Properties

Label 1100.3.e.c.549.12
Level $1100$
Weight $3$
Character 1100.549
Analytic conductor $29.973$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,3,Mod(549,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.549"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 174 x^{14} + 10969 x^{12} + 318076 x^{10} + 4442560 x^{8} + 28982576 x^{6} + 77210944 x^{4} + \cdots + 26790976 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 549.12
Root \(-6.54086i\) of defining polynomial
Character \(\chi\) \(=\) 1100.549
Dual form 1100.3.e.c.549.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.09157i q^{3} +6.85033 q^{7} +4.62533 q^{9} +(-10.3907 + 3.61010i) q^{11} -8.70538 q^{13} -30.8540 q^{17} -13.4701i q^{19} +14.3280i q^{21} +8.15908i q^{23} +28.4984i q^{27} +32.9665i q^{29} -33.0321 q^{31} +(-7.55078 - 21.7330i) q^{33} +58.3473i q^{37} -18.2079i q^{39} -80.8006i q^{41} +38.7283 q^{43} +40.3954i q^{47} -2.07294 q^{49} -64.5333i q^{51} -0.654819i q^{53} +28.1736 q^{57} -33.8941 q^{59} +111.376i q^{61} +31.6850 q^{63} +23.2936i q^{67} -17.0653 q^{69} -70.1769 q^{71} +56.6520 q^{73} +(-71.1799 + 24.7304i) q^{77} -46.2341i q^{79} -17.9784 q^{81} -151.786 q^{83} -68.9518 q^{87} -137.804 q^{89} -59.6348 q^{91} -69.0890i q^{93} +154.530i q^{97} +(-48.0605 + 16.6979i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{9} + 6 q^{11} + 28 q^{31} - 28 q^{49} - 256 q^{59} + 352 q^{69} - 68 q^{71} - 256 q^{81} + 292 q^{89} + 228 q^{91} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.09157i 0.697191i 0.937273 + 0.348595i \(0.113341\pi\)
−0.937273 + 0.348595i \(0.886659\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 6.85033 0.978619 0.489309 0.872110i \(-0.337249\pi\)
0.489309 + 0.872110i \(0.337249\pi\)
\(8\) 0 0
\(9\) 4.62533 0.513925
\(10\) 0 0
\(11\) −10.3907 + 3.61010i −0.944611 + 0.328191i
\(12\) 0 0
\(13\) −8.70538 −0.669645 −0.334822 0.942281i \(-0.608676\pi\)
−0.334822 + 0.942281i \(0.608676\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −30.8540 −1.81494 −0.907470 0.420116i \(-0.861989\pi\)
−0.907470 + 0.420116i \(0.861989\pi\)
\(18\) 0 0
\(19\) 13.4701i 0.708951i −0.935065 0.354476i \(-0.884659\pi\)
0.935065 0.354476i \(-0.115341\pi\)
\(20\) 0 0
\(21\) 14.3280i 0.682284i
\(22\) 0 0
\(23\) 8.15908i 0.354743i 0.984144 + 0.177371i \(0.0567594\pi\)
−0.984144 + 0.177371i \(0.943241\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 28.4984i 1.05549i
\(28\) 0 0
\(29\) 32.9665i 1.13677i 0.822761 + 0.568387i \(0.192433\pi\)
−0.822761 + 0.568387i \(0.807567\pi\)
\(30\) 0 0
\(31\) −33.0321 −1.06555 −0.532776 0.846256i \(-0.678851\pi\)
−0.532776 + 0.846256i \(0.678851\pi\)
\(32\) 0 0
\(33\) −7.55078 21.7330i −0.228811 0.658574i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 58.3473i 1.57695i 0.615064 + 0.788477i \(0.289130\pi\)
−0.615064 + 0.788477i \(0.710870\pi\)
\(38\) 0 0
\(39\) 18.2079i 0.466870i
\(40\) 0 0
\(41\) 80.8006i 1.97075i −0.170407 0.985374i \(-0.554508\pi\)
0.170407 0.985374i \(-0.445492\pi\)
\(42\) 0 0
\(43\) 38.7283 0.900659 0.450329 0.892862i \(-0.351307\pi\)
0.450329 + 0.892862i \(0.351307\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 40.3954i 0.859477i 0.902953 + 0.429739i \(0.141394\pi\)
−0.902953 + 0.429739i \(0.858606\pi\)
\(48\) 0 0
\(49\) −2.07294 −0.0423049
\(50\) 0 0
\(51\) 64.5333i 1.26536i
\(52\) 0 0
\(53\) 0.654819i 0.0123551i −0.999981 0.00617754i \(-0.998034\pi\)
0.999981 0.00617754i \(-0.00196638\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 28.1736 0.494274
\(58\) 0 0
\(59\) −33.8941 −0.574477 −0.287238 0.957859i \(-0.592737\pi\)
−0.287238 + 0.957859i \(0.592737\pi\)
\(60\) 0 0
\(61\) 111.376i 1.82584i 0.408141 + 0.912919i \(0.366177\pi\)
−0.408141 + 0.912919i \(0.633823\pi\)
\(62\) 0 0
\(63\) 31.6850 0.502937
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 23.2936i 0.347666i 0.984775 + 0.173833i \(0.0556153\pi\)
−0.984775 + 0.173833i \(0.944385\pi\)
\(68\) 0 0
\(69\) −17.0653 −0.247323
\(70\) 0 0
\(71\) −70.1769 −0.988407 −0.494203 0.869346i \(-0.664540\pi\)
−0.494203 + 0.869346i \(0.664540\pi\)
\(72\) 0 0
\(73\) 56.6520 0.776054 0.388027 0.921648i \(-0.373157\pi\)
0.388027 + 0.921648i \(0.373157\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −71.1799 + 24.7304i −0.924415 + 0.321174i
\(78\) 0 0
\(79\) 46.2341i 0.585242i −0.956229 0.292621i \(-0.905473\pi\)
0.956229 0.292621i \(-0.0945274\pi\)
\(80\) 0 0
\(81\) −17.9784 −0.221956
\(82\) 0 0
\(83\) −151.786 −1.82875 −0.914375 0.404867i \(-0.867318\pi\)
−0.914375 + 0.404867i \(0.867318\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −68.9518 −0.792549
\(88\) 0 0
\(89\) −137.804 −1.54836 −0.774178 0.632968i \(-0.781837\pi\)
−0.774178 + 0.632968i \(0.781837\pi\)
\(90\) 0 0
\(91\) −59.6348 −0.655327
\(92\) 0 0
\(93\) 69.0890i 0.742893i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 154.530i 1.59309i 0.604580 + 0.796545i \(0.293341\pi\)
−0.604580 + 0.796545i \(0.706659\pi\)
\(98\) 0 0
\(99\) −48.0605 + 16.6979i −0.485460 + 0.168665i
\(100\) 0 0
\(101\) 43.1844i 0.427568i −0.976881 0.213784i \(-0.931421\pi\)
0.976881 0.213784i \(-0.0685789\pi\)
\(102\) 0 0
\(103\) 132.608i 1.28746i −0.765255 0.643728i \(-0.777387\pi\)
0.765255 0.643728i \(-0.222613\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 75.4144 0.704807 0.352404 0.935848i \(-0.385364\pi\)
0.352404 + 0.935848i \(0.385364\pi\)
\(108\) 0 0
\(109\) 145.652i 1.33626i −0.744045 0.668129i \(-0.767095\pi\)
0.744045 0.668129i \(-0.232905\pi\)
\(110\) 0 0
\(111\) −122.038 −1.09944
\(112\) 0 0
\(113\) 5.20398i 0.0460529i 0.999735 + 0.0230265i \(0.00733020\pi\)
−0.999735 + 0.0230265i \(0.992670\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −40.2652 −0.344147
\(118\) 0 0
\(119\) −211.360 −1.77614
\(120\) 0 0
\(121\) 94.9344 75.0231i 0.784582 0.620025i
\(122\) 0 0
\(123\) 169.000 1.37399
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −145.449 −1.14527 −0.572633 0.819812i \(-0.694078\pi\)
−0.572633 + 0.819812i \(0.694078\pi\)
\(128\) 0 0
\(129\) 81.0031i 0.627931i
\(130\) 0 0
\(131\) 67.5119i 0.515358i 0.966231 + 0.257679i \(0.0829577\pi\)
−0.966231 + 0.257679i \(0.917042\pi\)
\(132\) 0 0
\(133\) 92.2745i 0.693793i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 146.229i 1.06737i 0.845685 + 0.533683i \(0.179192\pi\)
−0.845685 + 0.533683i \(0.820808\pi\)
\(138\) 0 0
\(139\) 15.4107i 0.110868i −0.998462 0.0554342i \(-0.982346\pi\)
0.998462 0.0554342i \(-0.0176543\pi\)
\(140\) 0 0
\(141\) −84.4900 −0.599220
\(142\) 0 0
\(143\) 90.4552 31.4273i 0.632554 0.219771i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.33570i 0.0294946i
\(148\) 0 0
\(149\) 152.533i 1.02371i −0.859071 0.511856i \(-0.828958\pi\)
0.859071 0.511856i \(-0.171042\pi\)
\(150\) 0 0
\(151\) 40.4135i 0.267639i 0.991006 + 0.133820i \(0.0427243\pi\)
−0.991006 + 0.133820i \(0.957276\pi\)
\(152\) 0 0
\(153\) −142.710 −0.932744
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 85.6731i 0.545688i 0.962058 + 0.272844i \(0.0879643\pi\)
−0.962058 + 0.272844i \(0.912036\pi\)
\(158\) 0 0
\(159\) 1.36960 0.00861384
\(160\) 0 0
\(161\) 55.8924i 0.347158i
\(162\) 0 0
\(163\) 6.20830i 0.0380877i −0.999819 0.0190439i \(-0.993938\pi\)
0.999819 0.0190439i \(-0.00606222\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.9363 0.0954272 0.0477136 0.998861i \(-0.484807\pi\)
0.0477136 + 0.998861i \(0.484807\pi\)
\(168\) 0 0
\(169\) −93.2164 −0.551576
\(170\) 0 0
\(171\) 62.3035i 0.364348i
\(172\) 0 0
\(173\) 104.481 0.603937 0.301969 0.953318i \(-0.402356\pi\)
0.301969 + 0.953318i \(0.402356\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 70.8920i 0.400520i
\(178\) 0 0
\(179\) 221.475 1.23729 0.618645 0.785670i \(-0.287682\pi\)
0.618645 + 0.785670i \(0.287682\pi\)
\(180\) 0 0
\(181\) 122.870 0.678841 0.339420 0.940635i \(-0.389769\pi\)
0.339420 + 0.940635i \(0.389769\pi\)
\(182\) 0 0
\(183\) −232.951 −1.27296
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 320.595 111.386i 1.71441 0.595647i
\(188\) 0 0
\(189\) 195.223i 1.03293i
\(190\) 0 0
\(191\) −95.4979 −0.499989 −0.249994 0.968247i \(-0.580429\pi\)
−0.249994 + 0.968247i \(0.580429\pi\)
\(192\) 0 0
\(193\) 182.564 0.945929 0.472965 0.881081i \(-0.343184\pi\)
0.472965 + 0.881081i \(0.343184\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 79.1315 0.401683 0.200841 0.979624i \(-0.435632\pi\)
0.200841 + 0.979624i \(0.435632\pi\)
\(198\) 0 0
\(199\) −121.450 −0.610300 −0.305150 0.952304i \(-0.598707\pi\)
−0.305150 + 0.952304i \(0.598707\pi\)
\(200\) 0 0
\(201\) −48.7203 −0.242389
\(202\) 0 0
\(203\) 225.831i 1.11247i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 37.7384i 0.182311i
\(208\) 0 0
\(209\) 48.6283 + 139.964i 0.232671 + 0.669684i
\(210\) 0 0
\(211\) 394.485i 1.86960i −0.355177 0.934799i \(-0.615579\pi\)
0.355177 0.934799i \(-0.384421\pi\)
\(212\) 0 0
\(213\) 146.780i 0.689108i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −226.281 −1.04277
\(218\) 0 0
\(219\) 118.492i 0.541058i
\(220\) 0 0
\(221\) 268.596 1.21537
\(222\) 0 0
\(223\) 287.156i 1.28770i 0.765153 + 0.643849i \(0.222663\pi\)
−0.765153 + 0.643849i \(0.777337\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −223.474 −0.984467 −0.492234 0.870463i \(-0.663819\pi\)
−0.492234 + 0.870463i \(0.663819\pi\)
\(228\) 0 0
\(229\) 195.387 0.853217 0.426608 0.904437i \(-0.359708\pi\)
0.426608 + 0.904437i \(0.359708\pi\)
\(230\) 0 0
\(231\) −51.7254 148.878i −0.223919 0.644493i
\(232\) 0 0
\(233\) 43.4960 0.186678 0.0933390 0.995634i \(-0.470246\pi\)
0.0933390 + 0.995634i \(0.470246\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 96.7019 0.408025
\(238\) 0 0
\(239\) 210.701i 0.881593i −0.897607 0.440797i \(-0.854696\pi\)
0.897607 0.440797i \(-0.145304\pi\)
\(240\) 0 0
\(241\) 171.506i 0.711641i 0.934554 + 0.355821i \(0.115799\pi\)
−0.934554 + 0.355821i \(0.884201\pi\)
\(242\) 0 0
\(243\) 218.882i 0.900749i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 117.262i 0.474746i
\(248\) 0 0
\(249\) 317.472i 1.27499i
\(250\) 0 0
\(251\) −188.857 −0.752418 −0.376209 0.926535i \(-0.622773\pi\)
−0.376209 + 0.926535i \(0.622773\pi\)
\(252\) 0 0
\(253\) −29.4551 84.7788i −0.116423 0.335094i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 225.478i 0.877347i 0.898647 + 0.438673i \(0.144552\pi\)
−0.898647 + 0.438673i \(0.855448\pi\)
\(258\) 0 0
\(259\) 399.699i 1.54324i
\(260\) 0 0
\(261\) 152.481i 0.584217i
\(262\) 0 0
\(263\) −236.256 −0.898313 −0.449156 0.893453i \(-0.648275\pi\)
−0.449156 + 0.893453i \(0.648275\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 288.226i 1.07950i
\(268\) 0 0
\(269\) 350.154 1.30169 0.650844 0.759211i \(-0.274415\pi\)
0.650844 + 0.759211i \(0.274415\pi\)
\(270\) 0 0
\(271\) 456.267i 1.68364i 0.539757 + 0.841821i \(0.318516\pi\)
−0.539757 + 0.841821i \(0.681484\pi\)
\(272\) 0 0
\(273\) 124.730i 0.456888i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 103.023 0.371925 0.185963 0.982557i \(-0.440460\pi\)
0.185963 + 0.982557i \(0.440460\pi\)
\(278\) 0 0
\(279\) −152.784 −0.547614
\(280\) 0 0
\(281\) 205.264i 0.730476i 0.930914 + 0.365238i \(0.119012\pi\)
−0.930914 + 0.365238i \(0.880988\pi\)
\(282\) 0 0
\(283\) −255.134 −0.901535 −0.450767 0.892641i \(-0.648850\pi\)
−0.450767 + 0.892641i \(0.648850\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 553.511i 1.92861i
\(288\) 0 0
\(289\) 662.969 2.29401
\(290\) 0 0
\(291\) −323.210 −1.11069
\(292\) 0 0
\(293\) 64.7857 0.221112 0.110556 0.993870i \(-0.464737\pi\)
0.110556 + 0.993870i \(0.464737\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −102.882 296.119i −0.346403 0.997032i
\(298\) 0 0
\(299\) 71.0279i 0.237552i
\(300\) 0 0
\(301\) 265.302 0.881402
\(302\) 0 0
\(303\) 90.3232 0.298096
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −277.572 −0.904145 −0.452072 0.891981i \(-0.649315\pi\)
−0.452072 + 0.891981i \(0.649315\pi\)
\(308\) 0 0
\(309\) 277.359 0.897602
\(310\) 0 0
\(311\) 345.088 1.10961 0.554805 0.831981i \(-0.312793\pi\)
0.554805 + 0.831981i \(0.312793\pi\)
\(312\) 0 0
\(313\) 39.5116i 0.126235i −0.998006 0.0631176i \(-0.979896\pi\)
0.998006 0.0631176i \(-0.0201043\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 32.7689i 0.103372i 0.998663 + 0.0516860i \(0.0164595\pi\)
−0.998663 + 0.0516860i \(0.983540\pi\)
\(318\) 0 0
\(319\) −119.012 342.546i −0.373079 1.07381i
\(320\) 0 0
\(321\) 157.735i 0.491385i
\(322\) 0 0
\(323\) 415.606i 1.28670i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 304.642 0.931627
\(328\) 0 0
\(329\) 276.722i 0.841101i
\(330\) 0 0
\(331\) 475.800 1.43746 0.718731 0.695288i \(-0.244723\pi\)
0.718731 + 0.695288i \(0.244723\pi\)
\(332\) 0 0
\(333\) 269.875i 0.810437i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 422.230 1.25291 0.626455 0.779458i \(-0.284505\pi\)
0.626455 + 0.779458i \(0.284505\pi\)
\(338\) 0 0
\(339\) −10.8845 −0.0321077
\(340\) 0 0
\(341\) 343.228 119.249i 1.00653 0.349704i
\(342\) 0 0
\(343\) −349.867 −1.02002
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 334.106 0.962842 0.481421 0.876490i \(-0.340121\pi\)
0.481421 + 0.876490i \(0.340121\pi\)
\(348\) 0 0
\(349\) 628.513i 1.80090i 0.434964 + 0.900448i \(0.356761\pi\)
−0.434964 + 0.900448i \(0.643239\pi\)
\(350\) 0 0
\(351\) 248.089i 0.706806i
\(352\) 0 0
\(353\) 490.528i 1.38960i −0.719204 0.694799i \(-0.755493\pi\)
0.719204 0.694799i \(-0.244507\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 442.075i 1.23830i
\(358\) 0 0
\(359\) 305.050i 0.849723i 0.905258 + 0.424861i \(0.139677\pi\)
−0.905258 + 0.424861i \(0.860323\pi\)
\(360\) 0 0
\(361\) 179.557 0.497388
\(362\) 0 0
\(363\) 156.916 + 198.562i 0.432276 + 0.547003i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 315.354i 0.859274i −0.903002 0.429637i \(-0.858642\pi\)
0.903002 0.429637i \(-0.141358\pi\)
\(368\) 0 0
\(369\) 373.729i 1.01282i
\(370\) 0 0
\(371\) 4.48573i 0.0120909i
\(372\) 0 0
\(373\) 498.605 1.33674 0.668372 0.743827i \(-0.266991\pi\)
0.668372 + 0.743827i \(0.266991\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 286.986i 0.761235i
\(378\) 0 0
\(379\) 267.849 0.706725 0.353362 0.935487i \(-0.385038\pi\)
0.353362 + 0.935487i \(0.385038\pi\)
\(380\) 0 0
\(381\) 304.217i 0.798469i
\(382\) 0 0
\(383\) 263.703i 0.688519i 0.938874 + 0.344260i \(0.111870\pi\)
−0.938874 + 0.344260i \(0.888130\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 179.131 0.462871
\(388\) 0 0
\(389\) −246.626 −0.634001 −0.317001 0.948425i \(-0.602676\pi\)
−0.317001 + 0.948425i \(0.602676\pi\)
\(390\) 0 0
\(391\) 251.740i 0.643837i
\(392\) 0 0
\(393\) −141.206 −0.359303
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 469.581i 1.18282i −0.806369 0.591412i \(-0.798571\pi\)
0.806369 0.591412i \(-0.201429\pi\)
\(398\) 0 0
\(399\) 192.999 0.483706
\(400\) 0 0
\(401\) 8.43435 0.0210333 0.0105167 0.999945i \(-0.496652\pi\)
0.0105167 + 0.999945i \(0.496652\pi\)
\(402\) 0 0
\(403\) 287.557 0.713541
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −210.640 606.271i −0.517542 1.48961i
\(408\) 0 0
\(409\) 121.636i 0.297398i 0.988882 + 0.148699i \(0.0475086\pi\)
−0.988882 + 0.148699i \(0.952491\pi\)
\(410\) 0 0
\(411\) −305.848 −0.744157
\(412\) 0 0
\(413\) −232.186 −0.562194
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 32.2326 0.0772964
\(418\) 0 0
\(419\) −434.497 −1.03698 −0.518492 0.855082i \(-0.673507\pi\)
−0.518492 + 0.855082i \(0.673507\pi\)
\(420\) 0 0
\(421\) 458.288 1.08857 0.544285 0.838900i \(-0.316801\pi\)
0.544285 + 0.838900i \(0.316801\pi\)
\(422\) 0 0
\(423\) 186.842i 0.441707i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 762.963i 1.78680i
\(428\) 0 0
\(429\) 65.7324 + 189.194i 0.153222 + 0.441011i
\(430\) 0 0
\(431\) 710.617i 1.64876i 0.566034 + 0.824382i \(0.308477\pi\)
−0.566034 + 0.824382i \(0.691523\pi\)
\(432\) 0 0
\(433\) 602.203i 1.39077i −0.718638 0.695384i \(-0.755234\pi\)
0.718638 0.695384i \(-0.244766\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 109.903 0.251495
\(438\) 0 0
\(439\) 262.319i 0.597537i −0.954326 0.298769i \(-0.903424\pi\)
0.954326 0.298769i \(-0.0965759\pi\)
\(440\) 0 0
\(441\) −9.58802 −0.0217415
\(442\) 0 0
\(443\) 559.726i 1.26349i 0.775176 + 0.631745i \(0.217661\pi\)
−0.775176 + 0.631745i \(0.782339\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 319.034 0.713722
\(448\) 0 0
\(449\) −391.702 −0.872388 −0.436194 0.899853i \(-0.643674\pi\)
−0.436194 + 0.899853i \(0.643674\pi\)
\(450\) 0 0
\(451\) 291.698 + 839.577i 0.646781 + 1.86159i
\(452\) 0 0
\(453\) −84.5278 −0.186596
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −123.702 −0.270682 −0.135341 0.990799i \(-0.543213\pi\)
−0.135341 + 0.990799i \(0.543213\pi\)
\(458\) 0 0
\(459\) 879.288i 1.91566i
\(460\) 0 0
\(461\) 188.305i 0.408470i −0.978922 0.204235i \(-0.934529\pi\)
0.978922 0.204235i \(-0.0654707\pi\)
\(462\) 0 0
\(463\) 116.141i 0.250844i −0.992103 0.125422i \(-0.959972\pi\)
0.992103 0.125422i \(-0.0400285\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 54.3031i 0.116281i 0.998308 + 0.0581403i \(0.0185171\pi\)
−0.998308 + 0.0581403i \(0.981483\pi\)
\(468\) 0 0
\(469\) 159.569i 0.340233i
\(470\) 0 0
\(471\) −179.191 −0.380449
\(472\) 0 0
\(473\) −402.416 + 139.813i −0.850773 + 0.295588i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3.02875i 0.00634958i
\(478\) 0 0
\(479\) 103.374i 0.215812i −0.994161 0.107906i \(-0.965586\pi\)
0.994161 0.107906i \(-0.0344145\pi\)
\(480\) 0 0
\(481\) 507.936i 1.05600i
\(482\) 0 0
\(483\) −116.903 −0.242035
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 587.899i 1.20719i −0.797293 0.603593i \(-0.793735\pi\)
0.797293 0.603593i \(-0.206265\pi\)
\(488\) 0 0
\(489\) 12.9851 0.0265544
\(490\) 0 0
\(491\) 586.225i 1.19394i −0.802263 0.596970i \(-0.796371\pi\)
0.802263 0.596970i \(-0.203629\pi\)
\(492\) 0 0
\(493\) 1017.15i 2.06318i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −480.735 −0.967274
\(498\) 0 0
\(499\) −280.363 −0.561850 −0.280925 0.959730i \(-0.590641\pi\)
−0.280925 + 0.959730i \(0.590641\pi\)
\(500\) 0 0
\(501\) 33.3320i 0.0665310i
\(502\) 0 0
\(503\) 687.382 1.36656 0.683282 0.730154i \(-0.260552\pi\)
0.683282 + 0.730154i \(0.260552\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 194.969i 0.384554i
\(508\) 0 0
\(509\) 780.381 1.53317 0.766583 0.642146i \(-0.221956\pi\)
0.766583 + 0.642146i \(0.221956\pi\)
\(510\) 0 0
\(511\) 388.085 0.759462
\(512\) 0 0
\(513\) 383.875 0.748294
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −145.831 419.738i −0.282073 0.811872i
\(518\) 0 0
\(519\) 218.530i 0.421059i
\(520\) 0 0
\(521\) −306.042 −0.587413 −0.293707 0.955896i \(-0.594889\pi\)
−0.293707 + 0.955896i \(0.594889\pi\)
\(522\) 0 0
\(523\) −482.421 −0.922411 −0.461206 0.887293i \(-0.652583\pi\)
−0.461206 + 0.887293i \(0.652583\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1019.17 1.93391
\(528\) 0 0
\(529\) 462.429 0.874158
\(530\) 0 0
\(531\) −156.771 −0.295238
\(532\) 0 0
\(533\) 703.400i 1.31970i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 463.231i 0.862628i
\(538\) 0 0
\(539\) 21.5393 7.48351i 0.0399617 0.0138841i
\(540\) 0 0
\(541\) 630.921i 1.16621i 0.812396 + 0.583106i \(0.198163\pi\)
−0.812396 + 0.583106i \(0.801837\pi\)
\(542\) 0 0
\(543\) 256.992i 0.473281i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −519.754 −0.950190 −0.475095 0.879934i \(-0.657586\pi\)
−0.475095 + 0.879934i \(0.657586\pi\)
\(548\) 0 0
\(549\) 515.151i 0.938344i
\(550\) 0 0
\(551\) 444.061 0.805918
\(552\) 0 0
\(553\) 316.719i 0.572729i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −92.6779 −0.166388 −0.0831938 0.996533i \(-0.526512\pi\)
−0.0831938 + 0.996533i \(0.526512\pi\)
\(558\) 0 0
\(559\) −337.145 −0.603121
\(560\) 0 0
\(561\) 232.972 + 670.548i 0.415279 + 1.19527i
\(562\) 0 0
\(563\) −312.203 −0.554534 −0.277267 0.960793i \(-0.589429\pi\)
−0.277267 + 0.960793i \(0.589429\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −123.158 −0.217210
\(568\) 0 0
\(569\) 1.95145i 0.00342961i 0.999999 + 0.00171481i \(0.000545840\pi\)
−0.999999 + 0.00171481i \(0.999454\pi\)
\(570\) 0 0
\(571\) 19.4418i 0.0340486i −0.999855 0.0170243i \(-0.994581\pi\)
0.999855 0.0170243i \(-0.00541927\pi\)
\(572\) 0 0
\(573\) 199.741i 0.348588i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1090.83i 1.89052i 0.326325 + 0.945258i \(0.394190\pi\)
−0.326325 + 0.945258i \(0.605810\pi\)
\(578\) 0 0
\(579\) 381.847i 0.659493i
\(580\) 0 0
\(581\) −1039.79 −1.78965
\(582\) 0 0
\(583\) 2.36396 + 6.80404i 0.00405482 + 0.0116707i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 389.066i 0.662805i 0.943490 + 0.331402i \(0.107522\pi\)
−0.943490 + 0.331402i \(0.892478\pi\)
\(588\) 0 0
\(589\) 444.945i 0.755425i
\(590\) 0 0
\(591\) 165.509i 0.280050i
\(592\) 0 0
\(593\) 189.048 0.318799 0.159400 0.987214i \(-0.449044\pi\)
0.159400 + 0.987214i \(0.449044\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 254.021i 0.425496i
\(598\) 0 0
\(599\) −613.899 −1.02487 −0.512437 0.858725i \(-0.671257\pi\)
−0.512437 + 0.858725i \(0.671257\pi\)
\(600\) 0 0
\(601\) 188.463i 0.313583i −0.987632 0.156791i \(-0.949885\pi\)
0.987632 0.156791i \(-0.0501150\pi\)
\(602\) 0 0
\(603\) 107.741i 0.178674i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −816.608 −1.34532 −0.672659 0.739953i \(-0.734848\pi\)
−0.672659 + 0.739953i \(0.734848\pi\)
\(608\) 0 0
\(609\) −472.342 −0.775603
\(610\) 0 0
\(611\) 351.658i 0.575544i
\(612\) 0 0
\(613\) −539.684 −0.880398 −0.440199 0.897900i \(-0.645092\pi\)
−0.440199 + 0.897900i \(0.645092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 54.2911i 0.0879921i 0.999032 + 0.0439961i \(0.0140089\pi\)
−0.999032 + 0.0439961i \(0.985991\pi\)
\(618\) 0 0
\(619\) 1012.42 1.63557 0.817786 0.575522i \(-0.195201\pi\)
0.817786 + 0.575522i \(0.195201\pi\)
\(620\) 0 0
\(621\) −232.520 −0.374429
\(622\) 0 0
\(623\) −944.001 −1.51525
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −292.745 + 101.710i −0.466897 + 0.162216i
\(628\) 0 0
\(629\) 1800.25i 2.86208i
\(630\) 0 0
\(631\) −810.399 −1.28431 −0.642154 0.766576i \(-0.721959\pi\)
−0.642154 + 0.766576i \(0.721959\pi\)
\(632\) 0 0
\(633\) 825.094 1.30347
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 18.0457 0.0283292
\(638\) 0 0
\(639\) −324.591 −0.507967
\(640\) 0 0
\(641\) −276.256 −0.430977 −0.215488 0.976506i \(-0.569134\pi\)
−0.215488 + 0.976506i \(0.569134\pi\)
\(642\) 0 0
\(643\) 666.135i 1.03598i −0.855387 0.517990i \(-0.826680\pi\)
0.855387 0.517990i \(-0.173320\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1196.84i 1.84983i 0.380170 + 0.924916i \(0.375865\pi\)
−0.380170 + 0.924916i \(0.624135\pi\)
\(648\) 0 0
\(649\) 352.185 122.361i 0.542657 0.188538i
\(650\) 0 0
\(651\) 473.283i 0.727009i
\(652\) 0 0
\(653\) 588.543i 0.901291i −0.892703 0.450645i \(-0.851194\pi\)
0.892703 0.450645i \(-0.148806\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 262.034 0.398834
\(658\) 0 0
\(659\) 578.998i 0.878601i −0.898340 0.439301i \(-0.855226\pi\)
0.898340 0.439301i \(-0.144774\pi\)
\(660\) 0 0
\(661\) 404.959 0.612646 0.306323 0.951928i \(-0.400901\pi\)
0.306323 + 0.951928i \(0.400901\pi\)
\(662\) 0 0
\(663\) 561.787i 0.847341i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −268.976 −0.403263
\(668\) 0 0
\(669\) −600.608 −0.897771
\(670\) 0 0
\(671\) −402.079 1157.28i −0.599223 1.72471i
\(672\) 0 0
\(673\) 756.306 1.12378 0.561891 0.827211i \(-0.310074\pi\)
0.561891 + 0.827211i \(0.310074\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 240.947 0.355904 0.177952 0.984039i \(-0.443053\pi\)
0.177952 + 0.984039i \(0.443053\pi\)
\(678\) 0 0
\(679\) 1058.58i 1.55903i
\(680\) 0 0
\(681\) 467.412i 0.686361i
\(682\) 0 0
\(683\) 1245.15i 1.82307i 0.411226 + 0.911533i \(0.365101\pi\)
−0.411226 + 0.911533i \(0.634899\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 408.665i 0.594855i
\(688\) 0 0
\(689\) 5.70045i 0.00827351i
\(690\) 0 0
\(691\) −604.155 −0.874320 −0.437160 0.899384i \(-0.644016\pi\)
−0.437160 + 0.899384i \(0.644016\pi\)
\(692\) 0 0
\(693\) −329.230 + 114.386i −0.475080 + 0.165059i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2493.02i 3.57679i
\(698\) 0 0
\(699\) 90.9749i 0.130150i
\(700\) 0 0
\(701\) 611.107i 0.871764i 0.900004 + 0.435882i \(0.143564\pi\)
−0.900004 + 0.435882i \(0.856436\pi\)
\(702\) 0 0
\(703\) 785.943 1.11798
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 295.827i 0.418426i
\(708\) 0 0
\(709\) 438.658 0.618699 0.309350 0.950948i \(-0.399889\pi\)
0.309350 + 0.950948i \(0.399889\pi\)
\(710\) 0 0
\(711\) 213.848i 0.300770i
\(712\) 0 0
\(713\) 269.512i 0.377997i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 440.696 0.614639
\(718\) 0 0
\(719\) −1129.43 −1.57084 −0.785419 0.618964i \(-0.787552\pi\)
−0.785419 + 0.618964i \(0.787552\pi\)
\(720\) 0 0
\(721\) 908.408i 1.25993i
\(722\) 0 0
\(723\) −358.716 −0.496150
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 27.2412i 0.0374707i 0.999824 + 0.0187354i \(0.00596400\pi\)
−0.999824 + 0.0187354i \(0.994036\pi\)
\(728\) 0 0
\(729\) −619.613 −0.849950
\(730\) 0 0
\(731\) −1194.92 −1.63464
\(732\) 0 0
\(733\) 757.221 1.03304 0.516522 0.856274i \(-0.327226\pi\)
0.516522 + 0.856274i \(0.327226\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −84.0922 242.038i −0.114101 0.328409i
\(738\) 0 0
\(739\) 984.769i 1.33257i 0.745697 + 0.666285i \(0.232117\pi\)
−0.745697 + 0.666285i \(0.767883\pi\)
\(740\) 0 0
\(741\) −245.262 −0.330988
\(742\) 0 0
\(743\) 1166.00 1.56931 0.784654 0.619935i \(-0.212841\pi\)
0.784654 + 0.619935i \(0.212841\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −702.061 −0.939841
\(748\) 0 0
\(749\) 516.614 0.689738
\(750\) 0 0
\(751\) 966.474 1.28692 0.643458 0.765481i \(-0.277499\pi\)
0.643458 + 0.765481i \(0.277499\pi\)
\(752\) 0 0
\(753\) 395.008i 0.524579i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1191.59i 1.57409i 0.616894 + 0.787046i \(0.288391\pi\)
−0.616894 + 0.787046i \(0.711609\pi\)
\(758\) 0 0
\(759\) 177.321 61.6074i 0.233624 0.0811692i
\(760\) 0 0
\(761\) 251.478i 0.330457i −0.986255 0.165229i \(-0.947164\pi\)
0.986255 0.165229i \(-0.0528362\pi\)
\(762\) 0 0
\(763\) 997.766i 1.30769i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 295.061 0.384695
\(768\) 0 0
\(769\) 510.406i 0.663727i −0.943327 0.331864i \(-0.892323\pi\)
0.943327 0.331864i \(-0.107677\pi\)
\(770\) 0 0
\(771\) −471.604 −0.611678
\(772\) 0 0
\(773\) 838.431i 1.08465i 0.840170 + 0.542323i \(0.182455\pi\)
−0.840170 + 0.542323i \(0.817545\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −835.998 −1.07593
\(778\) 0 0
\(779\) −1088.39 −1.39716
\(780\) 0 0
\(781\) 729.189 253.345i 0.933661 0.324386i
\(782\) 0 0
\(783\) −939.490 −1.19986
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 86.4925 0.109902 0.0549508 0.998489i \(-0.482500\pi\)
0.0549508 + 0.998489i \(0.482500\pi\)
\(788\) 0 0
\(789\) 494.147i 0.626295i
\(790\) 0 0
\(791\) 35.6490i 0.0450683i
\(792\) 0 0
\(793\) 969.571i 1.22266i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 154.435i 0.193770i −0.995296 0.0968849i \(-0.969112\pi\)
0.995296 0.0968849i \(-0.0308879\pi\)
\(798\) 0 0
\(799\) 1246.36i 1.55990i
\(800\) 0 0
\(801\) −637.387 −0.795739
\(802\) 0 0
\(803\) −588.655 + 204.519i −0.733070 + 0.254694i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 732.373i 0.907525i
\(808\) 0 0
\(809\) 1219.75i 1.50772i 0.657033 + 0.753862i \(0.271811\pi\)
−0.657033 + 0.753862i \(0.728189\pi\)
\(810\) 0 0
\(811\) 1277.26i 1.57491i 0.616369 + 0.787457i \(0.288603\pi\)
−0.616369 + 0.787457i \(0.711397\pi\)
\(812\) 0 0
\(813\) −954.315 −1.17382
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 521.674i 0.638523i
\(818\) 0 0
\(819\) −275.830 −0.336789
\(820\) 0 0
\(821\) 1435.21i 1.74812i 0.485817 + 0.874061i \(0.338522\pi\)
−0.485817 + 0.874061i \(0.661478\pi\)
\(822\) 0 0
\(823\) 1039.17i 1.26266i −0.775516 0.631328i \(-0.782510\pi\)
0.775516 0.631328i \(-0.217490\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 376.097 0.454773 0.227386 0.973805i \(-0.426982\pi\)
0.227386 + 0.973805i \(0.426982\pi\)
\(828\) 0 0
\(829\) −87.4548 −0.105494 −0.0527472 0.998608i \(-0.516798\pi\)
−0.0527472 + 0.998608i \(0.516798\pi\)
\(830\) 0 0
\(831\) 215.481i 0.259303i
\(832\) 0 0
\(833\) 63.9585 0.0767809
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 941.361i 1.12468i
\(838\) 0 0
\(839\) 93.2621 0.111159 0.0555793 0.998454i \(-0.482299\pi\)
0.0555793 + 0.998454i \(0.482299\pi\)
\(840\) 0 0
\(841\) −245.788 −0.292257
\(842\) 0 0
\(843\) −429.324 −0.509281
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 650.332 513.933i 0.767807 0.606769i
\(848\) 0 0
\(849\) 533.632i 0.628542i
\(850\) 0 0
\(851\) −476.060 −0.559413
\(852\) 0 0
\(853\) −425.799 −0.499178 −0.249589 0.968352i \(-0.580295\pi\)
−0.249589 + 0.968352i \(0.580295\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −869.217 −1.01426 −0.507128 0.861871i \(-0.669293\pi\)
−0.507128 + 0.861871i \(0.669293\pi\)
\(858\) 0 0
\(859\) 233.966 0.272370 0.136185 0.990683i \(-0.456516\pi\)
0.136185 + 0.990683i \(0.456516\pi\)
\(860\) 0 0
\(861\) 1157.71 1.34461
\(862\) 0 0
\(863\) 972.669i 1.12708i −0.826089 0.563539i \(-0.809439\pi\)
0.826089 0.563539i \(-0.190561\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1386.65i 1.59936i
\(868\) 0 0
\(869\) 166.910 + 480.406i 0.192071 + 0.552826i
\(870\) 0 0
\(871\) 202.780i 0.232813i
\(872\) 0 0
\(873\) 714.750i 0.818729i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1259.13 −1.43573 −0.717864 0.696183i \(-0.754880\pi\)
−0.717864 + 0.696183i \(0.754880\pi\)
\(878\) 0 0
\(879\) 135.504i 0.154157i
\(880\) 0 0
\(881\) −1162.94 −1.32003 −0.660013 0.751255i \(-0.729449\pi\)
−0.660013 + 0.751255i \(0.729449\pi\)
\(882\) 0 0
\(883\) 1072.88i 1.21504i −0.794305 0.607519i \(-0.792165\pi\)
0.794305 0.607519i \(-0.207835\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1335.00 −1.50508 −0.752539 0.658548i \(-0.771171\pi\)
−0.752539 + 0.658548i \(0.771171\pi\)
\(888\) 0 0
\(889\) −996.373 −1.12078
\(890\) 0 0
\(891\) 186.809 64.9038i 0.209662 0.0728438i
\(892\) 0 0
\(893\) 544.130 0.609328
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 148.560 0.165619
\(898\) 0 0
\(899\) 1088.95i 1.21129i
\(900\) 0 0
\(901\) 20.2038i 0.0224237i
\(902\) 0 0
\(903\) 554.898i 0.614505i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 16.1018i 0.0177529i 0.999961 + 0.00887643i \(0.00282549\pi\)
−0.999961 + 0.00887643i \(0.997175\pi\)
\(908\) 0 0
\(909\) 199.742i 0.219738i
\(910\) 0 0
\(911\) −977.120 −1.07258 −0.536290 0.844034i \(-0.680175\pi\)
−0.536290 + 0.844034i \(0.680175\pi\)
\(912\) 0 0
\(913\) 1577.17 547.963i 1.72746 0.600179i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 462.479i 0.504339i
\(918\) 0 0
\(919\) 1286.07i 1.39942i −0.714427 0.699710i \(-0.753313\pi\)
0.714427 0.699710i \(-0.246687\pi\)
\(920\) 0 0
\(921\) 580.563i 0.630361i
\(922\) 0 0
\(923\) 610.917 0.661881
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 613.355i 0.661656i
\(928\) 0 0
\(929\) −1596.59 −1.71861 −0.859305 0.511463i \(-0.829104\pi\)
−0.859305 + 0.511463i \(0.829104\pi\)
\(930\) 0 0
\(931\) 27.9227i 0.0299921i
\(932\) 0 0
\(933\) 721.777i 0.773609i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 653.371 0.697301 0.348650 0.937253i \(-0.386640\pi\)
0.348650 + 0.937253i \(0.386640\pi\)
\(938\) 0 0
\(939\) 82.6414 0.0880100
\(940\) 0 0
\(941\) 430.775i 0.457784i −0.973452 0.228892i \(-0.926490\pi\)
0.973452 0.228892i \(-0.0735103\pi\)
\(942\) 0 0
\(943\) 659.259 0.699108
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 81.6426i 0.0862118i 0.999071 + 0.0431059i \(0.0137253\pi\)
−0.999071 + 0.0431059i \(0.986275\pi\)
\(948\) 0 0
\(949\) −493.177 −0.519681
\(950\) 0 0
\(951\) −68.5386 −0.0720700
\(952\) 0 0
\(953\) −1569.16 −1.64654 −0.823272 0.567647i \(-0.807854\pi\)
−0.823272 + 0.567647i \(0.807854\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 716.459 248.923i 0.748651 0.260107i
\(958\) 0 0
\(959\) 1001.72i 1.04454i
\(960\) 0 0
\(961\) 130.120 0.135401
\(962\) 0 0
\(963\) 348.816 0.362218
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1468.26 1.51837 0.759184 0.650876i \(-0.225598\pi\)
0.759184 + 0.650876i \(0.225598\pi\)
\(968\) 0 0
\(969\) −869.269 −0.897079
\(970\) 0 0
\(971\) 882.221 0.908569 0.454285 0.890857i \(-0.349895\pi\)
0.454285 + 0.890857i \(0.349895\pi\)
\(972\) 0 0
\(973\) 105.568i 0.108498i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1552.16i 1.58870i 0.607462 + 0.794349i \(0.292188\pi\)
−0.607462 + 0.794349i \(0.707812\pi\)
\(978\) 0 0
\(979\) 1431.88 497.485i 1.46260 0.508156i
\(980\) 0 0
\(981\) 673.689i 0.686737i
\(982\) 0 0
\(983\) 1497.65i 1.52355i −0.647839 0.761777i \(-0.724327\pi\)
0.647839 0.761777i \(-0.275673\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −578.784 −0.586408
\(988\) 0 0
\(989\) 315.988i 0.319502i
\(990\) 0 0
\(991\) 983.889 0.992824 0.496412 0.868087i \(-0.334650\pi\)
0.496412 + 0.868087i \(0.334650\pi\)
\(992\) 0 0
\(993\) 995.170i 1.00219i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1568.77 1.57350 0.786748 0.617275i \(-0.211763\pi\)
0.786748 + 0.617275i \(0.211763\pi\)
\(998\) 0 0
\(999\) −1662.80 −1.66447
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.e.c.549.12 16
5.2 odd 4 1100.3.f.e.901.6 yes 8
5.3 odd 4 1100.3.f.c.901.3 8
5.4 even 2 inner 1100.3.e.c.549.5 16
11.10 odd 2 inner 1100.3.e.c.549.11 16
55.32 even 4 1100.3.f.e.901.5 yes 8
55.43 even 4 1100.3.f.c.901.4 yes 8
55.54 odd 2 inner 1100.3.e.c.549.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.3.e.c.549.5 16 5.4 even 2 inner
1100.3.e.c.549.6 16 55.54 odd 2 inner
1100.3.e.c.549.11 16 11.10 odd 2 inner
1100.3.e.c.549.12 16 1.1 even 1 trivial
1100.3.f.c.901.3 8 5.3 odd 4
1100.3.f.c.901.4 yes 8 55.43 even 4
1100.3.f.e.901.5 yes 8 55.32 even 4
1100.3.f.e.901.6 yes 8 5.2 odd 4