Properties

Label 1100.3.e.c.549.15
Level $1100$
Weight $3$
Character 1100.549
Analytic conductor $29.973$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,3,Mod(549,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.549"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 174 x^{14} + 10969 x^{12} + 318076 x^{10} + 4442560 x^{8} + 28982576 x^{6} + 77210944 x^{4} + \cdots + 26790976 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 549.15
Root \(-3.45778i\) of defining polynomial
Character \(\chi\) \(=\) 1100.549
Dual form 1100.3.e.c.549.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.69333i q^{3} -7.54848 q^{7} -13.0273 q^{9} +(5.78376 + 9.35672i) q^{11} +0.829047 q^{13} -29.8374 q^{17} +36.2155i q^{19} -35.4275i q^{21} -29.7480i q^{23} -18.9015i q^{27} -10.0356i q^{29} +34.6221 q^{31} +(-43.9141 + 27.1451i) q^{33} -61.9103i q^{37} +3.89099i q^{39} +11.1392i q^{41} -39.4907 q^{43} +6.35892i q^{47} +7.97952 q^{49} -140.037i q^{51} -56.5691i q^{53} -169.971 q^{57} -70.4682 q^{59} +8.41148i q^{61} +98.3364 q^{63} -18.7532i q^{67} +139.617 q^{69} -3.79141 q^{71} +70.9217 q^{73} +(-43.6586 - 70.6290i) q^{77} -127.952i q^{79} -28.5349 q^{81} +100.235 q^{83} +47.1004 q^{87} +66.0818 q^{89} -6.25804 q^{91} +162.493i q^{93} -1.65712i q^{97} +(-75.3468 - 121.893i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{9} + 6 q^{11} + 28 q^{31} - 28 q^{49} - 256 q^{59} + 352 q^{69} - 68 q^{71} - 256 q^{81} + 292 q^{89} + 228 q^{91} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.69333i 1.56444i 0.623001 + 0.782221i \(0.285913\pi\)
−0.623001 + 0.782221i \(0.714087\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −7.54848 −1.07835 −0.539177 0.842192i \(-0.681265\pi\)
−0.539177 + 0.842192i \(0.681265\pi\)
\(8\) 0 0
\(9\) −13.0273 −1.44748
\(10\) 0 0
\(11\) 5.78376 + 9.35672i 0.525796 + 0.850611i
\(12\) 0 0
\(13\) 0.829047 0.0637728 0.0318864 0.999491i \(-0.489849\pi\)
0.0318864 + 0.999491i \(0.489849\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −29.8374 −1.75514 −0.877570 0.479449i \(-0.840837\pi\)
−0.877570 + 0.479449i \(0.840837\pi\)
\(18\) 0 0
\(19\) 36.2155i 1.90608i 0.302846 + 0.953040i \(0.402063\pi\)
−0.302846 + 0.953040i \(0.597937\pi\)
\(20\) 0 0
\(21\) 35.4275i 1.68702i
\(22\) 0 0
\(23\) 29.7480i 1.29339i −0.762749 0.646695i \(-0.776151\pi\)
0.762749 0.646695i \(-0.223849\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 18.9015i 0.700056i
\(28\) 0 0
\(29\) 10.0356i 0.346056i −0.984917 0.173028i \(-0.944645\pi\)
0.984917 0.173028i \(-0.0553551\pi\)
\(30\) 0 0
\(31\) 34.6221 1.11684 0.558422 0.829557i \(-0.311407\pi\)
0.558422 + 0.829557i \(0.311407\pi\)
\(32\) 0 0
\(33\) −43.9141 + 27.1451i −1.33073 + 0.822578i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 61.9103i 1.67325i −0.547775 0.836626i \(-0.684525\pi\)
0.547775 0.836626i \(-0.315475\pi\)
\(38\) 0 0
\(39\) 3.89099i 0.0997689i
\(40\) 0 0
\(41\) 11.1392i 0.271687i 0.990730 + 0.135844i \(0.0433745\pi\)
−0.990730 + 0.135844i \(0.956626\pi\)
\(42\) 0 0
\(43\) −39.4907 −0.918388 −0.459194 0.888336i \(-0.651862\pi\)
−0.459194 + 0.888336i \(0.651862\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.35892i 0.135296i 0.997709 + 0.0676481i \(0.0215495\pi\)
−0.997709 + 0.0676481i \(0.978450\pi\)
\(48\) 0 0
\(49\) 7.97952 0.162847
\(50\) 0 0
\(51\) 140.037i 2.74582i
\(52\) 0 0
\(53\) 56.5691i 1.06734i −0.845693 0.533670i \(-0.820812\pi\)
0.845693 0.533670i \(-0.179188\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −169.971 −2.98195
\(58\) 0 0
\(59\) −70.4682 −1.19438 −0.597188 0.802101i \(-0.703715\pi\)
−0.597188 + 0.802101i \(0.703715\pi\)
\(60\) 0 0
\(61\) 8.41148i 0.137893i 0.997620 + 0.0689466i \(0.0219638\pi\)
−0.997620 + 0.0689466i \(0.978036\pi\)
\(62\) 0 0
\(63\) 98.3364 1.56090
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 18.7532i 0.279899i −0.990159 0.139950i \(-0.955306\pi\)
0.990159 0.139950i \(-0.0446940\pi\)
\(68\) 0 0
\(69\) 139.617 2.02343
\(70\) 0 0
\(71\) −3.79141 −0.0534001 −0.0267001 0.999643i \(-0.508500\pi\)
−0.0267001 + 0.999643i \(0.508500\pi\)
\(72\) 0 0
\(73\) 70.9217 0.971531 0.485765 0.874089i \(-0.338541\pi\)
0.485765 + 0.874089i \(0.338541\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −43.6586 70.6290i −0.566994 0.917259i
\(78\) 0 0
\(79\) 127.952i 1.61965i −0.586671 0.809825i \(-0.699562\pi\)
0.586671 0.809825i \(-0.300438\pi\)
\(80\) 0 0
\(81\) −28.5349 −0.352283
\(82\) 0 0
\(83\) 100.235 1.20765 0.603826 0.797117i \(-0.293642\pi\)
0.603826 + 0.797117i \(0.293642\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 47.1004 0.541384
\(88\) 0 0
\(89\) 66.0818 0.742493 0.371246 0.928534i \(-0.378931\pi\)
0.371246 + 0.928534i \(0.378931\pi\)
\(90\) 0 0
\(91\) −6.25804 −0.0687697
\(92\) 0 0
\(93\) 162.493i 1.74724i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.65712i 0.0170838i −0.999964 0.00854188i \(-0.997281\pi\)
0.999964 0.00854188i \(-0.00271900\pi\)
\(98\) 0 0
\(99\) −75.3468 121.893i −0.761079 1.23124i
\(100\) 0 0
\(101\) 75.2305i 0.744857i 0.928061 + 0.372428i \(0.121475\pi\)
−0.928061 + 0.372428i \(0.878525\pi\)
\(102\) 0 0
\(103\) 135.557i 1.31609i 0.752980 + 0.658043i \(0.228615\pi\)
−0.752980 + 0.658043i \(0.771385\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −80.0123 −0.747779 −0.373889 0.927473i \(-0.621976\pi\)
−0.373889 + 0.927473i \(0.621976\pi\)
\(108\) 0 0
\(109\) 85.3259i 0.782806i −0.920219 0.391403i \(-0.871990\pi\)
0.920219 0.391403i \(-0.128010\pi\)
\(110\) 0 0
\(111\) 290.565 2.61770
\(112\) 0 0
\(113\) 139.235i 1.23217i 0.787680 + 0.616084i \(0.211282\pi\)
−0.787680 + 0.616084i \(0.788718\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −10.8003 −0.0923098
\(118\) 0 0
\(119\) 225.227 1.89266
\(120\) 0 0
\(121\) −54.0963 + 108.234i −0.447077 + 0.894495i
\(122\) 0 0
\(123\) −52.2798 −0.425039
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −19.3840 −0.152630 −0.0763148 0.997084i \(-0.524315\pi\)
−0.0763148 + 0.997084i \(0.524315\pi\)
\(128\) 0 0
\(129\) 185.343i 1.43676i
\(130\) 0 0
\(131\) 206.006i 1.57257i −0.617866 0.786284i \(-0.712002\pi\)
0.617866 0.786284i \(-0.287998\pi\)
\(132\) 0 0
\(133\) 273.372i 2.05543i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 99.8842i 0.729082i 0.931187 + 0.364541i \(0.118774\pi\)
−0.931187 + 0.364541i \(0.881226\pi\)
\(138\) 0 0
\(139\) 111.069i 0.799059i −0.916720 0.399530i \(-0.869173\pi\)
0.916720 0.399530i \(-0.130827\pi\)
\(140\) 0 0
\(141\) −29.8445 −0.211663
\(142\) 0 0
\(143\) 4.79500 + 7.75716i 0.0335315 + 0.0542458i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 37.4505i 0.254765i
\(148\) 0 0
\(149\) 90.7317i 0.608937i −0.952522 0.304469i \(-0.901521\pi\)
0.952522 0.304469i \(-0.0984789\pi\)
\(150\) 0 0
\(151\) 50.8689i 0.336880i −0.985712 0.168440i \(-0.946127\pi\)
0.985712 0.168440i \(-0.0538729\pi\)
\(152\) 0 0
\(153\) 388.701 2.54053
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.6351i 0.0932170i 0.998913 + 0.0466085i \(0.0148413\pi\)
−0.998913 + 0.0466085i \(0.985159\pi\)
\(158\) 0 0
\(159\) 265.497 1.66979
\(160\) 0 0
\(161\) 224.552i 1.39473i
\(162\) 0 0
\(163\) 33.1487i 0.203366i −0.994817 0.101683i \(-0.967577\pi\)
0.994817 0.101683i \(-0.0324228\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 236.993 1.41912 0.709558 0.704647i \(-0.248894\pi\)
0.709558 + 0.704647i \(0.248894\pi\)
\(168\) 0 0
\(169\) −168.313 −0.995933
\(170\) 0 0
\(171\) 471.791i 2.75901i
\(172\) 0 0
\(173\) −273.880 −1.58312 −0.791561 0.611090i \(-0.790731\pi\)
−0.791561 + 0.611090i \(0.790731\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 330.730i 1.86853i
\(178\) 0 0
\(179\) 309.422 1.72861 0.864307 0.502964i \(-0.167757\pi\)
0.864307 + 0.502964i \(0.167757\pi\)
\(180\) 0 0
\(181\) −259.071 −1.43133 −0.715667 0.698442i \(-0.753877\pi\)
−0.715667 + 0.698442i \(0.753877\pi\)
\(182\) 0 0
\(183\) −39.4778 −0.215726
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −172.572 279.180i −0.922846 1.49294i
\(188\) 0 0
\(189\) 142.678i 0.754908i
\(190\) 0 0
\(191\) −124.976 −0.654323 −0.327162 0.944968i \(-0.606092\pi\)
−0.327162 + 0.944968i \(0.606092\pi\)
\(192\) 0 0
\(193\) 95.0964 0.492728 0.246364 0.969177i \(-0.420764\pi\)
0.246364 + 0.969177i \(0.420764\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −286.580 −1.45472 −0.727361 0.686255i \(-0.759253\pi\)
−0.727361 + 0.686255i \(0.759253\pi\)
\(198\) 0 0
\(199\) −382.548 −1.92235 −0.961176 0.275936i \(-0.911012\pi\)
−0.961176 + 0.275936i \(0.911012\pi\)
\(200\) 0 0
\(201\) 88.0151 0.437886
\(202\) 0 0
\(203\) 75.7536i 0.373171i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 387.536i 1.87215i
\(208\) 0 0
\(209\) −338.858 + 209.462i −1.62133 + 1.00221i
\(210\) 0 0
\(211\) 234.103i 1.10949i 0.832019 + 0.554747i \(0.187185\pi\)
−0.832019 + 0.554747i \(0.812815\pi\)
\(212\) 0 0
\(213\) 17.7943i 0.0835414i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −261.344 −1.20435
\(218\) 0 0
\(219\) 332.859i 1.51990i
\(220\) 0 0
\(221\) −24.7366 −0.111930
\(222\) 0 0
\(223\) 152.390i 0.683365i 0.939815 + 0.341682i \(0.110997\pi\)
−0.939815 + 0.341682i \(0.889003\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −70.2453 −0.309451 −0.154725 0.987958i \(-0.549449\pi\)
−0.154725 + 0.987958i \(0.549449\pi\)
\(228\) 0 0
\(229\) −166.019 −0.724973 −0.362486 0.931989i \(-0.618072\pi\)
−0.362486 + 0.931989i \(0.618072\pi\)
\(230\) 0 0
\(231\) 331.485 204.904i 1.43500 0.887030i
\(232\) 0 0
\(233\) −234.357 −1.00583 −0.502913 0.864337i \(-0.667738\pi\)
−0.502913 + 0.864337i \(0.667738\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 600.522 2.53385
\(238\) 0 0
\(239\) 155.065i 0.648808i −0.945919 0.324404i \(-0.894836\pi\)
0.945919 0.324404i \(-0.105164\pi\)
\(240\) 0 0
\(241\) 276.909i 1.14900i 0.818505 + 0.574500i \(0.194803\pi\)
−0.818505 + 0.574500i \(0.805197\pi\)
\(242\) 0 0
\(243\) 304.037i 1.25118i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 30.0243i 0.121556i
\(248\) 0 0
\(249\) 470.436i 1.88930i
\(250\) 0 0
\(251\) −5.23446 −0.0208544 −0.0104272 0.999946i \(-0.503319\pi\)
−0.0104272 + 0.999946i \(0.503319\pi\)
\(252\) 0 0
\(253\) 278.343 172.055i 1.10017 0.680059i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 222.515i 0.865818i −0.901438 0.432909i \(-0.857487\pi\)
0.901438 0.432909i \(-0.142513\pi\)
\(258\) 0 0
\(259\) 467.328i 1.80436i
\(260\) 0 0
\(261\) 130.737i 0.500909i
\(262\) 0 0
\(263\) −401.324 −1.52595 −0.762973 0.646431i \(-0.776261\pi\)
−0.762973 + 0.646431i \(0.776261\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 310.144i 1.16159i
\(268\) 0 0
\(269\) 77.6187 0.288545 0.144273 0.989538i \(-0.453916\pi\)
0.144273 + 0.989538i \(0.453916\pi\)
\(270\) 0 0
\(271\) 192.430i 0.710072i 0.934853 + 0.355036i \(0.115531\pi\)
−0.934853 + 0.355036i \(0.884469\pi\)
\(272\) 0 0
\(273\) 29.3710i 0.107586i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −299.161 −1.08000 −0.540002 0.841664i \(-0.681576\pi\)
−0.540002 + 0.841664i \(0.681576\pi\)
\(278\) 0 0
\(279\) −451.034 −1.61661
\(280\) 0 0
\(281\) 101.945i 0.362795i −0.983410 0.181398i \(-0.941938\pi\)
0.983410 0.181398i \(-0.0580621\pi\)
\(282\) 0 0
\(283\) −381.022 −1.34637 −0.673183 0.739476i \(-0.735073\pi\)
−0.673183 + 0.739476i \(0.735073\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 84.0838i 0.292975i
\(288\) 0 0
\(289\) 601.269 2.08052
\(290\) 0 0
\(291\) 7.77743 0.0267265
\(292\) 0 0
\(293\) −250.254 −0.854110 −0.427055 0.904226i \(-0.640449\pi\)
−0.427055 + 0.904226i \(0.640449\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 176.856 109.322i 0.595475 0.368086i
\(298\) 0 0
\(299\) 24.6624i 0.0824831i
\(300\) 0 0
\(301\) 298.095 0.990347
\(302\) 0 0
\(303\) −353.081 −1.16529
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 558.527 1.81931 0.909653 0.415369i \(-0.136348\pi\)
0.909653 + 0.415369i \(0.136348\pi\)
\(308\) 0 0
\(309\) −636.213 −2.05894
\(310\) 0 0
\(311\) −476.323 −1.53159 −0.765793 0.643087i \(-0.777653\pi\)
−0.765793 + 0.643087i \(0.777653\pi\)
\(312\) 0 0
\(313\) 232.746i 0.743598i 0.928313 + 0.371799i \(0.121259\pi\)
−0.928313 + 0.371799i \(0.878741\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 323.974i 1.02200i 0.859581 + 0.511000i \(0.170725\pi\)
−0.859581 + 0.511000i \(0.829275\pi\)
\(318\) 0 0
\(319\) 93.9004 58.0436i 0.294359 0.181955i
\(320\) 0 0
\(321\) 375.524i 1.16986i
\(322\) 0 0
\(323\) 1080.58i 3.34544i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 400.462 1.22466
\(328\) 0 0
\(329\) 48.0002i 0.145897i
\(330\) 0 0
\(331\) 196.429 0.593441 0.296721 0.954964i \(-0.404107\pi\)
0.296721 + 0.954964i \(0.404107\pi\)
\(332\) 0 0
\(333\) 806.525i 2.42200i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 69.8212 0.207185 0.103592 0.994620i \(-0.466966\pi\)
0.103592 + 0.994620i \(0.466966\pi\)
\(338\) 0 0
\(339\) −653.476 −1.92766
\(340\) 0 0
\(341\) 200.246 + 323.950i 0.587232 + 0.949999i
\(342\) 0 0
\(343\) 309.642 0.902747
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −303.143 −0.873611 −0.436805 0.899556i \(-0.643890\pi\)
−0.436805 + 0.899556i \(0.643890\pi\)
\(348\) 0 0
\(349\) 544.750i 1.56089i 0.625226 + 0.780444i \(0.285007\pi\)
−0.625226 + 0.780444i \(0.714993\pi\)
\(350\) 0 0
\(351\) 15.6702i 0.0446445i
\(352\) 0 0
\(353\) 132.757i 0.376083i 0.982161 + 0.188042i \(0.0602140\pi\)
−0.982161 + 0.188042i \(0.939786\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1057.06i 2.96096i
\(358\) 0 0
\(359\) 575.713i 1.60366i −0.597553 0.801829i \(-0.703860\pi\)
0.597553 0.801829i \(-0.296140\pi\)
\(360\) 0 0
\(361\) −950.563 −2.63314
\(362\) 0 0
\(363\) −507.977 253.892i −1.39939 0.699426i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 548.913i 1.49568i 0.663881 + 0.747838i \(0.268908\pi\)
−0.663881 + 0.747838i \(0.731092\pi\)
\(368\) 0 0
\(369\) 145.113i 0.393262i
\(370\) 0 0
\(371\) 427.010i 1.15097i
\(372\) 0 0
\(373\) 240.103 0.643707 0.321853 0.946790i \(-0.395694\pi\)
0.321853 + 0.946790i \(0.395694\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.32000i 0.0220690i
\(378\) 0 0
\(379\) 700.496 1.84827 0.924137 0.382061i \(-0.124786\pi\)
0.924137 + 0.382061i \(0.124786\pi\)
\(380\) 0 0
\(381\) 90.9752i 0.238780i
\(382\) 0 0
\(383\) 60.8936i 0.158991i −0.996835 0.0794955i \(-0.974669\pi\)
0.996835 0.0794955i \(-0.0253309\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 514.458 1.32935
\(388\) 0 0
\(389\) −198.172 −0.509439 −0.254719 0.967015i \(-0.581983\pi\)
−0.254719 + 0.967015i \(0.581983\pi\)
\(390\) 0 0
\(391\) 887.601i 2.27008i
\(392\) 0 0
\(393\) 966.855 2.46019
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 728.154i 1.83414i −0.398724 0.917071i \(-0.630547\pi\)
0.398724 0.917071i \(-0.369453\pi\)
\(398\) 0 0
\(399\) 1283.02 3.21560
\(400\) 0 0
\(401\) 12.2406 0.0305253 0.0152627 0.999884i \(-0.495142\pi\)
0.0152627 + 0.999884i \(0.495142\pi\)
\(402\) 0 0
\(403\) 28.7034 0.0712242
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 579.277 358.074i 1.42329 0.879789i
\(408\) 0 0
\(409\) 384.072i 0.939050i 0.882919 + 0.469525i \(0.155575\pi\)
−0.882919 + 0.469525i \(0.844425\pi\)
\(410\) 0 0
\(411\) −468.789 −1.14061
\(412\) 0 0
\(413\) 531.927 1.28796
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 521.284 1.25008
\(418\) 0 0
\(419\) −579.481 −1.38301 −0.691505 0.722372i \(-0.743052\pi\)
−0.691505 + 0.722372i \(0.743052\pi\)
\(420\) 0 0
\(421\) −218.272 −0.518460 −0.259230 0.965816i \(-0.583469\pi\)
−0.259230 + 0.965816i \(0.583469\pi\)
\(422\) 0 0
\(423\) 82.8397i 0.195838i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 63.4939i 0.148698i
\(428\) 0 0
\(429\) −36.4069 + 22.5045i −0.0848645 + 0.0524581i
\(430\) 0 0
\(431\) 262.440i 0.608910i 0.952527 + 0.304455i \(0.0984743\pi\)
−0.952527 + 0.304455i \(0.901526\pi\)
\(432\) 0 0
\(433\) 48.5618i 0.112152i 0.998427 + 0.0560759i \(0.0178589\pi\)
−0.998427 + 0.0560759i \(0.982141\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1077.34 2.46530
\(438\) 0 0
\(439\) 401.532i 0.914652i −0.889299 0.457326i \(-0.848807\pi\)
0.889299 0.457326i \(-0.151193\pi\)
\(440\) 0 0
\(441\) −103.952 −0.235718
\(442\) 0 0
\(443\) 263.646i 0.595138i 0.954700 + 0.297569i \(0.0961759\pi\)
−0.954700 + 0.297569i \(0.903824\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 425.833 0.952647
\(448\) 0 0
\(449\) −138.896 −0.309345 −0.154673 0.987966i \(-0.549432\pi\)
−0.154673 + 0.987966i \(0.549432\pi\)
\(450\) 0 0
\(451\) −104.226 + 64.4263i −0.231100 + 0.142852i
\(452\) 0 0
\(453\) 238.744 0.527029
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −618.063 −1.35244 −0.676218 0.736701i \(-0.736382\pi\)
−0.676218 + 0.736701i \(0.736382\pi\)
\(458\) 0 0
\(459\) 563.971i 1.22870i
\(460\) 0 0
\(461\) 17.2274i 0.0373697i −0.999825 0.0186848i \(-0.994052\pi\)
0.999825 0.0186848i \(-0.00594791\pi\)
\(462\) 0 0
\(463\) 721.198i 1.55766i 0.627233 + 0.778831i \(0.284187\pi\)
−0.627233 + 0.778831i \(0.715813\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 205.184i 0.439366i 0.975571 + 0.219683i \(0.0705023\pi\)
−0.975571 + 0.219683i \(0.929498\pi\)
\(468\) 0 0
\(469\) 141.558i 0.301830i
\(470\) 0 0
\(471\) −68.6872 −0.145833
\(472\) 0 0
\(473\) −228.404 369.503i −0.482885 0.781191i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 736.943i 1.54495i
\(478\) 0 0
\(479\) 858.946i 1.79321i −0.442834 0.896604i \(-0.646027\pi\)
0.442834 0.896604i \(-0.353973\pi\)
\(480\) 0 0
\(481\) 51.3265i 0.106708i
\(482\) 0 0
\(483\) −1053.89 −2.18198
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 483.597i 0.993013i 0.868033 + 0.496506i \(0.165384\pi\)
−0.868033 + 0.496506i \(0.834616\pi\)
\(488\) 0 0
\(489\) 155.578 0.318155
\(490\) 0 0
\(491\) 817.941i 1.66587i −0.553373 0.832934i \(-0.686660\pi\)
0.553373 0.832934i \(-0.313340\pi\)
\(492\) 0 0
\(493\) 299.437i 0.607376i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 28.6194 0.0575842
\(498\) 0 0
\(499\) −376.487 −0.754483 −0.377242 0.926115i \(-0.623127\pi\)
−0.377242 + 0.926115i \(0.623127\pi\)
\(500\) 0 0
\(501\) 1112.28i 2.22013i
\(502\) 0 0
\(503\) 4.61169 0.00916837 0.00458418 0.999989i \(-0.498541\pi\)
0.00458418 + 0.999989i \(0.498541\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 789.946i 1.55808i
\(508\) 0 0
\(509\) 525.844 1.03309 0.516546 0.856259i \(-0.327217\pi\)
0.516546 + 0.856259i \(0.327217\pi\)
\(510\) 0 0
\(511\) −535.351 −1.04765
\(512\) 0 0
\(513\) 684.527 1.33436
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −59.4986 + 36.7784i −0.115084 + 0.0711382i
\(518\) 0 0
\(519\) 1285.41i 2.47670i
\(520\) 0 0
\(521\) 762.348 1.46324 0.731620 0.681712i \(-0.238764\pi\)
0.731620 + 0.681712i \(0.238764\pi\)
\(522\) 0 0
\(523\) −558.597 −1.06806 −0.534032 0.845464i \(-0.679324\pi\)
−0.534032 + 0.845464i \(0.679324\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1033.03 −1.96022
\(528\) 0 0
\(529\) −355.941 −0.672856
\(530\) 0 0
\(531\) 918.011 1.72883
\(532\) 0 0
\(533\) 9.23489i 0.0173263i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1452.22i 2.70432i
\(538\) 0 0
\(539\) 46.1516 + 74.6621i 0.0856245 + 0.138520i
\(540\) 0 0
\(541\) 75.8646i 0.140230i −0.997539 0.0701152i \(-0.977663\pi\)
0.997539 0.0701152i \(-0.0223367\pi\)
\(542\) 0 0
\(543\) 1215.91i 2.23924i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −782.767 −1.43102 −0.715509 0.698603i \(-0.753805\pi\)
−0.715509 + 0.698603i \(0.753805\pi\)
\(548\) 0 0
\(549\) 109.579i 0.199598i
\(550\) 0 0
\(551\) 363.445 0.659610
\(552\) 0 0
\(553\) 965.846i 1.74656i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 271.032 0.486592 0.243296 0.969952i \(-0.421771\pi\)
0.243296 + 0.969952i \(0.421771\pi\)
\(558\) 0 0
\(559\) −32.7396 −0.0585682
\(560\) 0 0
\(561\) 1310.28 809.937i 2.33562 1.44374i
\(562\) 0 0
\(563\) −345.532 −0.613734 −0.306867 0.951752i \(-0.599281\pi\)
−0.306867 + 0.951752i \(0.599281\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 215.395 0.379886
\(568\) 0 0
\(569\) 474.767i 0.834389i −0.908817 0.417195i \(-0.863013\pi\)
0.908817 0.417195i \(-0.136987\pi\)
\(570\) 0 0
\(571\) 786.977i 1.37824i 0.724645 + 0.689122i \(0.242004\pi\)
−0.724645 + 0.689122i \(0.757996\pi\)
\(572\) 0 0
\(573\) 586.552i 1.02365i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 58.9156i 0.102107i −0.998696 0.0510534i \(-0.983742\pi\)
0.998696 0.0510534i \(-0.0162579\pi\)
\(578\) 0 0
\(579\) 446.319i 0.770844i
\(580\) 0 0
\(581\) −756.622 −1.30228
\(582\) 0 0
\(583\) 529.301 327.182i 0.907891 0.561204i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 246.978i 0.420746i 0.977621 + 0.210373i \(0.0674678\pi\)
−0.977621 + 0.210373i \(0.932532\pi\)
\(588\) 0 0
\(589\) 1253.86i 2.12879i
\(590\) 0 0
\(591\) 1345.01i 2.27583i
\(592\) 0 0
\(593\) −230.921 −0.389411 −0.194705 0.980862i \(-0.562375\pi\)
−0.194705 + 0.980862i \(0.562375\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1795.42i 3.00741i
\(598\) 0 0
\(599\) 633.026 1.05681 0.528403 0.848994i \(-0.322791\pi\)
0.528403 + 0.848994i \(0.322791\pi\)
\(600\) 0 0
\(601\) 120.426i 0.200376i −0.994969 0.100188i \(-0.968056\pi\)
0.994969 0.100188i \(-0.0319444\pi\)
\(602\) 0 0
\(603\) 244.304i 0.405148i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −380.480 −0.626821 −0.313410 0.949618i \(-0.601471\pi\)
−0.313410 + 0.949618i \(0.601471\pi\)
\(608\) 0 0
\(609\) −355.537 −0.583804
\(610\) 0 0
\(611\) 5.27184i 0.00862822i
\(612\) 0 0
\(613\) 489.507 0.798543 0.399272 0.916833i \(-0.369263\pi\)
0.399272 + 0.916833i \(0.369263\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 825.996i 1.33873i −0.742934 0.669365i \(-0.766566\pi\)
0.742934 0.669365i \(-0.233434\pi\)
\(618\) 0 0
\(619\) −391.081 −0.631795 −0.315897 0.948793i \(-0.602306\pi\)
−0.315897 + 0.948793i \(0.602306\pi\)
\(620\) 0 0
\(621\) −562.281 −0.905444
\(622\) 0 0
\(623\) −498.817 −0.800670
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −983.072 1590.37i −1.56790 2.53648i
\(628\) 0 0
\(629\) 1847.24i 2.93679i
\(630\) 0 0
\(631\) −806.374 −1.27793 −0.638965 0.769236i \(-0.720637\pi\)
−0.638965 + 0.769236i \(0.720637\pi\)
\(632\) 0 0
\(633\) −1098.72 −1.73574
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.61539 0.0103852
\(638\) 0 0
\(639\) 49.3919 0.0772955
\(640\) 0 0
\(641\) 238.517 0.372101 0.186051 0.982540i \(-0.440431\pi\)
0.186051 + 0.982540i \(0.440431\pi\)
\(642\) 0 0
\(643\) 55.8795i 0.0869044i −0.999056 0.0434522i \(-0.986164\pi\)
0.999056 0.0434522i \(-0.0138356\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 773.182i 1.19503i 0.801859 + 0.597513i \(0.203845\pi\)
−0.801859 + 0.597513i \(0.796155\pi\)
\(648\) 0 0
\(649\) −407.571 659.351i −0.627998 1.01595i
\(650\) 0 0
\(651\) 1226.57i 1.88414i
\(652\) 0 0
\(653\) 605.962i 0.927967i 0.885844 + 0.463983i \(0.153580\pi\)
−0.885844 + 0.463983i \(0.846420\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −923.920 −1.40627
\(658\) 0 0
\(659\) 515.938i 0.782910i 0.920197 + 0.391455i \(0.128028\pi\)
−0.920197 + 0.391455i \(0.871972\pi\)
\(660\) 0 0
\(661\) 154.673 0.233998 0.116999 0.993132i \(-0.462672\pi\)
0.116999 + 0.993132i \(0.462672\pi\)
\(662\) 0 0
\(663\) 116.097i 0.175108i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −298.539 −0.447585
\(668\) 0 0
\(669\) −715.218 −1.06908
\(670\) 0 0
\(671\) −78.7039 + 48.6500i −0.117293 + 0.0725037i
\(672\) 0 0
\(673\) 594.884 0.883929 0.441965 0.897033i \(-0.354282\pi\)
0.441965 + 0.897033i \(0.354282\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1067.80 −1.57726 −0.788629 0.614869i \(-0.789209\pi\)
−0.788629 + 0.614869i \(0.789209\pi\)
\(678\) 0 0
\(679\) 12.5088i 0.0184223i
\(680\) 0 0
\(681\) 329.684i 0.484118i
\(682\) 0 0
\(683\) 406.047i 0.594505i −0.954799 0.297253i \(-0.903930\pi\)
0.954799 0.297253i \(-0.0960704\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 779.180i 1.13418i
\(688\) 0 0
\(689\) 46.8984i 0.0680673i
\(690\) 0 0
\(691\) −76.5068 −0.110719 −0.0553595 0.998466i \(-0.517630\pi\)
−0.0553595 + 0.998466i \(0.517630\pi\)
\(692\) 0 0
\(693\) 568.754 + 920.106i 0.820712 + 1.32771i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 332.364i 0.476849i
\(698\) 0 0
\(699\) 1099.92i 1.57356i
\(700\) 0 0
\(701\) 526.761i 0.751443i −0.926733 0.375721i \(-0.877395\pi\)
0.926733 0.375721i \(-0.122605\pi\)
\(702\) 0 0
\(703\) 2242.11 3.18935
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 567.876i 0.803219i
\(708\) 0 0
\(709\) −746.180 −1.05244 −0.526220 0.850348i \(-0.676391\pi\)
−0.526220 + 0.850348i \(0.676391\pi\)
\(710\) 0 0
\(711\) 1666.88i 2.34441i
\(712\) 0 0
\(713\) 1029.94i 1.44451i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 727.772 1.01502
\(718\) 0 0
\(719\) 421.903 0.586792 0.293396 0.955991i \(-0.405215\pi\)
0.293396 + 0.955991i \(0.405215\pi\)
\(720\) 0 0
\(721\) 1023.25i 1.41921i
\(722\) 0 0
\(723\) −1299.62 −1.79754
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 343.364i 0.472303i 0.971716 + 0.236152i \(0.0758862\pi\)
−0.971716 + 0.236152i \(0.924114\pi\)
\(728\) 0 0
\(729\) 1170.13 1.60512
\(730\) 0 0
\(731\) 1178.30 1.61190
\(732\) 0 0
\(733\) −494.615 −0.674782 −0.337391 0.941365i \(-0.609544\pi\)
−0.337391 + 0.941365i \(0.609544\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 175.469 108.464i 0.238085 0.147170i
\(738\) 0 0
\(739\) 589.547i 0.797763i 0.917003 + 0.398881i \(0.130602\pi\)
−0.917003 + 0.398881i \(0.869398\pi\)
\(740\) 0 0
\(741\) −140.914 −0.190167
\(742\) 0 0
\(743\) 59.7902 0.0804714 0.0402357 0.999190i \(-0.487189\pi\)
0.0402357 + 0.999190i \(0.487189\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1305.79 −1.74805
\(748\) 0 0
\(749\) 603.971 0.806370
\(750\) 0 0
\(751\) 847.143 1.12802 0.564010 0.825768i \(-0.309258\pi\)
0.564010 + 0.825768i \(0.309258\pi\)
\(752\) 0 0
\(753\) 24.5670i 0.0326255i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 218.552i 0.288708i −0.989526 0.144354i \(-0.953890\pi\)
0.989526 0.144354i \(-0.0461104\pi\)
\(758\) 0 0
\(759\) 807.510 + 1306.36i 1.06391 + 1.72115i
\(760\) 0 0
\(761\) 6.43775i 0.00845959i −0.999991 0.00422979i \(-0.998654\pi\)
0.999991 0.00422979i \(-0.00134639\pi\)
\(762\) 0 0
\(763\) 644.081i 0.844142i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −58.4214 −0.0761687
\(768\) 0 0
\(769\) 255.543i 0.332305i −0.986100 0.166153i \(-0.946866\pi\)
0.986100 0.166153i \(-0.0531345\pi\)
\(770\) 0 0
\(771\) 1044.34 1.35452
\(772\) 0 0
\(773\) 634.112i 0.820326i −0.912012 0.410163i \(-0.865472\pi\)
0.912012 0.410163i \(-0.134528\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −2193.33 −2.82281
\(778\) 0 0
\(779\) −403.411 −0.517857
\(780\) 0 0
\(781\) −21.9286 35.4751i −0.0280776 0.0454227i
\(782\) 0 0
\(783\) −189.688 −0.242258
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 390.112 0.495695 0.247848 0.968799i \(-0.420277\pi\)
0.247848 + 0.968799i \(0.420277\pi\)
\(788\) 0 0
\(789\) 1883.54i 2.38725i
\(790\) 0 0
\(791\) 1051.01i 1.32871i
\(792\) 0 0
\(793\) 6.97351i 0.00879384i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 729.894i 0.915801i 0.889003 + 0.457901i \(0.151398\pi\)
−0.889003 + 0.457901i \(0.848602\pi\)
\(798\) 0 0
\(799\) 189.734i 0.237464i
\(800\) 0 0
\(801\) −860.869 −1.07474
\(802\) 0 0
\(803\) 410.194 + 663.595i 0.510827 + 0.826394i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 364.290i 0.451413i
\(808\) 0 0
\(809\) 1360.50i 1.68171i −0.541260 0.840855i \(-0.682053\pi\)
0.541260 0.840855i \(-0.317947\pi\)
\(810\) 0 0
\(811\) 265.266i 0.327085i −0.986536 0.163542i \(-0.947708\pi\)
0.986536 0.163542i \(-0.0522920\pi\)
\(812\) 0 0
\(813\) −903.135 −1.11087
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1430.17i 1.75052i
\(818\) 0 0
\(819\) 81.5255 0.0995427
\(820\) 0 0
\(821\) 236.318i 0.287842i −0.989589 0.143921i \(-0.954029\pi\)
0.989589 0.143921i \(-0.0459711\pi\)
\(822\) 0 0
\(823\) 820.686i 0.997188i −0.866836 0.498594i \(-0.833850\pi\)
0.866836 0.498594i \(-0.166150\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 405.095 0.489837 0.244918 0.969544i \(-0.421239\pi\)
0.244918 + 0.969544i \(0.421239\pi\)
\(828\) 0 0
\(829\) −1103.14 −1.33068 −0.665341 0.746539i \(-0.731714\pi\)
−0.665341 + 0.746539i \(0.731714\pi\)
\(830\) 0 0
\(831\) 1404.06i 1.68960i
\(832\) 0 0
\(833\) −238.088 −0.285820
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 654.410i 0.781852i
\(838\) 0 0
\(839\) 720.265 0.858480 0.429240 0.903190i \(-0.358781\pi\)
0.429240 + 0.903190i \(0.358781\pi\)
\(840\) 0 0
\(841\) 740.286 0.880245
\(842\) 0 0
\(843\) 478.463 0.567572
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 408.345 817.002i 0.482107 0.964583i
\(848\) 0 0
\(849\) 1788.26i 2.10631i
\(850\) 0 0
\(851\) −1841.70 −2.16417
\(852\) 0 0
\(853\) 1350.75 1.58353 0.791766 0.610824i \(-0.209162\pi\)
0.791766 + 0.610824i \(0.209162\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −726.116 −0.847276 −0.423638 0.905832i \(-0.639247\pi\)
−0.423638 + 0.905832i \(0.639247\pi\)
\(858\) 0 0
\(859\) 955.715 1.11259 0.556295 0.830985i \(-0.312222\pi\)
0.556295 + 0.830985i \(0.312222\pi\)
\(860\) 0 0
\(861\) 394.633 0.458342
\(862\) 0 0
\(863\) 1154.66i 1.33796i 0.743279 + 0.668982i \(0.233270\pi\)
−0.743279 + 0.668982i \(0.766730\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 2821.95i 3.25485i
\(868\) 0 0
\(869\) 1197.21 740.045i 1.37769 0.851606i
\(870\) 0 0
\(871\) 15.5473i 0.0178500i
\(872\) 0 0
\(873\) 21.5879i 0.0247284i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 112.344 0.128101 0.0640503 0.997947i \(-0.479598\pi\)
0.0640503 + 0.997947i \(0.479598\pi\)
\(878\) 0 0
\(879\) 1174.52i 1.33621i
\(880\) 0 0
\(881\) 653.270 0.741509 0.370755 0.928731i \(-0.379099\pi\)
0.370755 + 0.928731i \(0.379099\pi\)
\(882\) 0 0
\(883\) 702.158i 0.795196i 0.917560 + 0.397598i \(0.130156\pi\)
−0.917560 + 0.397598i \(0.869844\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1046.64 1.17997 0.589987 0.807413i \(-0.299133\pi\)
0.589987 + 0.807413i \(0.299133\pi\)
\(888\) 0 0
\(889\) 146.319 0.164589
\(890\) 0 0
\(891\) −165.039 266.993i −0.185229 0.299656i
\(892\) 0 0
\(893\) −230.292 −0.257885
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 115.749 0.129040
\(898\) 0 0
\(899\) 347.455i 0.386490i
\(900\) 0 0
\(901\) 1687.87i 1.87333i
\(902\) 0 0
\(903\) 1399.05i 1.54934i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 214.057i 0.236006i 0.993013 + 0.118003i \(0.0376493\pi\)
−0.993013 + 0.118003i \(0.962351\pi\)
\(908\) 0 0
\(909\) 980.052i 1.07816i
\(910\) 0 0
\(911\) 829.046 0.910039 0.455020 0.890481i \(-0.349632\pi\)
0.455020 + 0.890481i \(0.349632\pi\)
\(912\) 0 0
\(913\) 579.735 + 937.871i 0.634978 + 1.02724i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1555.03i 1.69578i
\(918\) 0 0
\(919\) 970.008i 1.05550i 0.849399 + 0.527752i \(0.176965\pi\)
−0.849399 + 0.527752i \(0.823035\pi\)
\(920\) 0 0
\(921\) 2621.35i 2.84620i
\(922\) 0 0
\(923\) −3.14325 −0.00340548
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1765.94i 1.90501i
\(928\) 0 0
\(929\) −1530.72 −1.64771 −0.823853 0.566803i \(-0.808180\pi\)
−0.823853 + 0.566803i \(0.808180\pi\)
\(930\) 0 0
\(931\) 288.982i 0.310400i
\(932\) 0 0
\(933\) 2235.54i 2.39608i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −798.725 −0.852428 −0.426214 0.904622i \(-0.640153\pi\)
−0.426214 + 0.904622i \(0.640153\pi\)
\(938\) 0 0
\(939\) −1092.35 −1.16332
\(940\) 0 0
\(941\) 661.163i 0.702618i −0.936260 0.351309i \(-0.885737\pi\)
0.936260 0.351309i \(-0.114263\pi\)
\(942\) 0 0
\(943\) 331.368 0.351397
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1191.07i 1.25773i 0.777514 + 0.628865i \(0.216480\pi\)
−0.777514 + 0.628865i \(0.783520\pi\)
\(948\) 0 0
\(949\) 58.7974 0.0619573
\(950\) 0 0
\(951\) −1520.52 −1.59886
\(952\) 0 0
\(953\) 368.044 0.386195 0.193098 0.981180i \(-0.438147\pi\)
0.193098 + 0.981180i \(0.438147\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 272.417 + 440.705i 0.284658 + 0.460507i
\(958\) 0 0
\(959\) 753.974i 0.786208i
\(960\) 0 0
\(961\) 237.693 0.247339
\(962\) 0 0
\(963\) 1042.35 1.08239
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1224.13 1.26590 0.632951 0.774192i \(-0.281843\pi\)
0.632951 + 0.774192i \(0.281843\pi\)
\(968\) 0 0
\(969\) 5071.50 5.23374
\(970\) 0 0
\(971\) 1370.18 1.41110 0.705551 0.708659i \(-0.250699\pi\)
0.705551 + 0.708659i \(0.250699\pi\)
\(972\) 0 0
\(973\) 838.404i 0.861669i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1150.60i 1.17768i −0.808248 0.588842i \(-0.799584\pi\)
0.808248 0.588842i \(-0.200416\pi\)
\(978\) 0 0
\(979\) 382.201 + 618.309i 0.390400 + 0.631572i
\(980\) 0 0
\(981\) 1111.57i 1.13310i
\(982\) 0 0
\(983\) 597.726i 0.608063i 0.952662 + 0.304032i \(0.0983329\pi\)
−0.952662 + 0.304032i \(0.901667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 225.280 0.228248
\(988\) 0 0
\(989\) 1174.77i 1.18783i
\(990\) 0 0
\(991\) 894.339 0.902461 0.451230 0.892407i \(-0.350985\pi\)
0.451230 + 0.892407i \(0.350985\pi\)
\(992\) 0 0
\(993\) 921.906i 0.928405i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −136.661 −0.137072 −0.0685359 0.997649i \(-0.521833\pi\)
−0.0685359 + 0.997649i \(0.521833\pi\)
\(998\) 0 0
\(999\) −1170.20 −1.17137
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.e.c.549.15 16
5.2 odd 4 1100.3.f.e.901.7 yes 8
5.3 odd 4 1100.3.f.c.901.2 yes 8
5.4 even 2 inner 1100.3.e.c.549.2 16
11.10 odd 2 inner 1100.3.e.c.549.16 16
55.32 even 4 1100.3.f.e.901.8 yes 8
55.43 even 4 1100.3.f.c.901.1 8
55.54 odd 2 inner 1100.3.e.c.549.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.3.e.c.549.1 16 55.54 odd 2 inner
1100.3.e.c.549.2 16 5.4 even 2 inner
1100.3.e.c.549.15 16 1.1 even 1 trivial
1100.3.e.c.549.16 16 11.10 odd 2 inner
1100.3.f.c.901.1 8 55.43 even 4
1100.3.f.c.901.2 yes 8 5.3 odd 4
1100.3.f.e.901.7 yes 8 5.2 odd 4
1100.3.f.e.901.8 yes 8 55.32 even 4