Defining parameters
Level: | \( N \) | = | \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 42 \) | ||
Sturm bound: | \(432000\) | ||
Trace bound: | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(1100))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 181400 | 95533 | 85867 |
Cusp forms | 178600 | 94793 | 83807 |
Eisenstein series | 2800 | 740 | 2060 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(1100))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(1100))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(1100)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(220))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(550))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(1100))\)\(^{\oplus 1}\)