Properties

Label 1100.6.a.a.1.1
Level $1100$
Weight $6$
Character 1100.1
Self dual yes
Analytic conductor $176.422$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(176.422201794\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.00000 q^{3} +50.0000 q^{7} -194.000 q^{9} +O(q^{10})\) \(q-7.00000 q^{3} +50.0000 q^{7} -194.000 q^{9} +121.000 q^{11} +380.000 q^{13} +1154.00 q^{17} -1824.00 q^{19} -350.000 q^{21} -3591.00 q^{23} +3059.00 q^{27} +8032.00 q^{29} -2945.00 q^{31} -847.000 q^{33} -6979.00 q^{37} -2660.00 q^{39} -520.000 q^{41} +2486.00 q^{43} +6920.00 q^{47} -14307.0 q^{49} -8078.00 q^{51} +13718.0 q^{53} +12768.0 q^{57} -31779.0 q^{59} +34156.0 q^{61} -9700.00 q^{63} +61503.0 q^{67} +25137.0 q^{69} -14971.0 q^{71} +36444.0 q^{73} +6050.00 q^{77} -28538.0 q^{79} +25729.0 q^{81} -77482.0 q^{83} -56224.0 q^{87} +36271.0 q^{89} +19000.0 q^{91} +20615.0 q^{93} +49799.0 q^{97} -23474.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.00000 −0.449050 −0.224525 0.974468i \(-0.572083\pi\)
−0.224525 + 0.974468i \(0.572083\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 50.0000 0.385678 0.192839 0.981230i \(-0.438230\pi\)
0.192839 + 0.981230i \(0.438230\pi\)
\(8\) 0 0
\(9\) −194.000 −0.798354
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) 0 0
\(13\) 380.000 0.623627 0.311814 0.950143i \(-0.399064\pi\)
0.311814 + 0.950143i \(0.399064\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1154.00 0.968464 0.484232 0.874940i \(-0.339099\pi\)
0.484232 + 0.874940i \(0.339099\pi\)
\(18\) 0 0
\(19\) −1824.00 −1.15915 −0.579577 0.814918i \(-0.696782\pi\)
−0.579577 + 0.814918i \(0.696782\pi\)
\(20\) 0 0
\(21\) −350.000 −0.173189
\(22\) 0 0
\(23\) −3591.00 −1.41545 −0.707727 0.706486i \(-0.750279\pi\)
−0.707727 + 0.706486i \(0.750279\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3059.00 0.807551
\(28\) 0 0
\(29\) 8032.00 1.77349 0.886745 0.462259i \(-0.152961\pi\)
0.886745 + 0.462259i \(0.152961\pi\)
\(30\) 0 0
\(31\) −2945.00 −0.550403 −0.275202 0.961387i \(-0.588745\pi\)
−0.275202 + 0.961387i \(0.588745\pi\)
\(32\) 0 0
\(33\) −847.000 −0.135394
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6979.00 −0.838087 −0.419043 0.907966i \(-0.637634\pi\)
−0.419043 + 0.907966i \(0.637634\pi\)
\(38\) 0 0
\(39\) −2660.00 −0.280040
\(40\) 0 0
\(41\) −520.000 −0.0483107 −0.0241554 0.999708i \(-0.507690\pi\)
−0.0241554 + 0.999708i \(0.507690\pi\)
\(42\) 0 0
\(43\) 2486.00 0.205036 0.102518 0.994731i \(-0.467310\pi\)
0.102518 + 0.994731i \(0.467310\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6920.00 0.456942 0.228471 0.973551i \(-0.426627\pi\)
0.228471 + 0.973551i \(0.426627\pi\)
\(48\) 0 0
\(49\) −14307.0 −0.851252
\(50\) 0 0
\(51\) −8078.00 −0.434889
\(52\) 0 0
\(53\) 13718.0 0.670812 0.335406 0.942074i \(-0.391126\pi\)
0.335406 + 0.942074i \(0.391126\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12768.0 0.520518
\(58\) 0 0
\(59\) −31779.0 −1.18853 −0.594265 0.804269i \(-0.702557\pi\)
−0.594265 + 0.804269i \(0.702557\pi\)
\(60\) 0 0
\(61\) 34156.0 1.17528 0.587641 0.809121i \(-0.300057\pi\)
0.587641 + 0.809121i \(0.300057\pi\)
\(62\) 0 0
\(63\) −9700.00 −0.307908
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 61503.0 1.67382 0.836911 0.547339i \(-0.184359\pi\)
0.836911 + 0.547339i \(0.184359\pi\)
\(68\) 0 0
\(69\) 25137.0 0.635610
\(70\) 0 0
\(71\) −14971.0 −0.352456 −0.176228 0.984349i \(-0.556390\pi\)
−0.176228 + 0.984349i \(0.556390\pi\)
\(72\) 0 0
\(73\) 36444.0 0.800422 0.400211 0.916423i \(-0.368937\pi\)
0.400211 + 0.916423i \(0.368937\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6050.00 0.116286
\(78\) 0 0
\(79\) −28538.0 −0.514465 −0.257232 0.966350i \(-0.582811\pi\)
−0.257232 + 0.966350i \(0.582811\pi\)
\(80\) 0 0
\(81\) 25729.0 0.435723
\(82\) 0 0
\(83\) −77482.0 −1.23454 −0.617271 0.786751i \(-0.711762\pi\)
−0.617271 + 0.786751i \(0.711762\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −56224.0 −0.796386
\(88\) 0 0
\(89\) 36271.0 0.485383 0.242691 0.970104i \(-0.421970\pi\)
0.242691 + 0.970104i \(0.421970\pi\)
\(90\) 0 0
\(91\) 19000.0 0.240519
\(92\) 0 0
\(93\) 20615.0 0.247159
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 49799.0 0.537392 0.268696 0.963225i \(-0.413407\pi\)
0.268696 + 0.963225i \(0.413407\pi\)
\(98\) 0 0
\(99\) −23474.0 −0.240713
\(100\) 0 0
\(101\) −153406. −1.49637 −0.748185 0.663490i \(-0.769074\pi\)
−0.748185 + 0.663490i \(0.769074\pi\)
\(102\) 0 0
\(103\) 134720. 1.25124 0.625618 0.780130i \(-0.284847\pi\)
0.625618 + 0.780130i \(0.284847\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −169218. −1.42885 −0.714426 0.699711i \(-0.753312\pi\)
−0.714426 + 0.699711i \(0.753312\pi\)
\(108\) 0 0
\(109\) −233206. −1.88007 −0.940034 0.341081i \(-0.889207\pi\)
−0.940034 + 0.341081i \(0.889207\pi\)
\(110\) 0 0
\(111\) 48853.0 0.376343
\(112\) 0 0
\(113\) −94329.0 −0.694943 −0.347471 0.937691i \(-0.612960\pi\)
−0.347471 + 0.937691i \(0.612960\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −73720.0 −0.497875
\(118\) 0 0
\(119\) 57700.0 0.373515
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) 3640.00 0.0216939
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 259480. 1.42756 0.713780 0.700370i \(-0.246981\pi\)
0.713780 + 0.700370i \(0.246981\pi\)
\(128\) 0 0
\(129\) −17402.0 −0.0920714
\(130\) 0 0
\(131\) −85410.0 −0.434841 −0.217420 0.976078i \(-0.569764\pi\)
−0.217420 + 0.976078i \(0.569764\pi\)
\(132\) 0 0
\(133\) −91200.0 −0.447060
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 427703. 1.94689 0.973444 0.228926i \(-0.0735214\pi\)
0.973444 + 0.228926i \(0.0735214\pi\)
\(138\) 0 0
\(139\) 309690. 1.35953 0.679767 0.733428i \(-0.262081\pi\)
0.679767 + 0.733428i \(0.262081\pi\)
\(140\) 0 0
\(141\) −48440.0 −0.205190
\(142\) 0 0
\(143\) 45980.0 0.188031
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 100149. 0.382255
\(148\) 0 0
\(149\) 449846. 1.65996 0.829981 0.557792i \(-0.188351\pi\)
0.829981 + 0.557792i \(0.188351\pi\)
\(150\) 0 0
\(151\) 405074. 1.44575 0.722873 0.690981i \(-0.242821\pi\)
0.722873 + 0.690981i \(0.242821\pi\)
\(152\) 0 0
\(153\) −223876. −0.773177
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −339321. −1.09866 −0.549328 0.835607i \(-0.685116\pi\)
−0.549328 + 0.835607i \(0.685116\pi\)
\(158\) 0 0
\(159\) −96026.0 −0.301228
\(160\) 0 0
\(161\) −179550. −0.545910
\(162\) 0 0
\(163\) −271396. −0.800082 −0.400041 0.916497i \(-0.631004\pi\)
−0.400041 + 0.916497i \(0.631004\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −72468.0 −0.201074 −0.100537 0.994933i \(-0.532056\pi\)
−0.100537 + 0.994933i \(0.532056\pi\)
\(168\) 0 0
\(169\) −226893. −0.611089
\(170\) 0 0
\(171\) 353856. 0.925414
\(172\) 0 0
\(173\) −479226. −1.21738 −0.608689 0.793409i \(-0.708304\pi\)
−0.608689 + 0.793409i \(0.708304\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 222453. 0.533710
\(178\) 0 0
\(179\) −40935.0 −0.0954910 −0.0477455 0.998860i \(-0.515204\pi\)
−0.0477455 + 0.998860i \(0.515204\pi\)
\(180\) 0 0
\(181\) −90169.0 −0.204579 −0.102289 0.994755i \(-0.532617\pi\)
−0.102289 + 0.994755i \(0.532617\pi\)
\(182\) 0 0
\(183\) −239092. −0.527761
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 139634. 0.292003
\(188\) 0 0
\(189\) 152950. 0.311455
\(190\) 0 0
\(191\) −260375. −0.516435 −0.258218 0.966087i \(-0.583135\pi\)
−0.258218 + 0.966087i \(0.583135\pi\)
\(192\) 0 0
\(193\) −524324. −1.01323 −0.506613 0.862173i \(-0.669103\pi\)
−0.506613 + 0.862173i \(0.669103\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −759582. −1.39447 −0.697235 0.716843i \(-0.745587\pi\)
−0.697235 + 0.716843i \(0.745587\pi\)
\(198\) 0 0
\(199\) −882736. −1.58015 −0.790075 0.613011i \(-0.789958\pi\)
−0.790075 + 0.613011i \(0.789958\pi\)
\(200\) 0 0
\(201\) −430521. −0.751630
\(202\) 0 0
\(203\) 401600. 0.683996
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 696654. 1.13003
\(208\) 0 0
\(209\) −220704. −0.349498
\(210\) 0 0
\(211\) −1.15285e6 −1.78266 −0.891328 0.453360i \(-0.850225\pi\)
−0.891328 + 0.453360i \(0.850225\pi\)
\(212\) 0 0
\(213\) 104797. 0.158270
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −147250. −0.212278
\(218\) 0 0
\(219\) −255108. −0.359430
\(220\) 0 0
\(221\) 438520. 0.603961
\(222\) 0 0
\(223\) 65893.0 0.0887314 0.0443657 0.999015i \(-0.485873\pi\)
0.0443657 + 0.999015i \(0.485873\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 314526. 0.405128 0.202564 0.979269i \(-0.435073\pi\)
0.202564 + 0.979269i \(0.435073\pi\)
\(228\) 0 0
\(229\) 1.03846e6 1.30859 0.654293 0.756241i \(-0.272966\pi\)
0.654293 + 0.756241i \(0.272966\pi\)
\(230\) 0 0
\(231\) −42350.0 −0.0522184
\(232\) 0 0
\(233\) −509976. −0.615403 −0.307702 0.951483i \(-0.599560\pi\)
−0.307702 + 0.951483i \(0.599560\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 199766. 0.231021
\(238\) 0 0
\(239\) −444494. −0.503351 −0.251676 0.967812i \(-0.580982\pi\)
−0.251676 + 0.967812i \(0.580982\pi\)
\(240\) 0 0
\(241\) −283464. −0.314380 −0.157190 0.987568i \(-0.550244\pi\)
−0.157190 + 0.987568i \(0.550244\pi\)
\(242\) 0 0
\(243\) −923440. −1.00321
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −693120. −0.722880
\(248\) 0 0
\(249\) 542374. 0.554371
\(250\) 0 0
\(251\) −773807. −0.775262 −0.387631 0.921815i \(-0.626706\pi\)
−0.387631 + 0.921815i \(0.626706\pi\)
\(252\) 0 0
\(253\) −434511. −0.426775
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 387714. 0.366167 0.183083 0.983097i \(-0.441392\pi\)
0.183083 + 0.983097i \(0.441392\pi\)
\(258\) 0 0
\(259\) −348950. −0.323232
\(260\) 0 0
\(261\) −1.55821e6 −1.41587
\(262\) 0 0
\(263\) 197602. 0.176158 0.0880789 0.996113i \(-0.471927\pi\)
0.0880789 + 0.996113i \(0.471927\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −253897. −0.217961
\(268\) 0 0
\(269\) −262694. −0.221345 −0.110672 0.993857i \(-0.535300\pi\)
−0.110672 + 0.993857i \(0.535300\pi\)
\(270\) 0 0
\(271\) −159068. −0.131571 −0.0657854 0.997834i \(-0.520955\pi\)
−0.0657854 + 0.997834i \(0.520955\pi\)
\(272\) 0 0
\(273\) −133000. −0.108005
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.29385e6 −1.01318 −0.506589 0.862188i \(-0.669094\pi\)
−0.506589 + 0.862188i \(0.669094\pi\)
\(278\) 0 0
\(279\) 571330. 0.439417
\(280\) 0 0
\(281\) −1.78114e6 −1.34565 −0.672824 0.739802i \(-0.734919\pi\)
−0.672824 + 0.739802i \(0.734919\pi\)
\(282\) 0 0
\(283\) −1.98279e6 −1.47167 −0.735835 0.677161i \(-0.763210\pi\)
−0.735835 + 0.677161i \(0.763210\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −26000.0 −0.0186324
\(288\) 0 0
\(289\) −88141.0 −0.0620774
\(290\) 0 0
\(291\) −348593. −0.241316
\(292\) 0 0
\(293\) −578360. −0.393577 −0.196788 0.980446i \(-0.563051\pi\)
−0.196788 + 0.980446i \(0.563051\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 370139. 0.243486
\(298\) 0 0
\(299\) −1.36458e6 −0.882716
\(300\) 0 0
\(301\) 124300. 0.0790779
\(302\) 0 0
\(303\) 1.07384e6 0.671945
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3.07602e6 1.86270 0.931352 0.364120i \(-0.118630\pi\)
0.931352 + 0.364120i \(0.118630\pi\)
\(308\) 0 0
\(309\) −943040. −0.561868
\(310\) 0 0
\(311\) −3.13757e6 −1.83947 −0.919735 0.392540i \(-0.871597\pi\)
−0.919735 + 0.392540i \(0.871597\pi\)
\(312\) 0 0
\(313\) −2.61784e6 −1.51037 −0.755183 0.655514i \(-0.772452\pi\)
−0.755183 + 0.655514i \(0.772452\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.49220e6 1.39294 0.696472 0.717584i \(-0.254752\pi\)
0.696472 + 0.717584i \(0.254752\pi\)
\(318\) 0 0
\(319\) 971872. 0.534727
\(320\) 0 0
\(321\) 1.18453e6 0.641626
\(322\) 0 0
\(323\) −2.10490e6 −1.12260
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.63244e6 0.844245
\(328\) 0 0
\(329\) 346000. 0.176233
\(330\) 0 0
\(331\) −2.70125e6 −1.35517 −0.677586 0.735443i \(-0.736974\pi\)
−0.677586 + 0.735443i \(0.736974\pi\)
\(332\) 0 0
\(333\) 1.35393e6 0.669090
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.42610e6 0.684031 0.342016 0.939694i \(-0.388890\pi\)
0.342016 + 0.939694i \(0.388890\pi\)
\(338\) 0 0
\(339\) 660303. 0.312064
\(340\) 0 0
\(341\) −356345. −0.165953
\(342\) 0 0
\(343\) −1.55570e6 −0.713987
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.86374e6 −1.27676 −0.638381 0.769721i \(-0.720396\pi\)
−0.638381 + 0.769721i \(0.720396\pi\)
\(348\) 0 0
\(349\) 296350. 0.130239 0.0651195 0.997877i \(-0.479257\pi\)
0.0651195 + 0.997877i \(0.479257\pi\)
\(350\) 0 0
\(351\) 1.16242e6 0.503611
\(352\) 0 0
\(353\) 2.12114e6 0.906010 0.453005 0.891508i \(-0.350352\pi\)
0.453005 + 0.891508i \(0.350352\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −403900. −0.167727
\(358\) 0 0
\(359\) −3.47512e6 −1.42310 −0.711548 0.702638i \(-0.752006\pi\)
−0.711548 + 0.702638i \(0.752006\pi\)
\(360\) 0 0
\(361\) 850877. 0.343636
\(362\) 0 0
\(363\) −102487. −0.0408227
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.56190e6 −0.605322 −0.302661 0.953098i \(-0.597875\pi\)
−0.302661 + 0.953098i \(0.597875\pi\)
\(368\) 0 0
\(369\) 100880. 0.0385691
\(370\) 0 0
\(371\) 685900. 0.258718
\(372\) 0 0
\(373\) −1.93773e6 −0.721144 −0.360572 0.932731i \(-0.617419\pi\)
−0.360572 + 0.932731i \(0.617419\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.05216e6 1.10600
\(378\) 0 0
\(379\) 3.07495e6 1.09961 0.549806 0.835292i \(-0.314702\pi\)
0.549806 + 0.835292i \(0.314702\pi\)
\(380\) 0 0
\(381\) −1.81636e6 −0.641046
\(382\) 0 0
\(383\) −4.31553e6 −1.50327 −0.751635 0.659579i \(-0.770734\pi\)
−0.751635 + 0.659579i \(0.770734\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −482284. −0.163691
\(388\) 0 0
\(389\) 2.36251e6 0.791590 0.395795 0.918339i \(-0.370469\pi\)
0.395795 + 0.918339i \(0.370469\pi\)
\(390\) 0 0
\(391\) −4.14401e6 −1.37082
\(392\) 0 0
\(393\) 597870. 0.195265
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.77598e6 −0.565539 −0.282769 0.959188i \(-0.591253\pi\)
−0.282769 + 0.959188i \(0.591253\pi\)
\(398\) 0 0
\(399\) 638400. 0.200752
\(400\) 0 0
\(401\) 1.56967e6 0.487468 0.243734 0.969842i \(-0.421628\pi\)
0.243734 + 0.969842i \(0.421628\pi\)
\(402\) 0 0
\(403\) −1.11910e6 −0.343247
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −844459. −0.252693
\(408\) 0 0
\(409\) 1.29485e6 0.382746 0.191373 0.981517i \(-0.438706\pi\)
0.191373 + 0.981517i \(0.438706\pi\)
\(410\) 0 0
\(411\) −2.99392e6 −0.874250
\(412\) 0 0
\(413\) −1.58895e6 −0.458390
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2.16783e6 −0.610499
\(418\) 0 0
\(419\) 272916. 0.0759441 0.0379720 0.999279i \(-0.487910\pi\)
0.0379720 + 0.999279i \(0.487910\pi\)
\(420\) 0 0
\(421\) −2.61801e6 −0.719890 −0.359945 0.932974i \(-0.617205\pi\)
−0.359945 + 0.932974i \(0.617205\pi\)
\(422\) 0 0
\(423\) −1.34248e6 −0.364802
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.70780e6 0.453281
\(428\) 0 0
\(429\) −321860. −0.0844352
\(430\) 0 0
\(431\) 2.81037e6 0.728735 0.364368 0.931255i \(-0.381285\pi\)
0.364368 + 0.931255i \(0.381285\pi\)
\(432\) 0 0
\(433\) −5.98509e6 −1.53409 −0.767046 0.641593i \(-0.778274\pi\)
−0.767046 + 0.641593i \(0.778274\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.54998e6 1.64073
\(438\) 0 0
\(439\) −7.50486e6 −1.85858 −0.929290 0.369352i \(-0.879580\pi\)
−0.929290 + 0.369352i \(0.879580\pi\)
\(440\) 0 0
\(441\) 2.77556e6 0.679601
\(442\) 0 0
\(443\) −1.56806e6 −0.379624 −0.189812 0.981820i \(-0.560788\pi\)
−0.189812 + 0.981820i \(0.560788\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −3.14892e6 −0.745406
\(448\) 0 0
\(449\) −4.04044e6 −0.945831 −0.472915 0.881108i \(-0.656798\pi\)
−0.472915 + 0.881108i \(0.656798\pi\)
\(450\) 0 0
\(451\) −62920.0 −0.0145662
\(452\) 0 0
\(453\) −2.83552e6 −0.649213
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.21132e6 −0.495291 −0.247645 0.968851i \(-0.579657\pi\)
−0.247645 + 0.968851i \(0.579657\pi\)
\(458\) 0 0
\(459\) 3.53009e6 0.782084
\(460\) 0 0
\(461\) −3.56735e6 −0.781795 −0.390898 0.920434i \(-0.627835\pi\)
−0.390898 + 0.920434i \(0.627835\pi\)
\(462\) 0 0
\(463\) −747757. −0.162109 −0.0810547 0.996710i \(-0.525829\pi\)
−0.0810547 + 0.996710i \(0.525829\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.44511e6 1.15535 0.577676 0.816266i \(-0.303960\pi\)
0.577676 + 0.816266i \(0.303960\pi\)
\(468\) 0 0
\(469\) 3.07515e6 0.645556
\(470\) 0 0
\(471\) 2.37525e6 0.493352
\(472\) 0 0
\(473\) 300806. 0.0618207
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.66129e6 −0.535546
\(478\) 0 0
\(479\) −6.22046e6 −1.23875 −0.619375 0.785095i \(-0.712614\pi\)
−0.619375 + 0.785095i \(0.712614\pi\)
\(480\) 0 0
\(481\) −2.65202e6 −0.522654
\(482\) 0 0
\(483\) 1.25685e6 0.245141
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.34398e6 0.638913 0.319457 0.947601i \(-0.396500\pi\)
0.319457 + 0.947601i \(0.396500\pi\)
\(488\) 0 0
\(489\) 1.89977e6 0.359277
\(490\) 0 0
\(491\) 5.58646e6 1.04576 0.522881 0.852406i \(-0.324857\pi\)
0.522881 + 0.852406i \(0.324857\pi\)
\(492\) 0 0
\(493\) 9.26893e6 1.71756
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −748550. −0.135935
\(498\) 0 0
\(499\) −8.29348e6 −1.49103 −0.745514 0.666490i \(-0.767796\pi\)
−0.745514 + 0.666490i \(0.767796\pi\)
\(500\) 0 0
\(501\) 507276. 0.0902922
\(502\) 0 0
\(503\) −5.29951e6 −0.933933 −0.466967 0.884275i \(-0.654653\pi\)
−0.466967 + 0.884275i \(0.654653\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.58825e6 0.274410
\(508\) 0 0
\(509\) 24415.0 0.00417698 0.00208849 0.999998i \(-0.499335\pi\)
0.00208849 + 0.999998i \(0.499335\pi\)
\(510\) 0 0
\(511\) 1.82220e6 0.308705
\(512\) 0 0
\(513\) −5.57962e6 −0.936076
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 837320. 0.137773
\(518\) 0 0
\(519\) 3.35458e6 0.546663
\(520\) 0 0
\(521\) 4.76275e6 0.768712 0.384356 0.923185i \(-0.374424\pi\)
0.384356 + 0.923185i \(0.374424\pi\)
\(522\) 0 0
\(523\) −735248. −0.117538 −0.0587692 0.998272i \(-0.518718\pi\)
−0.0587692 + 0.998272i \(0.518718\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.39853e6 −0.533046
\(528\) 0 0
\(529\) 6.45894e6 1.00351
\(530\) 0 0
\(531\) 6.16513e6 0.948868
\(532\) 0 0
\(533\) −197600. −0.0301279
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 286545. 0.0428802
\(538\) 0 0
\(539\) −1.73115e6 −0.256662
\(540\) 0 0
\(541\) −3.19649e6 −0.469548 −0.234774 0.972050i \(-0.575435\pi\)
−0.234774 + 0.972050i \(0.575435\pi\)
\(542\) 0 0
\(543\) 631183. 0.0918662
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −8.85902e6 −1.26595 −0.632976 0.774171i \(-0.718167\pi\)
−0.632976 + 0.774171i \(0.718167\pi\)
\(548\) 0 0
\(549\) −6.62626e6 −0.938292
\(550\) 0 0
\(551\) −1.46504e7 −2.05575
\(552\) 0 0
\(553\) −1.42690e6 −0.198418
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.74512e6 0.238335 0.119167 0.992874i \(-0.461977\pi\)
0.119167 + 0.992874i \(0.461977\pi\)
\(558\) 0 0
\(559\) 944680. 0.127866
\(560\) 0 0
\(561\) −977438. −0.131124
\(562\) 0 0
\(563\) 1.32333e7 1.75953 0.879764 0.475410i \(-0.157700\pi\)
0.879764 + 0.475410i \(0.157700\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.28645e6 0.168049
\(568\) 0 0
\(569\) 1.04156e7 1.34867 0.674335 0.738426i \(-0.264430\pi\)
0.674335 + 0.738426i \(0.264430\pi\)
\(570\) 0 0
\(571\) −2.48163e6 −0.318527 −0.159264 0.987236i \(-0.550912\pi\)
−0.159264 + 0.987236i \(0.550912\pi\)
\(572\) 0 0
\(573\) 1.82262e6 0.231905
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.31244e7 1.64112 0.820562 0.571557i \(-0.193661\pi\)
0.820562 + 0.571557i \(0.193661\pi\)
\(578\) 0 0
\(579\) 3.67027e6 0.454989
\(580\) 0 0
\(581\) −3.87410e6 −0.476135
\(582\) 0 0
\(583\) 1.65988e6 0.202258
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.86010e6 0.582170 0.291085 0.956697i \(-0.405984\pi\)
0.291085 + 0.956697i \(0.405984\pi\)
\(588\) 0 0
\(589\) 5.37168e6 0.638002
\(590\) 0 0
\(591\) 5.31707e6 0.626187
\(592\) 0 0
\(593\) 1.58559e6 0.185163 0.0925814 0.995705i \(-0.470488\pi\)
0.0925814 + 0.995705i \(0.470488\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.17915e6 0.709566
\(598\) 0 0
\(599\) 9.04294e6 1.02978 0.514888 0.857258i \(-0.327834\pi\)
0.514888 + 0.857258i \(0.327834\pi\)
\(600\) 0 0
\(601\) 729186. 0.0823478 0.0411739 0.999152i \(-0.486890\pi\)
0.0411739 + 0.999152i \(0.486890\pi\)
\(602\) 0 0
\(603\) −1.19316e7 −1.33630
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3.91130e6 0.430873 0.215437 0.976518i \(-0.430883\pi\)
0.215437 + 0.976518i \(0.430883\pi\)
\(608\) 0 0
\(609\) −2.81120e6 −0.307149
\(610\) 0 0
\(611\) 2.62960e6 0.284962
\(612\) 0 0
\(613\) 5.52184e6 0.593516 0.296758 0.954953i \(-0.404094\pi\)
0.296758 + 0.954953i \(0.404094\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.88539e6 0.516638 0.258319 0.966060i \(-0.416831\pi\)
0.258319 + 0.966060i \(0.416831\pi\)
\(618\) 0 0
\(619\) −4.11150e6 −0.431295 −0.215647 0.976471i \(-0.569186\pi\)
−0.215647 + 0.976471i \(0.569186\pi\)
\(620\) 0 0
\(621\) −1.09849e7 −1.14305
\(622\) 0 0
\(623\) 1.81355e6 0.187202
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.54493e6 0.156942
\(628\) 0 0
\(629\) −8.05377e6 −0.811657
\(630\) 0 0
\(631\) 8.24910e6 0.824771 0.412385 0.911009i \(-0.364696\pi\)
0.412385 + 0.911009i \(0.364696\pi\)
\(632\) 0 0
\(633\) 8.06996e6 0.800502
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.43666e6 −0.530864
\(638\) 0 0
\(639\) 2.90437e6 0.281385
\(640\) 0 0
\(641\) −4.29330e6 −0.412711 −0.206355 0.978477i \(-0.566160\pi\)
−0.206355 + 0.978477i \(0.566160\pi\)
\(642\) 0 0
\(643\) 1.63045e7 1.55518 0.777588 0.628774i \(-0.216443\pi\)
0.777588 + 0.628774i \(0.216443\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.42624e6 −0.415695 −0.207847 0.978161i \(-0.566646\pi\)
−0.207847 + 0.978161i \(0.566646\pi\)
\(648\) 0 0
\(649\) −3.84526e6 −0.358355
\(650\) 0 0
\(651\) 1.03075e6 0.0953237
\(652\) 0 0
\(653\) 6.27529e6 0.575905 0.287952 0.957645i \(-0.407025\pi\)
0.287952 + 0.957645i \(0.407025\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −7.07014e6 −0.639020
\(658\) 0 0
\(659\) −1.09748e7 −0.984422 −0.492211 0.870476i \(-0.663811\pi\)
−0.492211 + 0.870476i \(0.663811\pi\)
\(660\) 0 0
\(661\) 2.02025e7 1.79846 0.899229 0.437478i \(-0.144128\pi\)
0.899229 + 0.437478i \(0.144128\pi\)
\(662\) 0 0
\(663\) −3.06964e6 −0.271209
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.88429e7 −2.51029
\(668\) 0 0
\(669\) −461251. −0.0398448
\(670\) 0 0
\(671\) 4.13288e6 0.354361
\(672\) 0 0
\(673\) −1.14233e7 −0.972200 −0.486100 0.873903i \(-0.661581\pi\)
−0.486100 + 0.873903i \(0.661581\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.43918e6 0.204537 0.102268 0.994757i \(-0.467390\pi\)
0.102268 + 0.994757i \(0.467390\pi\)
\(678\) 0 0
\(679\) 2.48995e6 0.207260
\(680\) 0 0
\(681\) −2.20168e6 −0.181923
\(682\) 0 0
\(683\) −1.01384e6 −0.0831606 −0.0415803 0.999135i \(-0.513239\pi\)
−0.0415803 + 0.999135i \(0.513239\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −7.26924e6 −0.587621
\(688\) 0 0
\(689\) 5.21284e6 0.418337
\(690\) 0 0
\(691\) −8.03186e6 −0.639913 −0.319957 0.947432i \(-0.603668\pi\)
−0.319957 + 0.947432i \(0.603668\pi\)
\(692\) 0 0
\(693\) −1.17370e6 −0.0928376
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −600080. −0.0467872
\(698\) 0 0
\(699\) 3.56983e6 0.276347
\(700\) 0 0
\(701\) −259806. −0.0199689 −0.00998445 0.999950i \(-0.503178\pi\)
−0.00998445 + 0.999950i \(0.503178\pi\)
\(702\) 0 0
\(703\) 1.27297e7 0.971471
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.67030e6 −0.577117
\(708\) 0 0
\(709\) −1.92848e7 −1.44079 −0.720393 0.693566i \(-0.756039\pi\)
−0.720393 + 0.693566i \(0.756039\pi\)
\(710\) 0 0
\(711\) 5.53637e6 0.410725
\(712\) 0 0
\(713\) 1.05755e7 0.779071
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.11146e6 0.226030
\(718\) 0 0
\(719\) 926119. 0.0668105 0.0334052 0.999442i \(-0.489365\pi\)
0.0334052 + 0.999442i \(0.489365\pi\)
\(720\) 0 0
\(721\) 6.73600e6 0.482574
\(722\) 0 0
\(723\) 1.98425e6 0.141173
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −2.02599e7 −1.42168 −0.710840 0.703354i \(-0.751685\pi\)
−0.710840 + 0.703354i \(0.751685\pi\)
\(728\) 0 0
\(729\) 211933. 0.0147700
\(730\) 0 0
\(731\) 2.86884e6 0.198570
\(732\) 0 0
\(733\) −1.10982e7 −0.762944 −0.381472 0.924380i \(-0.624583\pi\)
−0.381472 + 0.924380i \(0.624583\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.44186e6 0.504676
\(738\) 0 0
\(739\) 624962. 0.0420962 0.0210481 0.999778i \(-0.493300\pi\)
0.0210481 + 0.999778i \(0.493300\pi\)
\(740\) 0 0
\(741\) 4.85184e6 0.324609
\(742\) 0 0
\(743\) −46436.0 −0.00308591 −0.00154295 0.999999i \(-0.500491\pi\)
−0.00154295 + 0.999999i \(0.500491\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.50315e7 0.985601
\(748\) 0 0
\(749\) −8.46090e6 −0.551077
\(750\) 0 0
\(751\) −6.12144e6 −0.396053 −0.198027 0.980197i \(-0.563453\pi\)
−0.198027 + 0.980197i \(0.563453\pi\)
\(752\) 0 0
\(753\) 5.41665e6 0.348131
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.26458e6 0.207056 0.103528 0.994627i \(-0.466987\pi\)
0.103528 + 0.994627i \(0.466987\pi\)
\(758\) 0 0
\(759\) 3.04158e6 0.191644
\(760\) 0 0
\(761\) 1.60311e7 1.00346 0.501732 0.865023i \(-0.332696\pi\)
0.501732 + 0.865023i \(0.332696\pi\)
\(762\) 0 0
\(763\) −1.16603e7 −0.725101
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.20760e7 −0.741200
\(768\) 0 0
\(769\) 2.64617e7 1.61362 0.806811 0.590810i \(-0.201192\pi\)
0.806811 + 0.590810i \(0.201192\pi\)
\(770\) 0 0
\(771\) −2.71400e6 −0.164427
\(772\) 0 0
\(773\) 2.63836e7 1.58813 0.794063 0.607836i \(-0.207962\pi\)
0.794063 + 0.607836i \(0.207962\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.44265e6 0.145147
\(778\) 0 0
\(779\) 948480. 0.0559995
\(780\) 0 0
\(781\) −1.81149e6 −0.106269
\(782\) 0 0
\(783\) 2.45699e7 1.43218
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 5.68115e6 0.326964 0.163482 0.986546i \(-0.447727\pi\)
0.163482 + 0.986546i \(0.447727\pi\)
\(788\) 0 0
\(789\) −1.38321e6 −0.0791037
\(790\) 0 0
\(791\) −4.71645e6 −0.268024
\(792\) 0 0
\(793\) 1.29793e7 0.732939
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.99383e6 −0.557296 −0.278648 0.960393i \(-0.589886\pi\)
−0.278648 + 0.960393i \(0.589886\pi\)
\(798\) 0 0
\(799\) 7.98568e6 0.442532
\(800\) 0 0
\(801\) −7.03657e6 −0.387507
\(802\) 0 0
\(803\) 4.40972e6 0.241336
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.83886e6 0.0993950
\(808\) 0 0
\(809\) 2.32455e7 1.24873 0.624364 0.781134i \(-0.285358\pi\)
0.624364 + 0.781134i \(0.285358\pi\)
\(810\) 0 0
\(811\) 1.27367e7 0.679991 0.339995 0.940427i \(-0.389574\pi\)
0.339995 + 0.940427i \(0.389574\pi\)
\(812\) 0 0
\(813\) 1.11348e6 0.0590819
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4.53446e6 −0.237668
\(818\) 0 0
\(819\) −3.68600e6 −0.192020
\(820\) 0 0
\(821\) −7.85748e6 −0.406842 −0.203421 0.979091i \(-0.565206\pi\)
−0.203421 + 0.979091i \(0.565206\pi\)
\(822\) 0 0
\(823\) 1.09499e7 0.563524 0.281762 0.959484i \(-0.409081\pi\)
0.281762 + 0.959484i \(0.409081\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.20638e7 −1.12180 −0.560901 0.827883i \(-0.689545\pi\)
−0.560901 + 0.827883i \(0.689545\pi\)
\(828\) 0 0
\(829\) 7.05255e6 0.356418 0.178209 0.983993i \(-0.442970\pi\)
0.178209 + 0.983993i \(0.442970\pi\)
\(830\) 0 0
\(831\) 9.05698e6 0.454968
\(832\) 0 0
\(833\) −1.65103e7 −0.824407
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −9.00876e6 −0.444479
\(838\) 0 0
\(839\) −2.26195e7 −1.10937 −0.554686 0.832060i \(-0.687162\pi\)
−0.554686 + 0.832060i \(0.687162\pi\)
\(840\) 0 0
\(841\) 4.40019e7 2.14527
\(842\) 0 0
\(843\) 1.24680e7 0.604264
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 732050. 0.0350616
\(848\) 0 0
\(849\) 1.38795e7 0.660853
\(850\) 0 0
\(851\) 2.50616e7 1.18627
\(852\) 0 0
\(853\) −9.46645e6 −0.445466 −0.222733 0.974880i \(-0.571498\pi\)
−0.222733 + 0.974880i \(0.571498\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −941480. −0.0437884 −0.0218942 0.999760i \(-0.506970\pi\)
−0.0218942 + 0.999760i \(0.506970\pi\)
\(858\) 0 0
\(859\) −806423. −0.0372889 −0.0186445 0.999826i \(-0.505935\pi\)
−0.0186445 + 0.999826i \(0.505935\pi\)
\(860\) 0 0
\(861\) 182000. 0.00836688
\(862\) 0 0
\(863\) −1.19485e7 −0.546119 −0.273059 0.961997i \(-0.588036\pi\)
−0.273059 + 0.961997i \(0.588036\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 616987. 0.0278759
\(868\) 0 0
\(869\) −3.45310e6 −0.155117
\(870\) 0 0
\(871\) 2.33711e7 1.04384
\(872\) 0 0
\(873\) −9.66101e6 −0.429029
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −7.84853e6 −0.344580 −0.172290 0.985046i \(-0.555117\pi\)
−0.172290 + 0.985046i \(0.555117\pi\)
\(878\) 0 0
\(879\) 4.04852e6 0.176736
\(880\) 0 0
\(881\) −1.73933e7 −0.754991 −0.377496 0.926011i \(-0.623215\pi\)
−0.377496 + 0.926011i \(0.623215\pi\)
\(882\) 0 0
\(883\) 4.31619e7 1.86294 0.931470 0.363818i \(-0.118527\pi\)
0.931470 + 0.363818i \(0.118527\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.25652e6 0.395038 0.197519 0.980299i \(-0.436712\pi\)
0.197519 + 0.980299i \(0.436712\pi\)
\(888\) 0 0
\(889\) 1.29740e7 0.550579
\(890\) 0 0
\(891\) 3.11321e6 0.131375
\(892\) 0 0
\(893\) −1.26221e7 −0.529666
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 9.55206e6 0.396384
\(898\) 0 0
\(899\) −2.36542e7 −0.976135
\(900\) 0 0
\(901\) 1.58306e7 0.649658
\(902\) 0 0
\(903\) −870100. −0.0355099
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −4.47293e7 −1.80540 −0.902700 0.430270i \(-0.858418\pi\)
−0.902700 + 0.430270i \(0.858418\pi\)
\(908\) 0 0
\(909\) 2.97608e7 1.19463
\(910\) 0 0
\(911\) 2.57577e7 1.02828 0.514139 0.857707i \(-0.328112\pi\)
0.514139 + 0.857707i \(0.328112\pi\)
\(912\) 0 0
\(913\) −9.37532e6 −0.372228
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.27050e6 −0.167709
\(918\) 0 0
\(919\) −3.63488e7 −1.41972 −0.709858 0.704344i \(-0.751241\pi\)
−0.709858 + 0.704344i \(0.751241\pi\)
\(920\) 0 0
\(921\) −2.15322e7 −0.836447
\(922\) 0 0
\(923\) −5.68898e6 −0.219801
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −2.61357e7 −0.998929
\(928\) 0 0
\(929\) −3.96617e6 −0.150776 −0.0753880 0.997154i \(-0.524020\pi\)
−0.0753880 + 0.997154i \(0.524020\pi\)
\(930\) 0 0
\(931\) 2.60960e7 0.986732
\(932\) 0 0
\(933\) 2.19630e7 0.826014
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.50528e7 1.30429 0.652145 0.758094i \(-0.273869\pi\)
0.652145 + 0.758094i \(0.273869\pi\)
\(938\) 0 0
\(939\) 1.83249e7 0.678230
\(940\) 0 0
\(941\) −1.40738e7 −0.518130 −0.259065 0.965860i \(-0.583414\pi\)
−0.259065 + 0.965860i \(0.583414\pi\)
\(942\) 0 0
\(943\) 1.86732e6 0.0683816
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.73759e7 1.35431 0.677153 0.735842i \(-0.263214\pi\)
0.677153 + 0.735842i \(0.263214\pi\)
\(948\) 0 0
\(949\) 1.38487e7 0.499165
\(950\) 0 0
\(951\) −1.74454e7 −0.625502
\(952\) 0 0
\(953\) 3.18424e7 1.13572 0.567862 0.823124i \(-0.307771\pi\)
0.567862 + 0.823124i \(0.307771\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −6.80310e6 −0.240119
\(958\) 0 0
\(959\) 2.13852e7 0.750872
\(960\) 0 0
\(961\) −1.99561e7 −0.697056
\(962\) 0 0
\(963\) 3.28283e7 1.14073
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 3.16276e7 1.08768 0.543838 0.839190i \(-0.316971\pi\)
0.543838 + 0.839190i \(0.316971\pi\)
\(968\) 0 0
\(969\) 1.47343e7 0.504103
\(970\) 0 0
\(971\) −2.73412e7 −0.930614 −0.465307 0.885149i \(-0.654056\pi\)
−0.465307 + 0.885149i \(0.654056\pi\)
\(972\) 0 0
\(973\) 1.54845e7 0.524343
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.81630e6 0.194944 0.0974721 0.995238i \(-0.468924\pi\)
0.0974721 + 0.995238i \(0.468924\pi\)
\(978\) 0 0
\(979\) 4.38879e6 0.146348
\(980\) 0 0
\(981\) 4.52420e7 1.50096
\(982\) 0 0
\(983\) 3.81817e7 1.26029 0.630146 0.776476i \(-0.282995\pi\)
0.630146 + 0.776476i \(0.282995\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2.42200e6 −0.0791373
\(988\) 0 0
\(989\) −8.92723e6 −0.290219
\(990\) 0 0
\(991\) 5.44564e6 0.176143 0.0880714 0.996114i \(-0.471930\pi\)
0.0880714 + 0.996114i \(0.471930\pi\)
\(992\) 0 0
\(993\) 1.89087e7 0.608541
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.77967e6 0.120425 0.0602125 0.998186i \(-0.480822\pi\)
0.0602125 + 0.998186i \(0.480822\pi\)
\(998\) 0 0
\(999\) −2.13488e7 −0.676798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.6.a.a.1.1 1
5.2 odd 4 1100.6.b.a.749.2 2
5.3 odd 4 1100.6.b.a.749.1 2
5.4 even 2 44.6.a.a.1.1 1
15.14 odd 2 396.6.a.e.1.1 1
20.19 odd 2 176.6.a.a.1.1 1
40.19 odd 2 704.6.a.g.1.1 1
40.29 even 2 704.6.a.d.1.1 1
55.54 odd 2 484.6.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.6.a.a.1.1 1 5.4 even 2
176.6.a.a.1.1 1 20.19 odd 2
396.6.a.e.1.1 1 15.14 odd 2
484.6.a.b.1.1 1 55.54 odd 2
704.6.a.d.1.1 1 40.29 even 2
704.6.a.g.1.1 1 40.19 odd 2
1100.6.a.a.1.1 1 1.1 even 1 trivial
1100.6.b.a.749.1 2 5.3 odd 4
1100.6.b.a.749.2 2 5.2 odd 4