Defining parameters
Level: | \( N \) | \(=\) | \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 1100.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(1080\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(1100))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 918 | 79 | 839 |
Cusp forms | 882 | 79 | 803 |
Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(19\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(18\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(20\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(22\) |
Plus space | \(+\) | \(38\) | ||
Minus space | \(-\) | \(41\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(1100))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(1100))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(1100)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(550))\)\(^{\oplus 2}\)