Properties

Label 1100.3.f.a
Level $1100$
Weight $3$
Character orbit 1100.f
Self dual yes
Analytic conductor $29.973$
Analytic rank $0$
Dimension $2$
CM discriminant -11
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,3,Mod(901,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.901");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 2) q^{3} + (5 \beta + 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta - 2) q^{3} + (5 \beta + 3) q^{9} - 11 q^{11} + ( - 9 \beta + 22) q^{23} + ( - 9 \beta - 28) q^{27} + ( - 15 \beta + 26) q^{31} + (11 \beta + 22) q^{33} + ( - 21 \beta - 2) q^{37} - 50 q^{47} + 49 q^{49} + 70 q^{53} + ( - 15 \beta - 46) q^{59} + (39 \beta - 2) q^{67} + (5 \beta + 28) q^{69} + ( - 15 \beta + 74) q^{71} + (10 \beta + 101) q^{81} + (45 \beta + 26) q^{89} + (19 \beta + 68) q^{93} + (51 \beta + 22) q^{97} + ( - 55 \beta - 33) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{3} + 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 5 q^{3} + 11 q^{9} - 22 q^{11} + 35 q^{23} - 65 q^{27} + 37 q^{31} + 55 q^{33} - 25 q^{37} - 100 q^{47} + 98 q^{49} + 140 q^{53} - 107 q^{59} + 35 q^{67} + 61 q^{69} + 133 q^{71} + 212 q^{81} + 97 q^{89} + 155 q^{93} + 95 q^{97} - 121 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
901.1
3.37228
−2.37228
0 −5.37228 0 0 0 0 0 19.8614 0
901.2 0 0.372281 0 0 0 0 0 −8.86141 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.3.f.a 2
5.b even 2 1 44.3.d.a 2
5.c odd 4 2 1100.3.e.a 4
11.b odd 2 1 CM 1100.3.f.a 2
15.d odd 2 1 396.3.f.a 2
20.d odd 2 1 176.3.h.b 2
35.c odd 2 1 2156.3.h.a 2
40.e odd 2 1 704.3.h.f 2
40.f even 2 1 704.3.h.c 2
55.d odd 2 1 44.3.d.a 2
55.e even 4 2 1100.3.e.a 4
55.h odd 10 4 484.3.f.b 8
55.j even 10 4 484.3.f.b 8
60.h even 2 1 1584.3.j.c 2
165.d even 2 1 396.3.f.a 2
220.g even 2 1 176.3.h.b 2
385.h even 2 1 2156.3.h.a 2
440.c even 2 1 704.3.h.f 2
440.o odd 2 1 704.3.h.c 2
660.g odd 2 1 1584.3.j.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.3.d.a 2 5.b even 2 1
44.3.d.a 2 55.d odd 2 1
176.3.h.b 2 20.d odd 2 1
176.3.h.b 2 220.g even 2 1
396.3.f.a 2 15.d odd 2 1
396.3.f.a 2 165.d even 2 1
484.3.f.b 8 55.h odd 10 4
484.3.f.b 8 55.j even 10 4
704.3.h.c 2 40.f even 2 1
704.3.h.c 2 440.o odd 2 1
704.3.h.f 2 40.e odd 2 1
704.3.h.f 2 440.c even 2 1
1100.3.e.a 4 5.c odd 4 2
1100.3.e.a 4 55.e even 4 2
1100.3.f.a 2 1.a even 1 1 trivial
1100.3.f.a 2 11.b odd 2 1 CM
1584.3.j.c 2 60.h even 2 1
1584.3.j.c 2 660.g odd 2 1
2156.3.h.a 2 35.c odd 2 1
2156.3.h.a 2 385.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 5T_{3} - 2 \) acting on \(S_{3}^{\mathrm{new}}(1100, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 5T - 2 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 35T - 362 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 37T - 1514 \) Copy content Toggle raw display
$37$ \( T^{2} + 25T - 3482 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( (T + 50)^{2} \) Copy content Toggle raw display
$53$ \( (T - 70)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 107T + 1006 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 35T - 12242 \) Copy content Toggle raw display
$71$ \( T^{2} - 133T + 2566 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 97T - 14354 \) Copy content Toggle raw display
$97$ \( T^{2} - 95T - 19202 \) Copy content Toggle raw display
show more
show less