Properties

Label 1100.4.b
Level $1100$
Weight $4$
Character orbit 1100.b
Rep. character $\chi_{1100}(749,\cdot)$
Character field $\Q$
Dimension $46$
Newform subspaces $10$
Sturm bound $720$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(720\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1100, [\chi])\).

Total New Old
Modular forms 558 46 512
Cusp forms 522 46 476
Eisenstein series 36 0 36

Trace form

\( 46 q - 538 q^{9} + O(q^{10}) \) \( 46 q - 538 q^{9} + 22 q^{11} + 72 q^{19} + 208 q^{21} - 236 q^{29} + 212 q^{31} + 200 q^{39} + 924 q^{41} - 1886 q^{49} - 1664 q^{51} - 300 q^{61} - 748 q^{69} - 452 q^{71} - 104 q^{79} + 4750 q^{81} - 324 q^{89} + 1320 q^{91} - 814 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(1100, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1100.4.b.a 1100.b 5.b $2$ $64.902$ \(\Q(\sqrt{-1}) \) None 220.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4iq^{3}-12iq^{7}-37q^{9}-11q^{11}+\cdots\)
1100.4.b.b 1100.b 5.b $2$ $64.902$ \(\Q(\sqrt{-1}) \) None 220.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+5iq^{3}+11iq^{7}+2q^{9}-11q^{11}+\cdots\)
1100.4.b.c 1100.b 5.b $2$ $64.902$ \(\Q(\sqrt{-1}) \) None 44.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+5iq^{3}-26iq^{7}+2q^{9}-11q^{11}+\cdots\)
1100.4.b.d 1100.b 5.b $2$ $64.902$ \(\Q(\sqrt{-1}) \) None 220.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+5iq^{3}+19iq^{7}+2q^{9}-11q^{11}+\cdots\)
1100.4.b.e 1100.b 5.b $4$ $64.902$ \(\Q(i, \sqrt{97})\) None 44.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-2\beta _{2})q^{3}+(6\beta _{1}+4\beta _{2})q^{7}+(-22+\cdots)q^{9}+\cdots\)
1100.4.b.f 1100.b 5.b $4$ $64.902$ \(\Q(i, \sqrt{97})\) None 220.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-2\beta _{2})q^{3}+(\beta _{1}+4\beta _{2})q^{7}+(-22+\cdots)q^{9}+\cdots\)
1100.4.b.g 1100.b 5.b $4$ $64.902$ \(\Q(i, \sqrt{6})\) None 220.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2\beta _{1}-\beta _{2})q^{3}+(9\beta _{1}-2\beta _{2})q^{7}+(-13+\cdots)q^{9}+\cdots\)
1100.4.b.h 1100.b 5.b $6$ $64.902$ 6.0.1351885824.3 None 220.4.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{3}+(-2\beta _{1}+\beta _{2}+2\beta _{3}+\cdots)q^{7}+\cdots\)
1100.4.b.i 1100.b 5.b $10$ $64.902$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1100.4.a.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}+\beta _{7}q^{7}+(-12-\beta _{2})q^{9}+\cdots\)
1100.4.b.j 1100.b 5.b $10$ $64.902$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1100.4.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+(\beta _{3}+2\beta _{6}-\beta _{7})q^{7}+(-12+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(1100, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1100, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(550, [\chi])\)\(^{\oplus 2}\)