# Properties

 Label 1100.4.a.d.1.1 Level $1100$ Weight $4$ Character 1100.1 Self dual yes Analytic conductor $64.902$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1100,4,Mod(1,1100)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1100, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1100.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1100 = 2^{2} \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1100.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$64.9021010063$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 44) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1100.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+5.00000 q^{3} +26.0000 q^{7} -2.00000 q^{9} +O(q^{10})$$ $$q+5.00000 q^{3} +26.0000 q^{7} -2.00000 q^{9} -11.0000 q^{11} -52.0000 q^{13} -46.0000 q^{17} -96.0000 q^{19} +130.000 q^{21} -27.0000 q^{23} -145.000 q^{27} +16.0000 q^{29} -293.000 q^{31} -55.0000 q^{33} +29.0000 q^{37} -260.000 q^{39} -472.000 q^{41} +110.000 q^{43} +224.000 q^{47} +333.000 q^{49} -230.000 q^{51} -754.000 q^{53} -480.000 q^{57} +825.000 q^{59} -548.000 q^{61} -52.0000 q^{63} +123.000 q^{67} -135.000 q^{69} +1001.00 q^{71} +1020.00 q^{73} -286.000 q^{77} +526.000 q^{79} -671.000 q^{81} +158.000 q^{83} +80.0000 q^{87} -1217.00 q^{89} -1352.00 q^{91} -1465.00 q^{93} +263.000 q^{97} +22.0000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 5.00000 0.962250 0.481125 0.876652i $$-0.340228\pi$$
0.481125 + 0.876652i $$0.340228\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 26.0000 1.40387 0.701934 0.712242i $$-0.252320\pi$$
0.701934 + 0.712242i $$0.252320\pi$$
$$8$$ 0 0
$$9$$ −2.00000 −0.0740741
$$10$$ 0 0
$$11$$ −11.0000 −0.301511
$$12$$ 0 0
$$13$$ −52.0000 −1.10940 −0.554700 0.832050i $$-0.687167\pi$$
−0.554700 + 0.832050i $$0.687167\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −46.0000 −0.656273 −0.328136 0.944630i $$-0.606421\pi$$
−0.328136 + 0.944630i $$0.606421\pi$$
$$18$$ 0 0
$$19$$ −96.0000 −1.15915 −0.579577 0.814918i $$-0.696782\pi$$
−0.579577 + 0.814918i $$0.696782\pi$$
$$20$$ 0 0
$$21$$ 130.000 1.35087
$$22$$ 0 0
$$23$$ −27.0000 −0.244778 −0.122389 0.992482i $$-0.539056\pi$$
−0.122389 + 0.992482i $$0.539056\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ −145.000 −1.03353
$$28$$ 0 0
$$29$$ 16.0000 0.102453 0.0512263 0.998687i $$-0.483687\pi$$
0.0512263 + 0.998687i $$0.483687\pi$$
$$30$$ 0 0
$$31$$ −293.000 −1.69756 −0.848780 0.528746i $$-0.822662\pi$$
−0.848780 + 0.528746i $$0.822662\pi$$
$$32$$ 0 0
$$33$$ −55.0000 −0.290129
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 29.0000 0.128853 0.0644266 0.997922i $$-0.479478\pi$$
0.0644266 + 0.997922i $$0.479478\pi$$
$$38$$ 0 0
$$39$$ −260.000 −1.06752
$$40$$ 0 0
$$41$$ −472.000 −1.79790 −0.898951 0.438048i $$-0.855670\pi$$
−0.898951 + 0.438048i $$0.855670\pi$$
$$42$$ 0 0
$$43$$ 110.000 0.390113 0.195056 0.980792i $$-0.437511\pi$$
0.195056 + 0.980792i $$0.437511\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 224.000 0.695186 0.347593 0.937645i $$-0.386999\pi$$
0.347593 + 0.937645i $$0.386999\pi$$
$$48$$ 0 0
$$49$$ 333.000 0.970845
$$50$$ 0 0
$$51$$ −230.000 −0.631499
$$52$$ 0 0
$$53$$ −754.000 −1.95415 −0.977074 0.212899i $$-0.931709\pi$$
−0.977074 + 0.212899i $$0.931709\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ −480.000 −1.11540
$$58$$ 0 0
$$59$$ 825.000 1.82044 0.910219 0.414127i $$-0.135913\pi$$
0.910219 + 0.414127i $$0.135913\pi$$
$$60$$ 0 0
$$61$$ −548.000 −1.15023 −0.575116 0.818072i $$-0.695043\pi$$
−0.575116 + 0.818072i $$0.695043\pi$$
$$62$$ 0 0
$$63$$ −52.0000 −0.103990
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 123.000 0.224281 0.112141 0.993692i $$-0.464229\pi$$
0.112141 + 0.993692i $$0.464229\pi$$
$$68$$ 0 0
$$69$$ −135.000 −0.235538
$$70$$ 0 0
$$71$$ 1001.00 1.67319 0.836597 0.547818i $$-0.184541\pi$$
0.836597 + 0.547818i $$0.184541\pi$$
$$72$$ 0 0
$$73$$ 1020.00 1.63537 0.817685 0.575666i $$-0.195257\pi$$
0.817685 + 0.575666i $$0.195257\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −286.000 −0.423282
$$78$$ 0 0
$$79$$ 526.000 0.749109 0.374555 0.927205i $$-0.377796\pi$$
0.374555 + 0.927205i $$0.377796\pi$$
$$80$$ 0 0
$$81$$ −671.000 −0.920439
$$82$$ 0 0
$$83$$ 158.000 0.208949 0.104474 0.994528i $$-0.466684\pi$$
0.104474 + 0.994528i $$0.466684\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 80.0000 0.0985851
$$88$$ 0 0
$$89$$ −1217.00 −1.44946 −0.724729 0.689034i $$-0.758035\pi$$
−0.724729 + 0.689034i $$0.758035\pi$$
$$90$$ 0 0
$$91$$ −1352.00 −1.55745
$$92$$ 0 0
$$93$$ −1465.00 −1.63348
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 263.000 0.275295 0.137647 0.990481i $$-0.456046\pi$$
0.137647 + 0.990481i $$0.456046\pi$$
$$98$$ 0 0
$$99$$ 22.0000 0.0223342
$$100$$ 0 0
$$101$$ −814.000 −0.801941 −0.400970 0.916091i $$-0.631327\pi$$
−0.400970 + 0.916091i $$0.631327\pi$$
$$102$$ 0 0
$$103$$ −376.000 −0.359693 −0.179847 0.983695i $$-0.557560\pi$$
−0.179847 + 0.983695i $$0.557560\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 1494.00 1.34982 0.674909 0.737901i $$-0.264183\pi$$
0.674909 + 0.737901i $$0.264183\pi$$
$$108$$ 0 0
$$109$$ 842.000 0.739899 0.369949 0.929052i $$-0.379375\pi$$
0.369949 + 0.929052i $$0.379375\pi$$
$$110$$ 0 0
$$111$$ 145.000 0.123989
$$112$$ 0 0
$$113$$ −1281.00 −1.06643 −0.533214 0.845980i $$-0.679016\pi$$
−0.533214 + 0.845980i $$0.679016\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 104.000 0.0821778
$$118$$ 0 0
$$119$$ −1196.00 −0.921321
$$120$$ 0 0
$$121$$ 121.000 0.0909091
$$122$$ 0 0
$$123$$ −2360.00 −1.73003
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −1736.00 −1.21295 −0.606477 0.795101i $$-0.707418\pi$$
−0.606477 + 0.795101i $$0.707418\pi$$
$$128$$ 0 0
$$129$$ 550.000 0.375386
$$130$$ 0 0
$$131$$ 6.00000 0.00400170 0.00200085 0.999998i $$-0.499363\pi$$
0.00200085 + 0.999998i $$0.499363\pi$$
$$132$$ 0 0
$$133$$ −2496.00 −1.62730
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 1439.00 0.897387 0.448694 0.893686i $$-0.351889\pi$$
0.448694 + 0.893686i $$0.351889\pi$$
$$138$$ 0 0
$$139$$ −318.000 −0.194046 −0.0970231 0.995282i $$-0.530932\pi$$
−0.0970231 + 0.995282i $$0.530932\pi$$
$$140$$ 0 0
$$141$$ 1120.00 0.668943
$$142$$ 0 0
$$143$$ 572.000 0.334497
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 1665.00 0.934196
$$148$$ 0 0
$$149$$ −922.000 −0.506934 −0.253467 0.967344i $$-0.581571\pi$$
−0.253467 + 0.967344i $$0.581571\pi$$
$$150$$ 0 0
$$151$$ −1030.00 −0.555101 −0.277550 0.960711i $$-0.589523\pi$$
−0.277550 + 0.960711i $$0.589523\pi$$
$$152$$ 0 0
$$153$$ 92.0000 0.0486128
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −1017.00 −0.516977 −0.258489 0.966014i $$-0.583224\pi$$
−0.258489 + 0.966014i $$0.583224\pi$$
$$158$$ 0 0
$$159$$ −3770.00 −1.88038
$$160$$ 0 0
$$161$$ −702.000 −0.343636
$$162$$ 0 0
$$163$$ 2444.00 1.17441 0.587205 0.809438i $$-0.300228\pi$$
0.587205 + 0.809438i $$0.300228\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 1452.00 0.672809 0.336405 0.941718i $$-0.390789\pi$$
0.336405 + 0.941718i $$0.390789\pi$$
$$168$$ 0 0
$$169$$ 507.000 0.230769
$$170$$ 0 0
$$171$$ 192.000 0.0858632
$$172$$ 0 0
$$173$$ −1914.00 −0.841149 −0.420574 0.907258i $$-0.638171\pi$$
−0.420574 + 0.907258i $$0.638171\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 4125.00 1.75172
$$178$$ 0 0
$$179$$ 1293.00 0.539907 0.269954 0.962873i $$-0.412992\pi$$
0.269954 + 0.962873i $$0.412992\pi$$
$$180$$ 0 0
$$181$$ 455.000 0.186850 0.0934251 0.995626i $$-0.470218\pi$$
0.0934251 + 0.995626i $$0.470218\pi$$
$$182$$ 0 0
$$183$$ −2740.00 −1.10681
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 506.000 0.197874
$$188$$ 0 0
$$189$$ −3770.00 −1.45094
$$190$$ 0 0
$$191$$ −1115.00 −0.422401 −0.211200 0.977443i $$-0.567737\pi$$
−0.211200 + 0.977443i $$0.567737\pi$$
$$192$$ 0 0
$$193$$ −5012.00 −1.86928 −0.934642 0.355591i $$-0.884280\pi$$
−0.934642 + 0.355591i $$0.884280\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 4146.00 1.49944 0.749721 0.661753i $$-0.230187\pi$$
0.749721 + 0.661753i $$0.230187\pi$$
$$198$$ 0 0
$$199$$ −1240.00 −0.441715 −0.220857 0.975306i $$-0.570886\pi$$
−0.220857 + 0.975306i $$0.570886\pi$$
$$200$$ 0 0
$$201$$ 615.000 0.215815
$$202$$ 0 0
$$203$$ 416.000 0.143830
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 54.0000 0.0181317
$$208$$ 0 0
$$209$$ 1056.00 0.349498
$$210$$ 0 0
$$211$$ −2820.00 −0.920080 −0.460040 0.887898i $$-0.652165\pi$$
−0.460040 + 0.887898i $$0.652165\pi$$
$$212$$ 0 0
$$213$$ 5005.00 1.61003
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ −7618.00 −2.38315
$$218$$ 0 0
$$219$$ 5100.00 1.57363
$$220$$ 0 0
$$221$$ 2392.00 0.728069
$$222$$ 0 0
$$223$$ −3695.00 −1.10958 −0.554788 0.831992i $$-0.687201\pi$$
−0.554788 + 0.831992i $$0.687201\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 486.000 0.142101 0.0710506 0.997473i $$-0.477365\pi$$
0.0710506 + 0.997473i $$0.477365\pi$$
$$228$$ 0 0
$$229$$ 4231.00 1.22093 0.610464 0.792044i $$-0.290983\pi$$
0.610464 + 0.792044i $$0.290983\pi$$
$$230$$ 0 0
$$231$$ −1430.00 −0.407303
$$232$$ 0 0
$$233$$ 3336.00 0.937977 0.468988 0.883204i $$-0.344619\pi$$
0.468988 + 0.883204i $$0.344619\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 2630.00 0.720831
$$238$$ 0 0
$$239$$ 3610.00 0.977036 0.488518 0.872554i $$-0.337538\pi$$
0.488518 + 0.872554i $$0.337538\pi$$
$$240$$ 0 0
$$241$$ −6408.00 −1.71276 −0.856381 0.516345i $$-0.827292\pi$$
−0.856381 + 0.516345i $$0.827292\pi$$
$$242$$ 0 0
$$243$$ 560.000 0.147835
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 4992.00 1.28596
$$248$$ 0 0
$$249$$ 790.000 0.201061
$$250$$ 0 0
$$251$$ −1787.00 −0.449380 −0.224690 0.974430i $$-0.572137\pi$$
−0.224690 + 0.974430i $$0.572137\pi$$
$$252$$ 0 0
$$253$$ 297.000 0.0738033
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 354.000 0.0859218 0.0429609 0.999077i $$-0.486321\pi$$
0.0429609 + 0.999077i $$0.486321\pi$$
$$258$$ 0 0
$$259$$ 754.000 0.180893
$$260$$ 0 0
$$261$$ −32.0000 −0.00758908
$$262$$ 0 0
$$263$$ 2026.00 0.475013 0.237507 0.971386i $$-0.423670\pi$$
0.237507 + 0.971386i $$0.423670\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ −6085.00 −1.39474
$$268$$ 0 0
$$269$$ −8750.00 −1.98326 −0.991630 0.129112i $$-0.958787\pi$$
−0.991630 + 0.129112i $$0.958787\pi$$
$$270$$ 0 0
$$271$$ −5036.00 −1.12884 −0.564419 0.825488i $$-0.690900\pi$$
−0.564419 + 0.825488i $$0.690900\pi$$
$$272$$ 0 0
$$273$$ −6760.00 −1.49866
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 4306.00 0.934016 0.467008 0.884253i $$-0.345332\pi$$
0.467008 + 0.884253i $$0.345332\pi$$
$$278$$ 0 0
$$279$$ 586.000 0.125745
$$280$$ 0 0
$$281$$ −1202.00 −0.255179 −0.127590 0.991827i $$-0.540724\pi$$
−0.127590 + 0.991827i $$0.540724\pi$$
$$282$$ 0 0
$$283$$ 6620.00 1.39052 0.695262 0.718757i $$-0.255288\pi$$
0.695262 + 0.718757i $$0.255288\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −12272.0 −2.52402
$$288$$ 0 0
$$289$$ −2797.00 −0.569306
$$290$$ 0 0
$$291$$ 1315.00 0.264903
$$292$$ 0 0
$$293$$ −6968.00 −1.38933 −0.694667 0.719331i $$-0.744448\pi$$
−0.694667 + 0.719331i $$0.744448\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 1595.00 0.311620
$$298$$ 0 0
$$299$$ 1404.00 0.271557
$$300$$ 0 0
$$301$$ 2860.00 0.547667
$$302$$ 0 0
$$303$$ −4070.00 −0.771668
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −7640.00 −1.42032 −0.710159 0.704041i $$-0.751377\pi$$
−0.710159 + 0.704041i $$0.751377\pi$$
$$308$$ 0 0
$$309$$ −1880.00 −0.346115
$$310$$ 0 0
$$311$$ −652.000 −0.118880 −0.0594398 0.998232i $$-0.518931\pi$$
−0.0594398 + 0.998232i $$0.518931\pi$$
$$312$$ 0 0
$$313$$ −8055.00 −1.45462 −0.727309 0.686310i $$-0.759229\pi$$
−0.727309 + 0.686310i $$0.759229\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 5675.00 1.00549 0.502744 0.864435i $$-0.332324\pi$$
0.502744 + 0.864435i $$0.332324\pi$$
$$318$$ 0 0
$$319$$ −176.000 −0.0308906
$$320$$ 0 0
$$321$$ 7470.00 1.29886
$$322$$ 0 0
$$323$$ 4416.00 0.760721
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 4210.00 0.711968
$$328$$ 0 0
$$329$$ 5824.00 0.975950
$$330$$ 0 0
$$331$$ −2245.00 −0.372799 −0.186399 0.982474i $$-0.559682\pi$$
−0.186399 + 0.982474i $$0.559682\pi$$
$$332$$ 0 0
$$333$$ −58.0000 −0.00954469
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 694.000 0.112180 0.0560899 0.998426i $$-0.482137\pi$$
0.0560899 + 0.998426i $$0.482137\pi$$
$$338$$ 0 0
$$339$$ −6405.00 −1.02617
$$340$$ 0 0
$$341$$ 3223.00 0.511834
$$342$$ 0 0
$$343$$ −260.000 −0.0409291
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −4092.00 −0.633055 −0.316527 0.948583i $$-0.602517\pi$$
−0.316527 + 0.948583i $$0.602517\pi$$
$$348$$ 0 0
$$349$$ 334.000 0.0512281 0.0256141 0.999672i $$-0.491846\pi$$
0.0256141 + 0.999672i $$0.491846\pi$$
$$350$$ 0 0
$$351$$ 7540.00 1.14660
$$352$$ 0 0
$$353$$ −891.000 −0.134343 −0.0671716 0.997741i $$-0.521397\pi$$
−0.0671716 + 0.997741i $$0.521397\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ −5980.00 −0.886541
$$358$$ 0 0
$$359$$ 2476.00 0.364006 0.182003 0.983298i $$-0.441742\pi$$
0.182003 + 0.983298i $$0.441742\pi$$
$$360$$ 0 0
$$361$$ 2357.00 0.343636
$$362$$ 0 0
$$363$$ 605.000 0.0874773
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −1379.00 −0.196140 −0.0980698 0.995180i $$-0.531267\pi$$
−0.0980698 + 0.995180i $$0.531267\pi$$
$$368$$ 0 0
$$369$$ 944.000 0.133178
$$370$$ 0 0
$$371$$ −19604.0 −2.74337
$$372$$ 0 0
$$373$$ 6266.00 0.869816 0.434908 0.900475i $$-0.356781\pi$$
0.434908 + 0.900475i $$0.356781\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −832.000 −0.113661
$$378$$ 0 0
$$379$$ 151.000 0.0204653 0.0102327 0.999948i $$-0.496743\pi$$
0.0102327 + 0.999948i $$0.496743\pi$$
$$380$$ 0 0
$$381$$ −8680.00 −1.16717
$$382$$ 0 0
$$383$$ 1989.00 0.265361 0.132680 0.991159i $$-0.457642\pi$$
0.132680 + 0.991159i $$0.457642\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −220.000 −0.0288972
$$388$$ 0 0
$$389$$ 6817.00 0.888523 0.444262 0.895897i $$-0.353466\pi$$
0.444262 + 0.895897i $$0.353466\pi$$
$$390$$ 0 0
$$391$$ 1242.00 0.160641
$$392$$ 0 0
$$393$$ 30.0000 0.00385064
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 4170.00 0.527170 0.263585 0.964636i $$-0.415095\pi$$
0.263585 + 0.964636i $$0.415095\pi$$
$$398$$ 0 0
$$399$$ −12480.0 −1.56587
$$400$$ 0 0
$$401$$ 10914.0 1.35915 0.679575 0.733606i $$-0.262164\pi$$
0.679575 + 0.733606i $$0.262164\pi$$
$$402$$ 0 0
$$403$$ 15236.0 1.88327
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −319.000 −0.0388507
$$408$$ 0 0
$$409$$ −1102.00 −0.133228 −0.0666142 0.997779i $$-0.521220\pi$$
−0.0666142 + 0.997779i $$0.521220\pi$$
$$410$$ 0 0
$$411$$ 7195.00 0.863511
$$412$$ 0 0
$$413$$ 21450.0 2.55565
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ −1590.00 −0.186721
$$418$$ 0 0
$$419$$ 11028.0 1.28581 0.642903 0.765947i $$-0.277730\pi$$
0.642903 + 0.765947i $$0.277730\pi$$
$$420$$ 0 0
$$421$$ 2622.00 0.303536 0.151768 0.988416i $$-0.451503\pi$$
0.151768 + 0.988416i $$0.451503\pi$$
$$422$$ 0 0
$$423$$ −448.000 −0.0514953
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −14248.0 −1.61478
$$428$$ 0 0
$$429$$ 2860.00 0.321870
$$430$$ 0 0
$$431$$ 16598.0 1.85498 0.927491 0.373845i $$-0.121961\pi$$
0.927491 + 0.373845i $$0.121961\pi$$
$$432$$ 0 0
$$433$$ 5763.00 0.639612 0.319806 0.947483i $$-0.396382\pi$$
0.319806 + 0.947483i $$0.396382\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 2592.00 0.283735
$$438$$ 0 0
$$439$$ −3128.00 −0.340071 −0.170036 0.985438i $$-0.554388\pi$$
−0.170036 + 0.985438i $$0.554388\pi$$
$$440$$ 0 0
$$441$$ −666.000 −0.0719145
$$442$$ 0 0
$$443$$ −6369.00 −0.683071 −0.341535 0.939869i $$-0.610947\pi$$
−0.341535 + 0.939869i $$0.610947\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ −4610.00 −0.487798
$$448$$ 0 0
$$449$$ 8691.00 0.913483 0.456741 0.889600i $$-0.349017\pi$$
0.456741 + 0.889600i $$0.349017\pi$$
$$450$$ 0 0
$$451$$ 5192.00 0.542088
$$452$$ 0 0
$$453$$ −5150.00 −0.534146
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −2260.00 −0.231331 −0.115666 0.993288i $$-0.536900\pi$$
−0.115666 + 0.993288i $$0.536900\pi$$
$$458$$ 0 0
$$459$$ 6670.00 0.678277
$$460$$ 0 0
$$461$$ −12756.0 −1.28873 −0.644367 0.764717i $$-0.722879\pi$$
−0.644367 + 0.764717i $$0.722879\pi$$
$$462$$ 0 0
$$463$$ 6887.00 0.691287 0.345644 0.938366i $$-0.387661\pi$$
0.345644 + 0.938366i $$0.387661\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 1535.00 0.152101 0.0760507 0.997104i $$-0.475769\pi$$
0.0760507 + 0.997104i $$0.475769\pi$$
$$468$$ 0 0
$$469$$ 3198.00 0.314861
$$470$$ 0 0
$$471$$ −5085.00 −0.497462
$$472$$ 0 0
$$473$$ −1210.00 −0.117623
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 1508.00 0.144752
$$478$$ 0 0
$$479$$ −17564.0 −1.67541 −0.837703 0.546126i $$-0.816102\pi$$
−0.837703 + 0.546126i $$0.816102\pi$$
$$480$$ 0 0
$$481$$ −1508.00 −0.142950
$$482$$ 0 0
$$483$$ −3510.00 −0.330664
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 7541.00 0.701674 0.350837 0.936437i $$-0.385897\pi$$
0.350837 + 0.936437i $$0.385897\pi$$
$$488$$ 0 0
$$489$$ 12220.0 1.13008
$$490$$ 0 0
$$491$$ 12552.0 1.15369 0.576847 0.816852i $$-0.304283\pi$$
0.576847 + 0.816852i $$0.304283\pi$$
$$492$$ 0 0
$$493$$ −736.000 −0.0672369
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 26026.0 2.34894
$$498$$ 0 0
$$499$$ −8396.00 −0.753220 −0.376610 0.926372i $$-0.622910\pi$$
−0.376610 + 0.926372i $$0.622910\pi$$
$$500$$ 0 0
$$501$$ 7260.00 0.647411
$$502$$ 0 0
$$503$$ 12194.0 1.08092 0.540461 0.841369i $$-0.318250\pi$$
0.540461 + 0.841369i $$0.318250\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 2535.00 0.222058
$$508$$ 0 0
$$509$$ 18295.0 1.59315 0.796573 0.604542i $$-0.206644\pi$$
0.796573 + 0.604542i $$0.206644\pi$$
$$510$$ 0 0
$$511$$ 26520.0 2.29584
$$512$$ 0 0
$$513$$ 13920.0 1.19802
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ −2464.00 −0.209607
$$518$$ 0 0
$$519$$ −9570.00 −0.809396
$$520$$ 0 0
$$521$$ 7101.00 0.597122 0.298561 0.954391i $$-0.403493\pi$$
0.298561 + 0.954391i $$0.403493\pi$$
$$522$$ 0 0
$$523$$ 4912.00 0.410682 0.205341 0.978690i $$-0.434170\pi$$
0.205341 + 0.978690i $$0.434170\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 13478.0 1.11406
$$528$$ 0 0
$$529$$ −11438.0 −0.940084
$$530$$ 0 0
$$531$$ −1650.00 −0.134847
$$532$$ 0 0
$$533$$ 24544.0 1.99459
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 6465.00 0.519526
$$538$$ 0 0
$$539$$ −3663.00 −0.292721
$$540$$ 0 0
$$541$$ 11496.0 0.913589 0.456794 0.889572i $$-0.348997\pi$$
0.456794 + 0.889572i $$0.348997\pi$$
$$542$$ 0 0
$$543$$ 2275.00 0.179797
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −19048.0 −1.48891 −0.744455 0.667673i $$-0.767291\pi$$
−0.744455 + 0.667673i $$0.767291\pi$$
$$548$$ 0 0
$$549$$ 1096.00 0.0852024
$$550$$ 0 0
$$551$$ −1536.00 −0.118758
$$552$$ 0 0
$$553$$ 13676.0 1.05165
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −10718.0 −0.815325 −0.407663 0.913133i $$-0.633656\pi$$
−0.407663 + 0.913133i $$0.633656\pi$$
$$558$$ 0 0
$$559$$ −5720.00 −0.432791
$$560$$ 0 0
$$561$$ 2530.00 0.190404
$$562$$ 0 0
$$563$$ −6660.00 −0.498553 −0.249277 0.968432i $$-0.580193\pi$$
−0.249277 + 0.968432i $$0.580193\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −17446.0 −1.29217
$$568$$ 0 0
$$569$$ −10960.0 −0.807499 −0.403750 0.914870i $$-0.632293\pi$$
−0.403750 + 0.914870i $$0.632293\pi$$
$$570$$ 0 0
$$571$$ 18596.0 1.36290 0.681452 0.731863i $$-0.261349\pi$$
0.681452 + 0.731863i $$0.261349\pi$$
$$572$$ 0 0
$$573$$ −5575.00 −0.406455
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 21119.0 1.52374 0.761868 0.647733i $$-0.224283\pi$$
0.761868 + 0.647733i $$0.224283\pi$$
$$578$$ 0 0
$$579$$ −25060.0 −1.79872
$$580$$ 0 0
$$581$$ 4108.00 0.293337
$$582$$ 0 0
$$583$$ 8294.00 0.589198
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 2836.00 0.199411 0.0997055 0.995017i $$-0.468210\pi$$
0.0997055 + 0.995017i $$0.468210\pi$$
$$588$$ 0 0
$$589$$ 28128.0 1.96773
$$590$$ 0 0
$$591$$ 20730.0 1.44284
$$592$$ 0 0
$$593$$ −18044.0 −1.24954 −0.624771 0.780808i $$-0.714808\pi$$
−0.624771 + 0.780808i $$0.714808\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −6200.00 −0.425040
$$598$$ 0 0
$$599$$ −9264.00 −0.631914 −0.315957 0.948773i $$-0.602326\pi$$
−0.315957 + 0.948773i $$0.602326\pi$$
$$600$$ 0 0
$$601$$ −19326.0 −1.31169 −0.655844 0.754897i $$-0.727687\pi$$
−0.655844 + 0.754897i $$0.727687\pi$$
$$602$$ 0 0
$$603$$ −246.000 −0.0166134
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ −10082.0 −0.674161 −0.337081 0.941476i $$-0.609439\pi$$
−0.337081 + 0.941476i $$0.609439\pi$$
$$608$$ 0 0
$$609$$ 2080.00 0.138400
$$610$$ 0 0
$$611$$ −11648.0 −0.771240
$$612$$ 0 0
$$613$$ −13088.0 −0.862348 −0.431174 0.902269i $$-0.641900\pi$$
−0.431174 + 0.902269i $$0.641900\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −23426.0 −1.52852 −0.764259 0.644910i $$-0.776895\pi$$
−0.764259 + 0.644910i $$0.776895\pi$$
$$618$$ 0 0
$$619$$ 23587.0 1.53157 0.765785 0.643097i $$-0.222351\pi$$
0.765785 + 0.643097i $$0.222351\pi$$
$$620$$ 0 0
$$621$$ 3915.00 0.252985
$$622$$ 0 0
$$623$$ −31642.0 −2.03485
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 5280.00 0.336304
$$628$$ 0 0
$$629$$ −1334.00 −0.0845629
$$630$$ 0 0
$$631$$ 19683.0 1.24179 0.620894 0.783895i $$-0.286770\pi$$
0.620894 + 0.783895i $$0.286770\pi$$
$$632$$ 0 0
$$633$$ −14100.0 −0.885347
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ −17316.0 −1.07706
$$638$$ 0 0
$$639$$ −2002.00 −0.123940
$$640$$ 0 0
$$641$$ 375.000 0.0231070 0.0115535 0.999933i $$-0.496322\pi$$
0.0115535 + 0.999933i $$0.496322\pi$$
$$642$$ 0 0
$$643$$ 21055.0 1.29133 0.645667 0.763619i $$-0.276579\pi$$
0.645667 + 0.763619i $$0.276579\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 6427.00 0.390528 0.195264 0.980751i $$-0.437444\pi$$
0.195264 + 0.980751i $$0.437444\pi$$
$$648$$ 0 0
$$649$$ −9075.00 −0.548883
$$650$$ 0 0
$$651$$ −38090.0 −2.29319
$$652$$ 0 0
$$653$$ 7617.00 0.456472 0.228236 0.973606i $$-0.426704\pi$$
0.228236 + 0.973606i $$0.426704\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ −2040.00 −0.121138
$$658$$ 0 0
$$659$$ −17630.0 −1.04214 −0.521068 0.853515i $$-0.674466\pi$$
−0.521068 + 0.853515i $$0.674466\pi$$
$$660$$ 0 0
$$661$$ 4605.00 0.270974 0.135487 0.990779i $$-0.456740\pi$$
0.135487 + 0.990779i $$0.456740\pi$$
$$662$$ 0 0
$$663$$ 11960.0 0.700585
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −432.000 −0.0250781
$$668$$ 0 0
$$669$$ −18475.0 −1.06769
$$670$$ 0 0
$$671$$ 6028.00 0.346808
$$672$$ 0 0
$$673$$ 2818.00 0.161406 0.0807028 0.996738i $$-0.474284\pi$$
0.0807028 + 0.996738i $$0.474284\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −8438.00 −0.479023 −0.239512 0.970894i $$-0.576987\pi$$
−0.239512 + 0.970894i $$0.576987\pi$$
$$678$$ 0 0
$$679$$ 6838.00 0.386478
$$680$$ 0 0
$$681$$ 2430.00 0.136737
$$682$$ 0 0
$$683$$ 17344.0 0.971669 0.485834 0.874051i $$-0.338516\pi$$
0.485834 + 0.874051i $$0.338516\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 21155.0 1.17484
$$688$$ 0 0
$$689$$ 39208.0 2.16793
$$690$$ 0 0
$$691$$ −3947.00 −0.217295 −0.108648 0.994080i $$-0.534652\pi$$
−0.108648 + 0.994080i $$0.534652\pi$$
$$692$$ 0 0
$$693$$ 572.000 0.0313542
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 21712.0 1.17991
$$698$$ 0 0
$$699$$ 16680.0 0.902569
$$700$$ 0 0
$$701$$ −7998.00 −0.430928 −0.215464 0.976512i $$-0.569126\pi$$
−0.215464 + 0.976512i $$0.569126\pi$$
$$702$$ 0 0
$$703$$ −2784.00 −0.149361
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −21164.0 −1.12582
$$708$$ 0 0
$$709$$ −881.000 −0.0466666 −0.0233333 0.999728i $$-0.507428\pi$$
−0.0233333 + 0.999728i $$0.507428\pi$$
$$710$$ 0 0
$$711$$ −1052.00 −0.0554896
$$712$$ 0 0
$$713$$ 7911.00 0.415525
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 18050.0 0.940153
$$718$$ 0 0
$$719$$ −26093.0 −1.35341 −0.676707 0.736252i $$-0.736594\pi$$
−0.676707 + 0.736252i $$0.736594\pi$$
$$720$$ 0 0
$$721$$ −9776.00 −0.504962
$$722$$ 0 0
$$723$$ −32040.0 −1.64811
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 7481.00 0.381644 0.190822 0.981625i $$-0.438885\pi$$
0.190822 + 0.981625i $$0.438885\pi$$
$$728$$ 0 0
$$729$$ 20917.0 1.06269
$$730$$ 0 0
$$731$$ −5060.00 −0.256020
$$732$$ 0 0
$$733$$ −17788.0 −0.896337 −0.448168 0.893949i $$-0.647923\pi$$
−0.448168 + 0.893949i $$0.647923\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −1353.00 −0.0676233
$$738$$ 0 0
$$739$$ −32182.0 −1.60194 −0.800970 0.598704i $$-0.795683\pi$$
−0.800970 + 0.598704i $$0.795683\pi$$
$$740$$ 0 0
$$741$$ 24960.0 1.23742
$$742$$ 0 0
$$743$$ 32044.0 1.58221 0.791104 0.611682i $$-0.209507\pi$$
0.791104 + 0.611682i $$0.209507\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ −316.000 −0.0154777
$$748$$ 0 0
$$749$$ 38844.0 1.89497
$$750$$ 0 0
$$751$$ −33779.0 −1.64130 −0.820648 0.571434i $$-0.806387\pi$$
−0.820648 + 0.571434i $$0.806387\pi$$
$$752$$ 0 0
$$753$$ −8935.00 −0.432416
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 15630.0 0.750439 0.375219 0.926936i $$-0.377567\pi$$
0.375219 + 0.926936i $$0.377567\pi$$
$$758$$ 0 0
$$759$$ 1485.00 0.0710172
$$760$$ 0 0
$$761$$ 1948.00 0.0927923 0.0463962 0.998923i $$-0.485226\pi$$
0.0463962 + 0.998923i $$0.485226\pi$$
$$762$$ 0 0
$$763$$ 21892.0 1.03872
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −42900.0 −2.01959
$$768$$ 0 0
$$769$$ −17420.0 −0.816881 −0.408440 0.912785i $$-0.633927\pi$$
−0.408440 + 0.912785i $$0.633927\pi$$
$$770$$ 0 0
$$771$$ 1770.00 0.0826783
$$772$$ 0 0
$$773$$ −11122.0 −0.517504 −0.258752 0.965944i $$-0.583311\pi$$
−0.258752 + 0.965944i $$0.583311\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 3770.00 0.174064
$$778$$ 0 0
$$779$$ 45312.0 2.08404
$$780$$ 0 0
$$781$$ −11011.0 −0.504487
$$782$$ 0 0
$$783$$ −2320.00 −0.105888
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ −29648.0 −1.34287 −0.671434 0.741064i $$-0.734321\pi$$
−0.671434 + 0.741064i $$0.734321\pi$$
$$788$$ 0 0
$$789$$ 10130.0 0.457082
$$790$$ 0 0
$$791$$ −33306.0 −1.49712
$$792$$ 0 0
$$793$$ 28496.0 1.27607
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 23219.0 1.03194 0.515972 0.856606i $$-0.327431\pi$$
0.515972 + 0.856606i $$0.327431\pi$$
$$798$$ 0 0
$$799$$ −10304.0 −0.456232
$$800$$ 0 0
$$801$$ 2434.00 0.107367
$$802$$ 0 0
$$803$$ −11220.0 −0.493082
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ −43750.0 −1.90839
$$808$$ 0 0
$$809$$ 9232.00 0.401211 0.200606 0.979672i $$-0.435709\pi$$
0.200606 + 0.979672i $$0.435709\pi$$
$$810$$ 0 0
$$811$$ −32286.0 −1.39792 −0.698961 0.715160i $$-0.746354\pi$$
−0.698961 + 0.715160i $$0.746354\pi$$
$$812$$ 0 0
$$813$$ −25180.0 −1.08623
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ −10560.0 −0.452200
$$818$$ 0 0
$$819$$ 2704.00 0.115367
$$820$$ 0 0
$$821$$ −31706.0 −1.34780 −0.673902 0.738821i $$-0.735383\pi$$
−0.673902 + 0.738821i $$0.735383\pi$$
$$822$$ 0 0
$$823$$ −41139.0 −1.74242 −0.871212 0.490906i $$-0.836666\pi$$
−0.871212 + 0.490906i $$0.836666\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 15252.0 0.641311 0.320655 0.947196i $$-0.396097\pi$$
0.320655 + 0.947196i $$0.396097\pi$$
$$828$$ 0 0
$$829$$ 369.000 0.0154595 0.00772973 0.999970i $$-0.497540\pi$$
0.00772973 + 0.999970i $$0.497540\pi$$
$$830$$ 0 0
$$831$$ 21530.0 0.898757
$$832$$ 0 0
$$833$$ −15318.0 −0.637140
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 42485.0 1.75448
$$838$$ 0 0
$$839$$ −10257.0 −0.422063 −0.211032 0.977479i $$-0.567682\pi$$
−0.211032 + 0.977479i $$0.567682\pi$$
$$840$$ 0 0
$$841$$ −24133.0 −0.989503
$$842$$ 0 0
$$843$$ −6010.00 −0.245546
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 3146.00 0.127624
$$848$$ 0 0
$$849$$ 33100.0 1.33803
$$850$$ 0 0
$$851$$ −783.000 −0.0315404
$$852$$ 0 0
$$853$$ 34386.0 1.38025 0.690126 0.723690i $$-0.257555\pi$$
0.690126 + 0.723690i $$0.257555\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 23464.0 0.935257 0.467628 0.883925i $$-0.345109\pi$$
0.467628 + 0.883925i $$0.345109\pi$$
$$858$$ 0 0
$$859$$ −22475.0 −0.892709 −0.446355 0.894856i $$-0.647278\pi$$
−0.446355 + 0.894856i $$0.647278\pi$$
$$860$$ 0 0
$$861$$ −61360.0 −2.42874
$$862$$ 0 0
$$863$$ −2880.00 −0.113599 −0.0567997 0.998386i $$-0.518090\pi$$
−0.0567997 + 0.998386i $$0.518090\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ −13985.0 −0.547815
$$868$$ 0 0
$$869$$ −5786.00 −0.225865
$$870$$ 0 0
$$871$$ −6396.00 −0.248818
$$872$$ 0 0
$$873$$ −526.000 −0.0203922
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 11084.0 0.426773 0.213387 0.976968i $$-0.431551\pi$$
0.213387 + 0.976968i $$0.431551\pi$$
$$878$$ 0 0
$$879$$ −34840.0 −1.33689
$$880$$ 0 0
$$881$$ 41797.0 1.59838 0.799192 0.601076i $$-0.205261\pi$$
0.799192 + 0.601076i $$0.205261\pi$$
$$882$$ 0 0
$$883$$ −23780.0 −0.906298 −0.453149 0.891435i $$-0.649699\pi$$
−0.453149 + 0.891435i $$0.649699\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 14334.0 0.542603 0.271301 0.962494i $$-0.412546\pi$$
0.271301 + 0.962494i $$0.412546\pi$$
$$888$$ 0 0
$$889$$ −45136.0 −1.70283
$$890$$ 0 0
$$891$$ 7381.00 0.277523
$$892$$ 0 0
$$893$$ −21504.0 −0.805827
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 7020.00 0.261305
$$898$$ 0 0
$$899$$ −4688.00 −0.173919
$$900$$ 0 0
$$901$$ 34684.0 1.28245
$$902$$ 0 0
$$903$$ 14300.0 0.526992
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −25716.0 −0.941440 −0.470720 0.882283i $$-0.656006\pi$$
−0.470720 + 0.882283i $$0.656006\pi$$
$$908$$ 0 0
$$909$$ 1628.00 0.0594030
$$910$$ 0 0
$$911$$ −28300.0 −1.02922 −0.514611 0.857424i $$-0.672064\pi$$
−0.514611 + 0.857424i $$0.672064\pi$$
$$912$$ 0 0
$$913$$ −1738.00 −0.0630004
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 156.000 0.00561786
$$918$$ 0 0
$$919$$ 21410.0 0.768499 0.384250 0.923229i $$-0.374460\pi$$
0.384250 + 0.923229i $$0.374460\pi$$
$$920$$ 0 0
$$921$$ −38200.0 −1.36670
$$922$$ 0 0
$$923$$ −52052.0 −1.85624
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 752.000 0.0266439
$$928$$ 0 0
$$929$$ 19938.0 0.704138 0.352069 0.935974i $$-0.385478\pi$$
0.352069 + 0.935974i $$0.385478\pi$$
$$930$$ 0 0
$$931$$ −31968.0 −1.12536
$$932$$ 0 0
$$933$$ −3260.00 −0.114392
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −26728.0 −0.931874 −0.465937 0.884818i $$-0.654283\pi$$
−0.465937 + 0.884818i $$0.654283\pi$$
$$938$$ 0 0
$$939$$ −40275.0 −1.39971
$$940$$ 0 0
$$941$$ 8634.00 0.299108 0.149554 0.988754i $$-0.452216\pi$$
0.149554 + 0.988754i $$0.452216\pi$$
$$942$$ 0 0
$$943$$ 12744.0 0.440087
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −24841.0 −0.852401 −0.426201 0.904629i $$-0.640148\pi$$
−0.426201 + 0.904629i $$0.640148\pi$$
$$948$$ 0 0
$$949$$ −53040.0 −1.81428
$$950$$ 0 0
$$951$$ 28375.0 0.967531
$$952$$ 0 0
$$953$$ −51234.0 −1.74148 −0.870741 0.491742i $$-0.836360\pi$$
−0.870741 + 0.491742i $$0.836360\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ −880.000 −0.0297245
$$958$$ 0 0
$$959$$ 37414.0 1.25981
$$960$$ 0 0
$$961$$ 56058.0 1.88171
$$962$$ 0 0
$$963$$ −2988.00 −0.0999865
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 26752.0 0.889645 0.444822 0.895619i $$-0.353267\pi$$
0.444822 + 0.895619i $$0.353267\pi$$
$$968$$ 0 0
$$969$$ 22080.0 0.732004
$$970$$ 0 0
$$971$$ 21155.0 0.699172 0.349586 0.936904i $$-0.386322\pi$$
0.349586 + 0.936904i $$0.386322\pi$$
$$972$$ 0 0
$$973$$ −8268.00 −0.272415
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 56323.0 1.84435 0.922176 0.386770i $$-0.126409\pi$$
0.922176 + 0.386770i $$0.126409\pi$$
$$978$$ 0 0
$$979$$ 13387.0 0.437028
$$980$$ 0 0
$$981$$ −1684.00 −0.0548073
$$982$$ 0 0
$$983$$ −24683.0 −0.800880 −0.400440 0.916323i $$-0.631143\pi$$
−0.400440 + 0.916323i $$0.631143\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 29120.0 0.939108
$$988$$ 0 0
$$989$$ −2970.00 −0.0954909
$$990$$ 0 0
$$991$$ −26816.0 −0.859574 −0.429787 0.902930i $$-0.641411\pi$$
−0.429787 + 0.902930i $$0.641411\pi$$
$$992$$ 0 0
$$993$$ −11225.0 −0.358726
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ −18614.0 −0.591285 −0.295643 0.955299i $$-0.595534\pi$$
−0.295643 + 0.955299i $$0.595534\pi$$
$$998$$ 0 0
$$999$$ −4205.00 −0.133173
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.4.a.d.1.1 1
5.2 odd 4 1100.4.b.c.749.1 2
5.3 odd 4 1100.4.b.c.749.2 2
5.4 even 2 44.4.a.a.1.1 1
15.14 odd 2 396.4.a.e.1.1 1
20.19 odd 2 176.4.a.e.1.1 1
35.34 odd 2 2156.4.a.b.1.1 1
40.19 odd 2 704.4.a.c.1.1 1
40.29 even 2 704.4.a.j.1.1 1
55.54 odd 2 484.4.a.a.1.1 1
60.59 even 2 1584.4.a.p.1.1 1
220.219 even 2 1936.4.a.m.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
44.4.a.a.1.1 1 5.4 even 2
176.4.a.e.1.1 1 20.19 odd 2
396.4.a.e.1.1 1 15.14 odd 2
484.4.a.a.1.1 1 55.54 odd 2
704.4.a.c.1.1 1 40.19 odd 2
704.4.a.j.1.1 1 40.29 even 2
1100.4.a.d.1.1 1 1.1 even 1 trivial
1100.4.b.c.749.1 2 5.2 odd 4
1100.4.b.c.749.2 2 5.3 odd 4
1584.4.a.p.1.1 1 60.59 even 2
1936.4.a.m.1.1 1 220.219 even 2
2156.4.a.b.1.1 1 35.34 odd 2