Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1100,2,Mod(201,1100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 0, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1100.201");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1100.n (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.78354422234\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{5})\) |
Twist minimal: | no (minimal twist has level 220) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
201.1 | 0 | −0.954994 | − | 2.93917i | 0 | 0 | 0 | 0.787496 | − | 2.42366i | 0 | −5.29965 | + | 3.85042i | 0 | ||||||||||||
201.2 | 0 | −0.616907 | − | 1.89864i | 0 | 0 | 0 | −0.139922 | + | 0.430637i | 0 | −0.797226 | + | 0.579219i | 0 | ||||||||||||
201.3 | 0 | −0.321419 | − | 0.989226i | 0 | 0 | 0 | −0.699249 | + | 2.15207i | 0 | 1.55179 | − | 1.12744i | 0 | ||||||||||||
201.4 | 0 | 0.321419 | + | 0.989226i | 0 | 0 | 0 | 0.699249 | − | 2.15207i | 0 | 1.55179 | − | 1.12744i | 0 | ||||||||||||
201.5 | 0 | 0.616907 | + | 1.89864i | 0 | 0 | 0 | 0.139922 | − | 0.430637i | 0 | −0.797226 | + | 0.579219i | 0 | ||||||||||||
201.6 | 0 | 0.954994 | + | 2.93917i | 0 | 0 | 0 | −0.787496 | + | 2.42366i | 0 | −5.29965 | + | 3.85042i | 0 | ||||||||||||
301.1 | 0 | −0.954994 | + | 2.93917i | 0 | 0 | 0 | 0.787496 | + | 2.42366i | 0 | −5.29965 | − | 3.85042i | 0 | ||||||||||||
301.2 | 0 | −0.616907 | + | 1.89864i | 0 | 0 | 0 | −0.139922 | − | 0.430637i | 0 | −0.797226 | − | 0.579219i | 0 | ||||||||||||
301.3 | 0 | −0.321419 | + | 0.989226i | 0 | 0 | 0 | −0.699249 | − | 2.15207i | 0 | 1.55179 | + | 1.12744i | 0 | ||||||||||||
301.4 | 0 | 0.321419 | − | 0.989226i | 0 | 0 | 0 | 0.699249 | + | 2.15207i | 0 | 1.55179 | + | 1.12744i | 0 | ||||||||||||
301.5 | 0 | 0.616907 | − | 1.89864i | 0 | 0 | 0 | 0.139922 | + | 0.430637i | 0 | −0.797226 | − | 0.579219i | 0 | ||||||||||||
301.6 | 0 | 0.954994 | − | 2.93917i | 0 | 0 | 0 | −0.787496 | − | 2.42366i | 0 | −5.29965 | − | 3.85042i | 0 | ||||||||||||
401.1 | 0 | −2.20702 | − | 1.60349i | 0 | 0 | 0 | 1.38464 | − | 1.00600i | 0 | 1.37268 | + | 4.22469i | 0 | ||||||||||||
401.2 | 0 | −1.68925 | − | 1.22731i | 0 | 0 | 0 | −2.30533 | + | 1.67492i | 0 | 0.420216 | + | 1.29329i | 0 | ||||||||||||
401.3 | 0 | −0.616141 | − | 0.447653i | 0 | 0 | 0 | 3.89096 | − | 2.82695i | 0 | −0.747814 | − | 2.30153i | 0 | ||||||||||||
401.4 | 0 | 0.616141 | + | 0.447653i | 0 | 0 | 0 | −3.89096 | + | 2.82695i | 0 | −0.747814 | − | 2.30153i | 0 | ||||||||||||
401.5 | 0 | 1.68925 | + | 1.22731i | 0 | 0 | 0 | 2.30533 | − | 1.67492i | 0 | 0.420216 | + | 1.29329i | 0 | ||||||||||||
401.6 | 0 | 2.20702 | + | 1.60349i | 0 | 0 | 0 | −1.38464 | + | 1.00600i | 0 | 1.37268 | + | 4.22469i | 0 | ||||||||||||
801.1 | 0 | −2.20702 | + | 1.60349i | 0 | 0 | 0 | 1.38464 | + | 1.00600i | 0 | 1.37268 | − | 4.22469i | 0 | ||||||||||||
801.2 | 0 | −1.68925 | + | 1.22731i | 0 | 0 | 0 | −2.30533 | − | 1.67492i | 0 | 0.420216 | − | 1.29329i | 0 | ||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
55.j | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1100.2.n.f | 24 | |
5.b | even | 2 | 1 | inner | 1100.2.n.f | 24 | |
5.c | odd | 4 | 2 | 220.2.t.a | ✓ | 24 | |
11.c | even | 5 | 1 | inner | 1100.2.n.f | 24 | |
20.e | even | 4 | 2 | 880.2.cd.d | 24 | ||
55.j | even | 10 | 1 | inner | 1100.2.n.f | 24 | |
55.k | odd | 20 | 2 | 220.2.t.a | ✓ | 24 | |
55.k | odd | 20 | 2 | 2420.2.b.i | 12 | ||
55.l | even | 20 | 2 | 2420.2.b.h | 12 | ||
220.v | even | 20 | 2 | 880.2.cd.d | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.2.t.a | ✓ | 24 | 5.c | odd | 4 | 2 | |
220.2.t.a | ✓ | 24 | 55.k | odd | 20 | 2 | |
880.2.cd.d | 24 | 20.e | even | 4 | 2 | ||
880.2.cd.d | 24 | 220.v | even | 20 | 2 | ||
1100.2.n.f | 24 | 1.a | even | 1 | 1 | trivial | |
1100.2.n.f | 24 | 5.b | even | 2 | 1 | inner | |
1100.2.n.f | 24 | 11.c | even | 5 | 1 | inner | |
1100.2.n.f | 24 | 55.j | even | 10 | 1 | inner | |
2420.2.b.h | 12 | 55.l | even | 20 | 2 | ||
2420.2.b.i | 12 | 55.k | odd | 20 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} + 16 T_{3}^{22} + 155 T_{3}^{20} + 1189 T_{3}^{18} + 10679 T_{3}^{16} + 49589 T_{3}^{14} + \cdots + 600625 \) acting on \(S_{2}^{\mathrm{new}}(1100, [\chi])\).