0
\(733\) −9.07708e6 −0.624003 −0.312001 0.950082i \(-0.600999\pi\)
−0.312001 + 0.950082i \(0.600999\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −78282.9 −0.00530882
\(738\) 0 0
\(739\) 2.08886e7 1.40701 0.703507 0.710688i \(-0.251616\pi\)
0.703507 + 0.710688i \(0.251616\pi\)
\(740\) 0 0
\(741\) 2.04845e7 1.37050
\(742\) 0 0
\(743\) 3.97449e6 0.264125 0.132063 0.991241i \(-0.457840\pi\)
0.132063 + 0.991241i \(0.457840\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −6.65837e7 −4.36582
\(748\) 0 0
\(749\) −3.32541e6 −0.216591
\(750\) 0 0
\(751\) −1.07786e7 −0.697371 −0.348686 0.937240i \(-0.613372\pi\)
−0.348686 + 0.937240i \(0.613372\pi\)
\(752\) 0 0
\(753\) −2.32584e7 −1.49483
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.04815e7 −0.664790 −0.332395 0.943140i \(-0.607857\pi\)
−0.332395 + 0.943140i \(0.607857\pi\)
\(758\) 0 0
\(759\) 1.54850e7 0.975676
\(760\) 0 0
\(761\) −1.94293e7 −1.21617 −0.608085 0.793872i \(-0.708062\pi\)
−0.608085 + 0.793872i \(0.708062\pi\)
\(762\) 0 0
\(763\) −2.49802e7 −1.55340
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.59010e7 0.975972
\(768\) 0 0
\(769\) −1.21703e7 −0.742138 −0.371069 0.928605i \(-0.621009\pi\)
−0.371069 + 0.928605i \(0.621009\pi\)
\(770\) 0 0
\(771\) −1.49410e6 −0.0905199
\(772\) 0 0
\(773\) 2.58790e6 0.155776 0.0778878 0.996962i \(-0.475182\pi\)
0.0778878 + 0.996962i \(0.475182\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4.34592e7 2.58243
\(778\) 0 0
\(779\) 2.36485e7 1.39624
\(780\) 0 0
\(781\) −2.27239e6 −0.133307
\(782\) 0 0
\(783\) 5.41713e6 0.315765
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.94609e7 1.12002 0.560011 0.828485i \(-0.310797\pi\)
0.560011 + 0.828485i \(0.310797\pi\)
\(788\) 0 0
\(789\) 2.28237e6 0.130525
\(790\) 0 0
\(791\) −2.28894e7 −1.30075
\(792\) 0 0
\(793\) −4.22958e6 −0.238844
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.01556e6 0.0566318 0.0283159 0.999599i \(-0.490986\pi\)
0.0283159 + 0.999599i \(0.490986\pi\)
\(798\) 0 0
\(799\) −4.96162e7 −2.74952
\(800\) 0 0
\(801\) −3.49109e7 −1.92256
\(802\) 0 0
\(803\) −4.96070e6 −0.271490
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.56752e7 0.847285
\(808\) 0 0
\(809\) −1.34100e7 −0.720371 −0.360185 0.932881i \(-0.617287\pi\)
−0.360185 + 0.932881i \(0.617287\pi\)
\(810\) 0 0
\(811\) 5.33950e6 0.285068 0.142534 0.989790i \(-0.454475\pi\)
0.142534 + 0.989790i \(0.454475\pi\)
\(812\) 0 0
\(813\) −3.68590e7 −1.95577
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.16152e7 1.13293
\(818\) 0 0
\(819\) 4.99663e7 2.60296
\(820\) 0 0
\(821\) 9.69015e6 0.501733 0.250867 0.968022i \(-0.419284\pi\)
0.250867 + 0.968022i \(0.419284\pi\)
\(822\) 0 0
\(823\) −3.31095e7 −1.70394 −0.851968 0.523594i \(-0.824591\pi\)
−0.851968 + 0.523594i \(0.824591\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.63323e7 −1.33883 −0.669415 0.742889i \(-0.733455\pi\)
−0.669415 + 0.742889i \(0.733455\pi\)
\(828\) 0 0
\(829\) −2.12119e7 −1.07200 −0.535998 0.844219i \(-0.680065\pi\)
−0.535998 + 0.844219i \(0.680065\pi\)
\(830\) 0 0
\(831\) −1.44315e7 −0.724952
\(832\) 0 0
\(833\) −2.29336e7 −1.14515
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −6.21725e7 −3.06750
\(838\) 0 0
\(839\) −1.62277e7 −0.795889 −0.397944 0.917410i \(-0.630276\pi\)
−0.397944 + 0.917410i \(0.630276\pi\)
\(840\) 0 0
\(841\) −2.03503e7 −0.992160
\(842\) 0 0
\(843\) −3.91249e7 −1.89620
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.49498e6 0.119498
\(848\) 0 0
\(849\) −2.76884e7 −1.31834
\(850\) 0 0
\(851\) −3.51252e7 −1.66263
\(852\) 0 0
\(853\) −1.28100e7 −0.602803 −0.301401 0.953497i \(-0.597454\pi\)
−0.301401 + 0.953497i \(0.597454\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.98494e7 1.38830 0.694151 0.719829i \(-0.255780\pi\)
0.694151 + 0.719829i \(0.255780\pi\)
\(858\) 0 0
\(859\) 1.86550e7 0.862604 0.431302 0.902208i \(-0.358054\pi\)
0.431302 + 0.902208i \(0.358054\pi\)
\(860\) 0 0
\(861\) 7.81124e7 3.59097
\(862\) 0 0
\(863\) −2.41996e7 −1.10607 −0.553034 0.833159i \(-0.686530\pi\)
−0.553034 + 0.833159i \(0.686530\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6.38569e7 2.88509
\(868\) 0 0
\(869\) 8.14265e6 0.365777
\(870\) 0 0
\(871\) 276463. 0.0123478
\(872\) 0 0
\(873\) −3.69311e7 −1.64005
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.82831e7 1.24173 0.620866 0.783916i \(-0.286781\pi\)
0.620866 + 0.783916i \(0.286781\pi\)
\(878\) 0 0
\(879\) 8.54556e7 3.73051
\(880\) 0 0
\(881\) 2.02090e7 0.877213 0.438607 0.898679i \(-0.355472\pi\)
0.438607 + 0.898679i \(0.355472\pi\)
\(882\) 0 0
\(883\) 3.54079e7 1.52827 0.764133 0.645059i \(-0.223167\pi\)
0.764133 + 0.645059i \(0.223167\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.52470e6 0.193099 0.0965496 0.995328i \(-0.469219\pi\)
0.0965496 + 0.995328i \(0.469219\pi\)
\(888\) 0 0
\(889\) 3.48988e7 1.48100
\(890\) 0 0
\(891\) −2.96487e7 −1.25115
\(892\) 0 0
\(893\) 4.16200e7 1.74652
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −5.46864e7 −2.26933
\(898\) 0 0
\(899\) −1.84567e6 −0.0761650
\(900\) 0 0
\(901\) −2.40994e7 −0.988996
\(902\) 0 0
\(903\) 7.13963e7 2.91378
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 3.64770e7 1.47232 0.736158 0.676810i \(-0.236638\pi\)
0.736158 + 0.676810i \(0.236638\pi\)
\(908\) 0 0
\(909\) −8.21737e7 −3.29855
\(910\) 0 0
\(911\) 2.97945e7 1.18943 0.594717 0.803935i \(-0.297264\pi\)
0.594717 + 0.803935i \(0.297264\pi\)
\(912\) 0 0
\(913\) 1.17416e7 0.466176
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.69675e7 1.05905
\(918\) 0 0
\(919\) −3.37510e7 −1.31825 −0.659126 0.752033i \(-0.729074\pi\)
−0.659126 + 0.752033i \(0.729074\pi\)
\(920\) 0 0
\(921\) 8.24101e7 3.20134
\(922\) 0 0
\(923\) 8.02512e6 0.310061
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7.23712e7 2.76609
\(928\) 0 0
\(929\) 1.48619e7 0.564983 0.282492 0.959270i \(-0.408839\pi\)
0.282492 + 0.959270i \(0.408839\pi\)
\(930\) 0 0
\(931\) 1.92376e7 0.727406
\(932\) 0 0
\(933\) −4.52421e7 −1.70153
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.33845e7 −0.870120 −0.435060 0.900402i \(-0.643273\pi\)
−0.435060 + 0.900402i \(0.643273\pi\)
\(938\) 0 0
\(939\) −3.86696e7 −1.43122
\(940\) 0 0
\(941\) 9.00073e6 0.331363 0.165681 0.986179i \(-0.447018\pi\)
0.165681 + 0.986179i \(0.447018\pi\)
\(942\) 0 0
\(943\) −6.31331e7 −2.31195
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.81160e7 1.74347 0.871734 0.489979i \(-0.162996\pi\)
0.871734 + 0.489979i \(0.162996\pi\)
\(948\) 0 0
\(949\) 1.75191e7 0.631462
\(950\) 0 0
\(951\) −4.74467e7 −1.70120
\(952\) 0 0
\(953\) 7.30065e6 0.260393 0.130196 0.991488i \(-0.458439\pi\)
0.130196 + 0.991488i \(0.458439\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.47909e6 −0.0522052
\(958\) 0 0
\(959\) −3.29801e7 −1.15799
\(960\) 0 0
\(961\) −7.44632e6 −0.260096
\(962\) 0 0
\(963\) −1.33898e7 −0.465274
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −5.11094e7 −1.75766 −0.878829 0.477138i \(-0.841674\pi\)
−0.878829 + 0.477138i \(0.841674\pi\)
\(968\) 0 0
\(969\) −8.98707e7 −3.07474
\(970\) 0 0
\(971\) 5.67267e7 1.93081 0.965405 0.260754i \(-0.0839712\pi\)
0.965405 + 0.260754i \(0.0839712\pi\)
\(972\) 0 0
\(973\) 1.07418e7 0.363742
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.01264e7 −0.674573 −0.337286 0.941402i \(-0.609509\pi\)
−0.337286 + 0.941402i \(0.609509\pi\)
\(978\) 0 0
\(979\) 6.15631e6 0.205288
\(980\) 0 0
\(981\) −1.00583e8 −3.33697
\(982\) 0 0
\(983\) 1.07550e7 0.355000 0.177500 0.984121i \(-0.443199\pi\)
0.177500 + 0.984121i \(0.443199\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.37473e8 4.49186
\(988\) 0 0
\(989\) −5.77049e7 −1.87595
\(990\) 0 0
\(991\) −4.32009e7 −1.39736 −0.698680 0.715434i \(-0.746229\pi\)
−0.698680 + 0.715434i \(0.746229\pi\)
\(992\) 0 0
\(993\) −5.94986e7 −1.91485
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 575481. 0.0183355 0.00916776 0.999958i \(-0.497082\pi\)
0.00916776 + 0.999958i \(0.497082\pi\)
\(998\) 0 0
\(999\) 1.13017e8 3.58288
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.6.a.c.1.2 2
5.2 odd 4 1100.6.b.b.749.1 4
5.3 odd 4 1100.6.b.b.749.4 4
5.4 even 2 220.6.a.a.1.1 2
20.19 odd 2 880.6.a.h.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.6.a.a.1.1 2 5.4 even 2
880.6.a.h.1.2 2 20.19 odd 2
1100.6.a.c.1.2 2 1.1 even 1 trivial
1100.6.b.b.749.1 4 5.2 odd 4
1100.6.b.b.749.4 4 5.3 odd 4