Properties

Label 1100.4.b.c
Level $1100$
Weight $4$
Character orbit 1100.b
Analytic conductor $64.902$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,4,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9021010063\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 5 i q^{3} - 26 i q^{7} + 2 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 5 i q^{3} - 26 i q^{7} + 2 q^{9} - 11 q^{11} - 52 i q^{13} + 46 i q^{17} + 96 q^{19} + 130 q^{21} - 27 i q^{23} + 145 i q^{27} - 16 q^{29} - 293 q^{31} - 55 i q^{33} - 29 i q^{37} + 260 q^{39} - 472 q^{41} + 110 i q^{43} - 224 i q^{47} - 333 q^{49} - 230 q^{51} - 754 i q^{53} + 480 i q^{57} - 825 q^{59} - 548 q^{61} - 52 i q^{63} - 123 i q^{67} + 135 q^{69} + 1001 q^{71} + 1020 i q^{73} + 286 i q^{77} - 526 q^{79} - 671 q^{81} + 158 i q^{83} - 80 i q^{87} + 1217 q^{89} - 1352 q^{91} - 1465 i q^{93} - 263 i q^{97} - 22 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{9} - 22 q^{11} + 192 q^{19} + 260 q^{21} - 32 q^{29} - 586 q^{31} + 520 q^{39} - 944 q^{41} - 666 q^{49} - 460 q^{51} - 1650 q^{59} - 1096 q^{61} + 270 q^{69} + 2002 q^{71} - 1052 q^{79} - 1342 q^{81} + 2434 q^{89} - 2704 q^{91} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
749.1
1.00000i
1.00000i
0 5.00000i 0 0 0 26.0000i 0 2.00000 0
749.2 0 5.00000i 0 0 0 26.0000i 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.4.b.c 2
5.b even 2 1 inner 1100.4.b.c 2
5.c odd 4 1 44.4.a.a 1
5.c odd 4 1 1100.4.a.d 1
15.e even 4 1 396.4.a.e 1
20.e even 4 1 176.4.a.e 1
35.f even 4 1 2156.4.a.b 1
40.i odd 4 1 704.4.a.j 1
40.k even 4 1 704.4.a.c 1
55.e even 4 1 484.4.a.a 1
60.l odd 4 1 1584.4.a.p 1
220.i odd 4 1 1936.4.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.4.a.a 1 5.c odd 4 1
176.4.a.e 1 20.e even 4 1
396.4.a.e 1 15.e even 4 1
484.4.a.a 1 55.e even 4 1
704.4.a.c 1 40.k even 4 1
704.4.a.j 1 40.i odd 4 1
1100.4.a.d 1 5.c odd 4 1
1100.4.b.c 2 1.a even 1 1 trivial
1100.4.b.c 2 5.b even 2 1 inner
1584.4.a.p 1 60.l odd 4 1
1936.4.a.m 1 220.i odd 4 1
2156.4.a.b 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1100, [\chi])\):

\( T_{3}^{2} + 25 \) Copy content Toggle raw display
\( T_{7}^{2} + 676 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 25 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 676 \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 2704 \) Copy content Toggle raw display
$17$ \( T^{2} + 2116 \) Copy content Toggle raw display
$19$ \( (T - 96)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 729 \) Copy content Toggle raw display
$29$ \( (T + 16)^{2} \) Copy content Toggle raw display
$31$ \( (T + 293)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 841 \) Copy content Toggle raw display
$41$ \( (T + 472)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 12100 \) Copy content Toggle raw display
$47$ \( T^{2} + 50176 \) Copy content Toggle raw display
$53$ \( T^{2} + 568516 \) Copy content Toggle raw display
$59$ \( (T + 825)^{2} \) Copy content Toggle raw display
$61$ \( (T + 548)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 15129 \) Copy content Toggle raw display
$71$ \( (T - 1001)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1040400 \) Copy content Toggle raw display
$79$ \( (T + 526)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 24964 \) Copy content Toggle raw display
$89$ \( (T - 1217)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 69169 \) Copy content Toggle raw display
show more
show less