Properties

Label 1100.2.n.a.401.1
Level $1100$
Weight $2$
Character 1100.401
Analytic conductor $8.784$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,2,Mod(201,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 401.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 1100.401
Dual form 1100.2.n.a.801.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.224514i) q^{3} +(2.30902 - 1.67760i) q^{7} +(-0.881966 - 2.71441i) q^{9} +(-3.23607 - 0.726543i) q^{11} +(-1.42705 - 4.39201i) q^{13} +(-1.42705 + 4.39201i) q^{17} +(2.30902 + 1.67760i) q^{19} -1.09017 q^{21} -6.47214 q^{23} +(-0.690983 + 2.12663i) q^{27} +(-5.16312 + 3.75123i) q^{29} +(-1.80902 - 5.56758i) q^{31} +(0.836881 + 0.951057i) q^{33} +(3.92705 - 2.85317i) q^{37} +(-0.545085 + 1.67760i) q^{39} +(-5.16312 - 3.75123i) q^{41} +(2.92705 + 2.12663i) q^{47} +(0.354102 - 1.08981i) q^{49} +(1.42705 - 1.03681i) q^{51} +(-2.19098 - 6.74315i) q^{53} +(-0.336881 - 1.03681i) q^{57} +(8.16312 - 5.93085i) q^{59} +(1.42705 - 4.39201i) q^{61} +(-6.59017 - 4.78804i) q^{63} +4.94427 q^{67} +(2.00000 + 1.45309i) q^{69} +(-2.66312 + 8.19624i) q^{71} +(-9.78115 + 7.10642i) q^{73} +(-8.69098 + 3.75123i) q^{77} +(-4.28115 - 13.1760i) q^{79} +(-6.23607 + 4.53077i) q^{81} +(4.95492 - 15.2497i) q^{83} +2.43769 q^{87} -8.47214 q^{89} +(-10.6631 - 7.74721i) q^{91} +(-0.690983 + 2.12663i) q^{93} +(-1.71885 - 5.29007i) q^{97} +(0.881966 + 9.42481i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 7 q^{7} - 8 q^{9} - 4 q^{11} + q^{13} + q^{17} + 7 q^{19} + 18 q^{21} - 8 q^{23} - 5 q^{27} - 5 q^{29} - 5 q^{31} + 19 q^{33} + 9 q^{37} + 9 q^{39} - 5 q^{41} + 5 q^{47} - 12 q^{49} - q^{51}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.309017 0.224514i −0.178411 0.129623i 0.494996 0.868895i \(-0.335170\pi\)
−0.673407 + 0.739272i \(0.735170\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.30902 1.67760i 0.872726 0.634073i −0.0585908 0.998282i \(-0.518661\pi\)
0.931317 + 0.364209i \(0.118661\pi\)
\(8\) 0 0
\(9\) −0.881966 2.71441i −0.293989 0.904804i
\(10\) 0 0
\(11\) −3.23607 0.726543i −0.975711 0.219061i
\(12\) 0 0
\(13\) −1.42705 4.39201i −0.395793 1.21812i −0.928342 0.371726i \(-0.878766\pi\)
0.532550 0.846399i \(-0.321234\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.42705 + 4.39201i −0.346111 + 1.06522i 0.614876 + 0.788624i \(0.289206\pi\)
−0.960987 + 0.276595i \(0.910794\pi\)
\(18\) 0 0
\(19\) 2.30902 + 1.67760i 0.529725 + 0.384868i 0.820255 0.571998i \(-0.193832\pi\)
−0.290530 + 0.956866i \(0.593832\pi\)
\(20\) 0 0
\(21\) −1.09017 −0.237895
\(22\) 0 0
\(23\) −6.47214 −1.34953 −0.674767 0.738031i \(-0.735756\pi\)
−0.674767 + 0.738031i \(0.735756\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.690983 + 2.12663i −0.132980 + 0.409270i
\(28\) 0 0
\(29\) −5.16312 + 3.75123i −0.958767 + 0.696585i −0.952864 0.303397i \(-0.901879\pi\)
−0.00590304 + 0.999983i \(0.501879\pi\)
\(30\) 0 0
\(31\) −1.80902 5.56758i −0.324909 0.999967i −0.971482 0.237115i \(-0.923798\pi\)
0.646573 0.762852i \(-0.276202\pi\)
\(32\) 0 0
\(33\) 0.836881 + 0.951057i 0.145682 + 0.165558i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.92705 2.85317i 0.645603 0.469058i −0.216167 0.976356i \(-0.569356\pi\)
0.861771 + 0.507298i \(0.169356\pi\)
\(38\) 0 0
\(39\) −0.545085 + 1.67760i −0.0872835 + 0.268631i
\(40\) 0 0
\(41\) −5.16312 3.75123i −0.806344 0.585843i 0.106425 0.994321i \(-0.466060\pi\)
−0.912768 + 0.408478i \(0.866060\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.92705 + 2.12663i 0.426954 + 0.310200i 0.780430 0.625243i \(-0.215000\pi\)
−0.353476 + 0.935444i \(0.615000\pi\)
\(48\) 0 0
\(49\) 0.354102 1.08981i 0.0505860 0.155688i
\(50\) 0 0
\(51\) 1.42705 1.03681i 0.199827 0.145183i
\(52\) 0 0
\(53\) −2.19098 6.74315i −0.300955 0.926243i −0.981156 0.193218i \(-0.938108\pi\)
0.680201 0.733025i \(-0.261892\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.336881 1.03681i −0.0446210 0.137329i
\(58\) 0 0
\(59\) 8.16312 5.93085i 1.06275 0.772131i 0.0881528 0.996107i \(-0.471904\pi\)
0.974595 + 0.223976i \(0.0719036\pi\)
\(60\) 0 0
\(61\) 1.42705 4.39201i 0.182715 0.562339i −0.817186 0.576374i \(-0.804467\pi\)
0.999902 + 0.0140341i \(0.00446734\pi\)
\(62\) 0 0
\(63\) −6.59017 4.78804i −0.830283 0.603236i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.94427 0.604039 0.302019 0.953302i \(-0.402339\pi\)
0.302019 + 0.953302i \(0.402339\pi\)
\(68\) 0 0
\(69\) 2.00000 + 1.45309i 0.240772 + 0.174931i
\(70\) 0 0
\(71\) −2.66312 + 8.19624i −0.316054 + 0.972714i 0.659264 + 0.751911i \(0.270868\pi\)
−0.975318 + 0.220803i \(0.929132\pi\)
\(72\) 0 0
\(73\) −9.78115 + 7.10642i −1.14480 + 0.831744i −0.987780 0.155852i \(-0.950188\pi\)
−0.157017 + 0.987596i \(0.550188\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.69098 + 3.75123i −0.990429 + 0.427492i
\(78\) 0 0
\(79\) −4.28115 13.1760i −0.481667 1.48242i −0.836750 0.547585i \(-0.815547\pi\)
0.355083 0.934835i \(-0.384453\pi\)
\(80\) 0 0
\(81\) −6.23607 + 4.53077i −0.692896 + 0.503419i
\(82\) 0 0
\(83\) 4.95492 15.2497i 0.543873 1.67387i −0.179783 0.983706i \(-0.557540\pi\)
0.723655 0.690161i \(-0.242460\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.43769 0.261348
\(88\) 0 0
\(89\) −8.47214 −0.898045 −0.449022 0.893521i \(-0.648228\pi\)
−0.449022 + 0.893521i \(0.648228\pi\)
\(90\) 0 0
\(91\) −10.6631 7.74721i −1.11780 0.812128i
\(92\) 0 0
\(93\) −0.690983 + 2.12663i −0.0716516 + 0.220521i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.71885 5.29007i −0.174522 0.537125i 0.825089 0.565003i \(-0.191125\pi\)
−0.999611 + 0.0278780i \(0.991125\pi\)
\(98\) 0 0
\(99\) 0.881966 + 9.42481i 0.0886409 + 0.947229i
\(100\) 0 0
\(101\) −2.10081 6.46564i −0.209039 0.643355i −0.999523 0.0308731i \(-0.990171\pi\)
0.790485 0.612482i \(-0.209829\pi\)
\(102\) 0 0
\(103\) −0.927051 + 0.673542i −0.0913450 + 0.0663661i −0.632520 0.774544i \(-0.717980\pi\)
0.541175 + 0.840910i \(0.317980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.92705 + 5.03280i 0.669663 + 0.486539i 0.869912 0.493206i \(-0.164175\pi\)
−0.200249 + 0.979745i \(0.564175\pi\)
\(108\) 0 0
\(109\) −3.52786 −0.337908 −0.168954 0.985624i \(-0.554039\pi\)
−0.168954 + 0.985624i \(0.554039\pi\)
\(110\) 0 0
\(111\) −1.85410 −0.175984
\(112\) 0 0
\(113\) −2.07295 1.50609i −0.195007 0.141681i 0.485997 0.873960i \(-0.338456\pi\)
−0.681004 + 0.732280i \(0.738456\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −10.6631 + 7.74721i −0.985806 + 0.716230i
\(118\) 0 0
\(119\) 4.07295 + 12.5352i 0.373367 + 1.14910i
\(120\) 0 0
\(121\) 9.94427 + 4.70228i 0.904025 + 0.427480i
\(122\) 0 0
\(123\) 0.753289 + 2.31838i 0.0679218 + 0.209042i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.42705 4.39201i 0.126630 0.389728i −0.867564 0.497325i \(-0.834316\pi\)
0.994195 + 0.107597i \(0.0343156\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.4721 1.61392 0.806959 0.590607i \(-0.201112\pi\)
0.806959 + 0.590607i \(0.201112\pi\)
\(132\) 0 0
\(133\) 8.14590 0.706339
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.33688 10.2699i 0.285089 0.877414i −0.701283 0.712883i \(-0.747389\pi\)
0.986372 0.164531i \(-0.0526110\pi\)
\(138\) 0 0
\(139\) 6.92705 5.03280i 0.587545 0.426876i −0.253891 0.967233i \(-0.581711\pi\)
0.841436 + 0.540356i \(0.181711\pi\)
\(140\) 0 0
\(141\) −0.427051 1.31433i −0.0359642 0.110686i
\(142\) 0 0
\(143\) 1.42705 + 15.2497i 0.119336 + 1.27524i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.354102 + 0.257270i −0.0292058 + 0.0212193i
\(148\) 0 0
\(149\) 1.42705 4.39201i 0.116909 0.359808i −0.875432 0.483342i \(-0.839423\pi\)
0.992340 + 0.123534i \(0.0394229\pi\)
\(150\) 0 0
\(151\) 11.5451 + 8.38800i 0.939526 + 0.682605i 0.948306 0.317356i \(-0.102795\pi\)
−0.00878076 + 0.999961i \(0.502795\pi\)
\(152\) 0 0
\(153\) 13.1803 1.06557
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.07295 1.50609i −0.165439 0.120199i 0.501985 0.864876i \(-0.332603\pi\)
−0.667424 + 0.744678i \(0.732603\pi\)
\(158\) 0 0
\(159\) −0.836881 + 2.57565i −0.0663690 + 0.204263i
\(160\) 0 0
\(161\) −14.9443 + 10.8576i −1.17777 + 0.855703i
\(162\) 0 0
\(163\) 1.33688 + 4.11450i 0.104713 + 0.322272i 0.989663 0.143413i \(-0.0458078\pi\)
−0.884950 + 0.465686i \(0.845808\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.10081 + 6.46564i 0.162566 + 0.500326i 0.998849 0.0479722i \(-0.0152759\pi\)
−0.836283 + 0.548298i \(0.815276\pi\)
\(168\) 0 0
\(169\) −6.73607 + 4.89404i −0.518159 + 0.376465i
\(170\) 0 0
\(171\) 2.51722 7.74721i 0.192497 0.592444i
\(172\) 0 0
\(173\) 14.3992 + 10.4616i 1.09475 + 0.795382i 0.980195 0.198035i \(-0.0634558\pi\)
0.114555 + 0.993417i \(0.463456\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.85410 −0.289692
\(178\) 0 0
\(179\) 0.309017 + 0.224514i 0.0230970 + 0.0167810i 0.599274 0.800544i \(-0.295456\pi\)
−0.576177 + 0.817325i \(0.695456\pi\)
\(180\) 0 0
\(181\) 0.190983 0.587785i 0.0141957 0.0436897i −0.943708 0.330780i \(-0.892688\pi\)
0.957903 + 0.287091i \(0.0926881\pi\)
\(182\) 0 0
\(183\) −1.42705 + 1.03681i −0.105491 + 0.0766434i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7.80902 13.1760i 0.571052 0.963527i
\(188\) 0 0
\(189\) 1.97214 + 6.06961i 0.143452 + 0.441499i
\(190\) 0 0
\(191\) 2.45492 1.78360i 0.177631 0.129057i −0.495417 0.868655i \(-0.664985\pi\)
0.673048 + 0.739599i \(0.264985\pi\)
\(192\) 0 0
\(193\) 0.753289 2.31838i 0.0542229 0.166881i −0.920278 0.391266i \(-0.872037\pi\)
0.974501 + 0.224385i \(0.0720373\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.9443 −1.06474 −0.532368 0.846513i \(-0.678698\pi\)
−0.532368 + 0.846513i \(0.678698\pi\)
\(198\) 0 0
\(199\) 16.9443 1.20115 0.600574 0.799569i \(-0.294939\pi\)
0.600574 + 0.799569i \(0.294939\pi\)
\(200\) 0 0
\(201\) −1.52786 1.11006i −0.107767 0.0782975i
\(202\) 0 0
\(203\) −5.62868 + 17.3233i −0.395056 + 1.21586i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5.70820 + 17.5680i 0.396748 + 1.22106i
\(208\) 0 0
\(209\) −6.25329 7.10642i −0.432549 0.491562i
\(210\) 0 0
\(211\) 7.13525 + 21.9601i 0.491211 + 1.51179i 0.822779 + 0.568361i \(0.192422\pi\)
−0.331568 + 0.943431i \(0.607578\pi\)
\(212\) 0 0
\(213\) 2.66312 1.93487i 0.182474 0.132575i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −13.5172 9.82084i −0.917609 0.666682i
\(218\) 0 0
\(219\) 4.61803 0.312058
\(220\) 0 0
\(221\) 21.3262 1.43456
\(222\) 0 0
\(223\) −15.2533 11.0822i −1.02144 0.742117i −0.0548591 0.998494i \(-0.517471\pi\)
−0.966577 + 0.256378i \(0.917471\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.2533 12.5352i 1.14514 0.831994i 0.157314 0.987549i \(-0.449717\pi\)
0.987827 + 0.155555i \(0.0497166\pi\)
\(228\) 0 0
\(229\) −5.33688 16.4252i −0.352671 1.08541i −0.957348 0.288939i \(-0.906698\pi\)
0.604677 0.796471i \(-0.293302\pi\)
\(230\) 0 0
\(231\) 3.52786 + 0.792055i 0.232116 + 0.0521134i
\(232\) 0 0
\(233\) −1.42705 4.39201i −0.0934892 0.287730i 0.893368 0.449326i \(-0.148336\pi\)
−0.986857 + 0.161596i \(0.948336\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.63525 + 5.03280i −0.106221 + 0.326915i
\(238\) 0 0
\(239\) −6.92705 5.03280i −0.448074 0.325545i 0.340761 0.940150i \(-0.389315\pi\)
−0.788835 + 0.614605i \(0.789315\pi\)
\(240\) 0 0
\(241\) 3.52786 0.227250 0.113625 0.993524i \(-0.463754\pi\)
0.113625 + 0.993524i \(0.463754\pi\)
\(242\) 0 0
\(243\) 9.65248 0.619207
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.07295 12.5352i 0.259156 0.797599i
\(248\) 0 0
\(249\) −4.95492 + 3.59996i −0.314005 + 0.228138i
\(250\) 0 0
\(251\) 0.371323 + 1.14281i 0.0234377 + 0.0721338i 0.962091 0.272728i \(-0.0879258\pi\)
−0.938654 + 0.344862i \(0.887926\pi\)
\(252\) 0 0
\(253\) 20.9443 + 4.70228i 1.31676 + 0.295630i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.0172 + 9.45756i −0.811992 + 0.589947i −0.914407 0.404795i \(-0.867343\pi\)
0.102416 + 0.994742i \(0.467343\pi\)
\(258\) 0 0
\(259\) 4.28115 13.1760i 0.266018 0.818719i
\(260\) 0 0
\(261\) 14.7361 + 10.7064i 0.912140 + 0.662708i
\(262\) 0 0
\(263\) 29.8885 1.84301 0.921503 0.388371i \(-0.126962\pi\)
0.921503 + 0.388371i \(0.126962\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.61803 + 1.90211i 0.160221 + 0.116407i
\(268\) 0 0
\(269\) −3.98936 + 12.2780i −0.243235 + 0.748602i 0.752686 + 0.658379i \(0.228758\pi\)
−0.995922 + 0.0902222i \(0.971242\pi\)
\(270\) 0 0
\(271\) −11.5451 + 8.38800i −0.701314 + 0.509534i −0.880360 0.474306i \(-0.842699\pi\)
0.179046 + 0.983841i \(0.442699\pi\)
\(272\) 0 0
\(273\) 1.55573 + 4.78804i 0.0941569 + 0.289785i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.753289 + 2.31838i 0.0452607 + 0.139298i 0.971133 0.238538i \(-0.0766682\pi\)
−0.925872 + 0.377836i \(0.876668\pi\)
\(278\) 0 0
\(279\) −13.5172 + 9.82084i −0.809255 + 0.587958i
\(280\) 0 0
\(281\) 3.60739 11.1024i 0.215199 0.662314i −0.783941 0.620836i \(-0.786793\pi\)
0.999139 0.0414782i \(-0.0132067\pi\)
\(282\) 0 0
\(283\) 6.92705 + 5.03280i 0.411770 + 0.299169i 0.774318 0.632796i \(-0.218093\pi\)
−0.362548 + 0.931965i \(0.618093\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −18.2148 −1.07518
\(288\) 0 0
\(289\) −3.50000 2.54290i −0.205882 0.149582i
\(290\) 0 0
\(291\) −0.656541 + 2.02063i −0.0384871 + 0.118451i
\(292\) 0 0
\(293\) 5.16312 3.75123i 0.301633 0.219149i −0.426665 0.904410i \(-0.640312\pi\)
0.728298 + 0.685261i \(0.240312\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.78115 6.37988i 0.219405 0.370198i
\(298\) 0 0
\(299\) 9.23607 + 28.4257i 0.534136 + 1.64390i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −0.802439 + 2.46965i −0.0460989 + 0.141878i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −18.4721 −1.05426 −0.527130 0.849785i \(-0.676732\pi\)
−0.527130 + 0.849785i \(0.676732\pi\)
\(308\) 0 0
\(309\) 0.437694 0.0248995
\(310\) 0 0
\(311\) 6.30902 + 4.58377i 0.357752 + 0.259922i 0.752114 0.659033i \(-0.229034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(312\) 0 0
\(313\) −9.42705 + 29.0135i −0.532848 + 1.63994i 0.215404 + 0.976525i \(0.430893\pi\)
−0.748253 + 0.663414i \(0.769107\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.71885 5.29007i −0.0965401 0.297120i 0.891112 0.453784i \(-0.149926\pi\)
−0.987652 + 0.156664i \(0.949926\pi\)
\(318\) 0 0
\(319\) 19.4336 8.38800i 1.08807 0.469638i
\(320\) 0 0
\(321\) −1.01064 3.11044i −0.0564086 0.173608i
\(322\) 0 0
\(323\) −10.6631 + 7.74721i −0.593312 + 0.431066i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.09017 + 0.792055i 0.0602865 + 0.0438007i
\(328\) 0 0
\(329\) 10.3262 0.569304
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) −11.2082 8.14324i −0.614206 0.446247i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −4.07295 + 2.95917i −0.221868 + 0.161196i −0.693167 0.720777i \(-0.743785\pi\)
0.471299 + 0.881973i \(0.343785\pi\)
\(338\) 0 0
\(339\) 0.302439 + 0.930812i 0.0164262 + 0.0505548i
\(340\) 0 0
\(341\) 1.80902 + 19.3314i 0.0979638 + 1.04685i
\(342\) 0 0
\(343\) 5.16312 + 15.8904i 0.278782 + 0.858003i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.10081 + 6.46564i −0.112778 + 0.347094i −0.991477 0.130282i \(-0.958412\pi\)
0.878699 + 0.477375i \(0.158412\pi\)
\(348\) 0 0
\(349\) 0.545085 + 0.396027i 0.0291777 + 0.0211989i 0.602279 0.798286i \(-0.294260\pi\)
−0.573101 + 0.819485i \(0.694260\pi\)
\(350\) 0 0
\(351\) 10.3262 0.551174
\(352\) 0 0
\(353\) −2.94427 −0.156708 −0.0783539 0.996926i \(-0.524966\pi\)
−0.0783539 + 0.996926i \(0.524966\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.55573 4.78804i 0.0823379 0.253410i
\(358\) 0 0
\(359\) 6.92705 5.03280i 0.365596 0.265621i −0.389787 0.920905i \(-0.627451\pi\)
0.755382 + 0.655284i \(0.227451\pi\)
\(360\) 0 0
\(361\) −3.35410 10.3229i −0.176532 0.543309i
\(362\) 0 0
\(363\) −2.01722 3.68571i −0.105877 0.193450i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 21.7254 15.7844i 1.13406 0.823941i 0.147778 0.989021i \(-0.452788\pi\)
0.986280 + 0.165079i \(0.0527880\pi\)
\(368\) 0 0
\(369\) −5.62868 + 17.3233i −0.293017 + 0.901814i
\(370\) 0 0
\(371\) −16.3713 11.8945i −0.849957 0.617530i
\(372\) 0 0
\(373\) 33.4164 1.73024 0.865118 0.501568i \(-0.167243\pi\)
0.865118 + 0.501568i \(0.167243\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 23.8435 + 17.3233i 1.22800 + 0.892195i
\(378\) 0 0
\(379\) 3.04508 9.37181i 0.156416 0.481397i −0.841886 0.539655i \(-0.818555\pi\)
0.998302 + 0.0582579i \(0.0185546\pi\)
\(380\) 0 0
\(381\) −1.42705 + 1.03681i −0.0731100 + 0.0531176i
\(382\) 0 0
\(383\) −9.60739 29.5685i −0.490915 1.51088i −0.823228 0.567711i \(-0.807829\pi\)
0.332313 0.943169i \(-0.392171\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.78115 1.29408i 0.0903080 0.0656126i −0.541715 0.840562i \(-0.682225\pi\)
0.632023 + 0.774950i \(0.282225\pi\)
\(390\) 0 0
\(391\) 9.23607 28.4257i 0.467088 1.43755i
\(392\) 0 0
\(393\) −5.70820 4.14725i −0.287941 0.209201i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 20.8328 1.04557 0.522785 0.852465i \(-0.324893\pi\)
0.522785 + 0.852465i \(0.324893\pi\)
\(398\) 0 0
\(399\) −2.51722 1.82887i −0.126019 0.0915579i
\(400\) 0 0
\(401\) −11.0451 + 33.9933i −0.551565 + 1.69754i 0.153281 + 0.988183i \(0.451016\pi\)
−0.704846 + 0.709361i \(0.748984\pi\)
\(402\) 0 0
\(403\) −21.8713 + 15.8904i −1.08949 + 0.791560i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −14.7812 + 6.37988i −0.732675 + 0.316239i
\(408\) 0 0
\(409\) −4.28115 13.1760i −0.211689 0.651513i −0.999372 0.0354318i \(-0.988719\pi\)
0.787683 0.616081i \(-0.211281\pi\)
\(410\) 0 0
\(411\) −3.33688 + 2.42439i −0.164596 + 0.119586i
\(412\) 0 0
\(413\) 8.89919 27.3889i 0.437900 1.34772i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3.27051 −0.160158
\(418\) 0 0
\(419\) −31.4164 −1.53479 −0.767396 0.641173i \(-0.778448\pi\)
−0.767396 + 0.641173i \(0.778448\pi\)
\(420\) 0 0
\(421\) −19.6353 14.2658i −0.956964 0.695275i −0.00452016 0.999990i \(-0.501439\pi\)
−0.952444 + 0.304715i \(0.901439\pi\)
\(422\) 0 0
\(423\) 3.19098 9.82084i 0.155151 0.477505i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.07295 12.5352i −0.197104 0.606623i
\(428\) 0 0
\(429\) 2.98278 5.03280i 0.144010 0.242986i
\(430\) 0 0
\(431\) −9.98936 30.7441i −0.481170 1.48089i −0.837452 0.546511i \(-0.815956\pi\)
0.356281 0.934379i \(-0.384044\pi\)
\(432\) 0 0
\(433\) −29.4894 + 21.4253i −1.41717 + 1.02963i −0.424937 + 0.905223i \(0.639704\pi\)
−0.992231 + 0.124410i \(0.960296\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −14.9443 10.8576i −0.714881 0.519392i
\(438\) 0 0
\(439\) 11.4164 0.544875 0.272438 0.962173i \(-0.412170\pi\)
0.272438 + 0.962173i \(0.412170\pi\)
\(440\) 0 0
\(441\) −3.27051 −0.155739
\(442\) 0 0
\(443\) −24.4894 17.7926i −1.16352 0.845350i −0.173305 0.984868i \(-0.555445\pi\)
−0.990220 + 0.139518i \(0.955445\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.42705 + 1.03681i −0.0674972 + 0.0490396i
\(448\) 0 0
\(449\) 1.71885 + 5.29007i 0.0811174 + 0.249654i 0.983388 0.181517i \(-0.0581007\pi\)
−0.902270 + 0.431171i \(0.858101\pi\)
\(450\) 0 0
\(451\) 13.9828 + 15.8904i 0.658423 + 0.748252i
\(452\) 0 0
\(453\) −1.68441 5.18407i −0.0791403 0.243569i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.28115 13.1760i 0.200264 0.616349i −0.799611 0.600519i \(-0.794961\pi\)
0.999875 0.0158303i \(-0.00503915\pi\)
\(458\) 0 0
\(459\) −8.35410 6.06961i −0.389936 0.283305i
\(460\) 0 0
\(461\) 37.7771 1.75945 0.879727 0.475479i \(-0.157725\pi\)
0.879727 + 0.475479i \(0.157725\pi\)
\(462\) 0 0
\(463\) 12.0000 0.557687 0.278844 0.960337i \(-0.410049\pi\)
0.278844 + 0.960337i \(0.410049\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.75329 + 26.9399i −0.405054 + 1.24663i 0.515796 + 0.856711i \(0.327496\pi\)
−0.920850 + 0.389916i \(0.872504\pi\)
\(468\) 0 0
\(469\) 11.4164 8.29451i 0.527161 0.383005i
\(470\) 0 0
\(471\) 0.302439 + 0.930812i 0.0139357 + 0.0428896i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −16.3713 + 11.8945i −0.749591 + 0.544610i
\(478\) 0 0
\(479\) −3.60739 + 11.1024i −0.164826 + 0.507282i −0.999023 0.0441838i \(-0.985931\pi\)
0.834198 + 0.551466i \(0.185931\pi\)
\(480\) 0 0
\(481\) −18.1353 13.1760i −0.826896 0.600775i
\(482\) 0 0
\(483\) 7.05573 0.321047
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.92705 + 6.48588i 0.404523 + 0.293903i 0.771381 0.636374i \(-0.219566\pi\)
−0.366858 + 0.930277i \(0.619566\pi\)
\(488\) 0 0
\(489\) 0.510643 1.57160i 0.0230921 0.0710701i
\(490\) 0 0
\(491\) 6.92705 5.03280i 0.312613 0.227127i −0.420404 0.907337i \(-0.638112\pi\)
0.733017 + 0.680210i \(0.238112\pi\)
\(492\) 0 0
\(493\) −9.10739 28.0297i −0.410176 1.26239i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.60081 + 23.3929i 0.340943 + 1.04931i
\(498\) 0 0
\(499\) −8.30902 + 6.03685i −0.371963 + 0.270247i −0.758024 0.652226i \(-0.773835\pi\)
0.386062 + 0.922473i \(0.373835\pi\)
\(500\) 0 0
\(501\) 0.802439 2.46965i 0.0358503 0.110336i
\(502\) 0 0
\(503\) 1.21885 + 0.885544i 0.0543457 + 0.0394845i 0.614626 0.788818i \(-0.289307\pi\)
−0.560281 + 0.828303i \(0.689307\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.18034 0.141244
\(508\) 0 0
\(509\) −25.6353 18.6251i −1.13626 0.825543i −0.149669 0.988736i \(-0.547821\pi\)
−0.986594 + 0.163193i \(0.947821\pi\)
\(510\) 0 0
\(511\) −10.6631 + 32.8177i −0.471709 + 1.45177i
\(512\) 0 0
\(513\) −5.16312 + 3.75123i −0.227957 + 0.165621i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −7.92705 9.00854i −0.348631 0.396195i
\(518\) 0 0
\(519\) −2.10081 6.46564i −0.0922155 0.283810i
\(520\) 0 0
\(521\) −18.8713 + 13.7108i −0.826768 + 0.600682i −0.918643 0.395089i \(-0.870714\pi\)
0.0918753 + 0.995771i \(0.470714\pi\)
\(522\) 0 0
\(523\) 8.48278 26.1073i 0.370926 1.14159i −0.575260 0.817970i \(-0.695099\pi\)
0.946186 0.323622i \(-0.104901\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 27.0344 1.17764
\(528\) 0 0
\(529\) 18.8885 0.821241
\(530\) 0 0
\(531\) −23.2984 16.9273i −1.01106 0.734580i
\(532\) 0 0
\(533\) −9.10739 + 28.0297i −0.394485 + 1.21410i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.0450850 0.138757i −0.00194556 0.00598782i
\(538\) 0 0
\(539\) −1.93769 + 3.26944i −0.0834624 + 0.140825i
\(540\) 0 0
\(541\) −7.80902 24.0337i −0.335736 1.03329i −0.966358 0.257199i \(-0.917200\pi\)
0.630623 0.776090i \(-0.282800\pi\)
\(542\) 0 0
\(543\) −0.190983 + 0.138757i −0.00819587 + 0.00595464i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 18.3435 + 13.3273i 0.784310 + 0.569834i 0.906269 0.422701i \(-0.138918\pi\)
−0.121960 + 0.992535i \(0.538918\pi\)
\(548\) 0 0
\(549\) −13.1803 −0.562523
\(550\) 0 0
\(551\) −18.2148 −0.775976
\(552\) 0 0
\(553\) −31.9894 23.2416i −1.36033 0.988335i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.69098 6.31437i 0.368249 0.267548i −0.388236 0.921560i \(-0.626915\pi\)
0.756484 + 0.654012i \(0.226915\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −5.37132 + 2.31838i −0.226777 + 0.0978823i
\(562\) 0 0
\(563\) −4.95492 15.2497i −0.208825 0.642697i −0.999535 0.0305054i \(-0.990288\pi\)
0.790710 0.612191i \(-0.209712\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −6.79837 + 20.9232i −0.285505 + 0.878694i
\(568\) 0 0
\(569\) 28.2533 + 20.5272i 1.18444 + 0.860546i 0.992665 0.120893i \(-0.0385759\pi\)
0.191774 + 0.981439i \(0.438576\pi\)
\(570\) 0 0
\(571\) 18.4721 0.773035 0.386517 0.922282i \(-0.373678\pi\)
0.386517 + 0.922282i \(0.373678\pi\)
\(572\) 0 0
\(573\) −1.15905 −0.0484202
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7.69756 23.6907i 0.320454 0.986255i −0.652998 0.757360i \(-0.726489\pi\)
0.973451 0.228895i \(-0.0735112\pi\)
\(578\) 0 0
\(579\) −0.753289 + 0.547296i −0.0313056 + 0.0227449i
\(580\) 0 0
\(581\) −14.1418 43.5241i −0.586702 1.80568i
\(582\) 0 0
\(583\) 2.19098 + 23.4131i 0.0907412 + 0.969673i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.927051 + 0.673542i −0.0382635 + 0.0278001i −0.606753 0.794891i \(-0.707528\pi\)
0.568489 + 0.822691i \(0.307528\pi\)
\(588\) 0 0
\(589\) 5.16312 15.8904i 0.212743 0.654754i
\(590\) 0 0
\(591\) 4.61803 + 3.35520i 0.189961 + 0.138014i
\(592\) 0 0
\(593\) −10.5836 −0.434616 −0.217308 0.976103i \(-0.569728\pi\)
−0.217308 + 0.976103i \(0.569728\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.23607 3.80423i −0.214298 0.155697i
\(598\) 0 0
\(599\) −0.302439 + 0.930812i −0.0123573 + 0.0380320i −0.957045 0.289939i \(-0.906365\pi\)
0.944688 + 0.327971i \(0.106365\pi\)
\(600\) 0 0
\(601\) −10.8713 + 7.89848i −0.443451 + 0.322186i −0.787004 0.616947i \(-0.788369\pi\)
0.343554 + 0.939133i \(0.388369\pi\)
\(602\) 0 0
\(603\) −4.36068 13.4208i −0.177581 0.546537i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −12.8435 39.5281i −0.521300 1.60440i −0.771519 0.636207i \(-0.780503\pi\)
0.250219 0.968189i \(-0.419497\pi\)
\(608\) 0 0
\(609\) 5.62868 4.08947i 0.228086 0.165714i
\(610\) 0 0
\(611\) 5.16312 15.8904i 0.208877 0.642859i
\(612\) 0 0
\(613\) −24.7254 17.9641i −0.998651 0.725562i −0.0368521 0.999321i \(-0.511733\pi\)
−0.961798 + 0.273759i \(0.911733\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16.4721 0.663143 0.331572 0.943430i \(-0.392421\pi\)
0.331572 + 0.943430i \(0.392421\pi\)
\(618\) 0 0
\(619\) −5.39919 3.92274i −0.217012 0.157668i 0.473969 0.880542i \(-0.342821\pi\)
−0.690980 + 0.722873i \(0.742821\pi\)
\(620\) 0 0
\(621\) 4.47214 13.7638i 0.179461 0.552323i
\(622\) 0 0
\(623\) −19.5623 + 14.2128i −0.783747 + 0.569426i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.336881 + 3.59996i 0.0134537 + 0.143768i
\(628\) 0 0
\(629\) 6.92705 + 21.3193i 0.276200 + 0.850055i
\(630\) 0 0
\(631\) 13.8713 10.0781i 0.552209 0.401203i −0.276390 0.961045i \(-0.589138\pi\)
0.828599 + 0.559842i \(0.189138\pi\)
\(632\) 0 0
\(633\) 2.72542 8.38800i 0.108326 0.333393i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.29180 −0.209669
\(638\) 0 0
\(639\) 24.5967 0.973032
\(640\) 0 0
\(641\) −12.8713 9.35156i −0.508387 0.369365i 0.303825 0.952728i \(-0.401736\pi\)
−0.812211 + 0.583363i \(0.801736\pi\)
\(642\) 0 0
\(643\) −6.57295 + 20.2295i −0.259212 + 0.797772i 0.733759 + 0.679410i \(0.237764\pi\)
−0.992971 + 0.118362i \(0.962236\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.0451 + 33.9933i 0.434227 + 1.33641i 0.893877 + 0.448313i \(0.147975\pi\)
−0.459649 + 0.888100i \(0.652025\pi\)
\(648\) 0 0
\(649\) −30.7254 + 13.2618i −1.20608 + 0.520571i
\(650\) 0 0
\(651\) 1.97214 + 6.06961i 0.0772941 + 0.237887i
\(652\) 0 0
\(653\) 18.8713 13.7108i 0.738492 0.536546i −0.153747 0.988110i \(-0.549134\pi\)
0.892238 + 0.451565i \(0.149134\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 27.9164 + 20.2825i 1.08912 + 0.791294i
\(658\) 0 0
\(659\) −4.36068 −0.169868 −0.0849340 0.996387i \(-0.527068\pi\)
−0.0849340 + 0.996387i \(0.527068\pi\)
\(660\) 0 0
\(661\) 14.3607 0.558566 0.279283 0.960209i \(-0.409903\pi\)
0.279283 + 0.960209i \(0.409903\pi\)
\(662\) 0 0
\(663\) −6.59017 4.78804i −0.255941 0.185952i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 33.4164 24.2784i 1.29389 0.940065i
\(668\) 0 0
\(669\) 2.22542 + 6.84915i 0.0860399 + 0.264804i
\(670\) 0 0
\(671\) −7.80902 + 13.1760i −0.301464 + 0.508655i
\(672\) 0 0
\(673\) −9.31559 28.6705i −0.359090 1.10516i −0.953600 0.301077i \(-0.902654\pi\)
0.594510 0.804088i \(-0.297346\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.6631 + 32.8177i −0.409817 + 1.26129i 0.506989 + 0.861953i \(0.330759\pi\)
−0.916805 + 0.399334i \(0.869241\pi\)
\(678\) 0 0
\(679\) −12.8435 9.33132i −0.492887 0.358103i
\(680\) 0 0
\(681\) −8.14590 −0.312151
\(682\) 0 0
\(683\) −16.9443 −0.648355 −0.324177 0.945996i \(-0.605087\pi\)
−0.324177 + 0.945996i \(0.605087\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2.03851 + 6.27388i −0.0777739 + 0.239363i
\(688\) 0 0
\(689\) −26.4894 + 19.2456i −1.00916 + 0.733201i
\(690\) 0 0
\(691\) −3.98936 12.2780i −0.151762 0.467076i 0.846056 0.533094i \(-0.178971\pi\)
−0.997818 + 0.0660174i \(0.978971\pi\)
\(692\) 0 0
\(693\) 17.8475 + 20.2825i 0.677971 + 0.770467i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 23.8435 17.3233i 0.903135 0.656166i
\(698\) 0 0
\(699\) −0.545085 + 1.67760i −0.0206170 + 0.0634526i
\(700\) 0 0
\(701\) −1.63525 1.18808i −0.0617627 0.0448732i 0.556476 0.830864i \(-0.312153\pi\)
−0.618238 + 0.785991i \(0.712153\pi\)
\(702\) 0 0
\(703\) 13.8541 0.522517
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.6976 11.4049i −0.590368 0.428927i
\(708\) 0 0
\(709\) 2.37132 7.29818i 0.0890569 0.274089i −0.896602 0.442836i \(-0.853972\pi\)
0.985659 + 0.168747i \(0.0539722\pi\)
\(710\) 0 0
\(711\) −31.9894 + 23.2416i −1.19969 + 0.871629i
\(712\) 0 0
\(713\) 11.7082 + 36.0341i 0.438476 + 1.34949i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.01064 + 3.11044i 0.0377432 + 0.116161i
\(718\) 0 0
\(719\) 4.63525 3.36771i 0.172866 0.125594i −0.497988 0.867184i \(-0.665928\pi\)
0.670854 + 0.741589i \(0.265928\pi\)
\(720\) 0 0
\(721\) −1.01064 + 3.11044i −0.0376383 + 0.115839i
\(722\) 0 0
\(723\) −1.09017 0.792055i −0.0405439 0.0294568i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 15.7254 + 11.4252i 0.582423 + 0.423155i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 10.8713 7.89848i 0.401541 0.291737i −0.368627 0.929577i \(-0.620172\pi\)
0.770169 + 0.637840i \(0.220172\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0000 3.59222i −0.589368 0.132321i
\(738\) 0 0
\(739\) −11.3369 34.8913i −0.417034 1.28350i −0.910419 0.413687i \(-0.864241\pi\)
0.493385 0.869811i \(-0.335759\pi\)
\(740\) 0 0
\(741\) −4.07295 + 2.95917i −0.149624 + 0.108708i
\(742\) 0 0
\(743\) 10.6631 32.8177i 0.391192 1.20396i −0.540696 0.841218i \(-0.681839\pi\)
0.931888 0.362747i \(-0.118161\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −45.7639 −1.67441
\(748\) 0 0
\(749\) 24.4377 0.892934
\(750\) 0 0
\(751\) −14.6353 10.6331i −0.534048 0.388009i 0.287822 0.957684i \(-0.407069\pi\)
−0.821870 + 0.569675i \(0.807069\pi\)
\(752\) 0 0
\(753\) 0.141833 0.436516i 0.00516867 0.0159075i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 4.86475 + 14.9721i 0.176812 + 0.544172i 0.999712 0.0240152i \(-0.00764500\pi\)
−0.822899 + 0.568187i \(0.807645\pi\)
\(758\) 0 0
\(759\) −5.41641 6.15537i −0.196603 0.223426i
\(760\) 0 0
\(761\) 14.1910 + 43.6754i 0.514423 + 1.58323i 0.784330 + 0.620344i \(0.213007\pi\)
−0.269907 + 0.962886i \(0.586993\pi\)
\(762\) 0 0
\(763\) −8.14590 + 5.91834i −0.294901 + 0.214258i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −37.6976 27.3889i −1.36118 0.988955i
\(768\) 0 0
\(769\) 10.5836 0.381654 0.190827 0.981624i \(-0.438883\pi\)
0.190827 + 0.981624i \(0.438883\pi\)
\(770\) 0 0
\(771\) 6.14590 0.221339
\(772\) 0 0
\(773\) −10.2533 7.44945i −0.368785 0.267938i 0.387922 0.921692i \(-0.373193\pi\)
−0.756707 + 0.653754i \(0.773193\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4.28115 + 3.11044i −0.153586 + 0.111586i
\(778\) 0 0
\(779\) −5.62868 17.3233i −0.201668 0.620671i
\(780\) 0 0
\(781\) 14.5729 24.5887i 0.521461 0.879853i
\(782\) 0 0
\(783\) −4.40983 13.5721i −0.157594 0.485026i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −9.98936 + 30.7441i −0.356082 + 1.09591i 0.599297 + 0.800527i \(0.295447\pi\)
−0.955379 + 0.295382i \(0.904553\pi\)
\(788\) 0 0
\(789\) −9.23607 6.71040i −0.328813 0.238896i
\(790\) 0 0
\(791\) −7.31308 −0.260023
\(792\) 0 0
\(793\) −21.3262 −0.757317
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.33688 10.2699i 0.118198 0.363777i −0.874402 0.485202i \(-0.838746\pi\)
0.992601 + 0.121424i \(0.0387462\pi\)
\(798\) 0 0
\(799\) −13.5172 + 9.82084i −0.478205 + 0.347436i
\(800\) 0 0
\(801\) 7.47214 + 22.9969i 0.264015 + 0.812554i
\(802\) 0 0
\(803\) 36.8156 15.8904i 1.29919 0.560762i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.98936 2.89844i 0.140432 0.102030i
\(808\) 0 0
\(809\) 14.1910 43.6754i 0.498928 1.53554i −0.311815 0.950143i \(-0.600937\pi\)
0.810744 0.585401i \(-0.199063\pi\)
\(810\) 0 0
\(811\) 22.9615 + 16.6825i 0.806287 + 0.585802i 0.912752 0.408515i \(-0.133953\pi\)
−0.106465 + 0.994316i \(0.533953\pi\)
\(812\) 0 0
\(813\) 5.45085 0.191170
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −11.6246 + 35.7769i −0.406197 + 1.25015i
\(820\) 0 0
\(821\) 15.4894 11.2537i 0.540582 0.392756i −0.283719 0.958907i \(-0.591568\pi\)
0.824301 + 0.566151i \(0.191568\pi\)
\(822\) 0 0
\(823\) 0.461493 + 1.42033i 0.0160866 + 0.0495096i 0.958778 0.284158i \(-0.0917139\pi\)
−0.942691 + 0.333667i \(0.891714\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.95492 15.2497i −0.172299 0.530283i 0.827201 0.561907i \(-0.189932\pi\)
−0.999500 + 0.0316241i \(0.989932\pi\)
\(828\) 0 0
\(829\) 38.7254 28.1357i 1.34499 0.977192i 0.345745 0.938328i \(-0.387626\pi\)
0.999245 0.0388637i \(-0.0123738\pi\)
\(830\) 0 0
\(831\) 0.287731 0.885544i 0.00998127 0.0307192i
\(832\) 0 0
\(833\) 4.28115 + 3.11044i 0.148333 + 0.107770i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 13.0902 0.452462
\(838\) 0 0
\(839\) 0.309017 + 0.224514i 0.0106685 + 0.00775108i 0.593107 0.805124i \(-0.297901\pi\)
−0.582438 + 0.812875i \(0.697901\pi\)
\(840\) 0 0
\(841\) 3.62461 11.1554i 0.124987 0.384669i
\(842\) 0 0
\(843\) −3.60739 + 2.62092i −0.124245 + 0.0902694i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 30.8500 5.82485i 1.06002 0.200144i
\(848\) 0 0
\(849\) −1.01064 3.11044i −0.0346852 0.106750i
\(850\) 0 0
\(851\) −25.4164 + 18.4661i −0.871263 + 0.633010i
\(852\) 0 0
\(853\) 2.10081 6.46564i 0.0719305 0.221379i −0.908628 0.417607i \(-0.862869\pi\)
0.980558 + 0.196227i \(0.0628691\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.9443 0.510487 0.255243 0.966877i \(-0.417844\pi\)
0.255243 + 0.966877i \(0.417844\pi\)
\(858\) 0 0
\(859\) −48.9443 −1.66996 −0.834979 0.550283i \(-0.814520\pi\)
−0.834979 + 0.550283i \(0.814520\pi\)
\(860\) 0 0
\(861\) 5.62868 + 4.08947i 0.191825 + 0.139369i
\(862\) 0 0
\(863\) −8.10081 + 24.9317i −0.275755 + 0.848686i 0.713264 + 0.700896i \(0.247216\pi\)
−0.989019 + 0.147791i \(0.952784\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.510643 + 1.57160i 0.0173423 + 0.0533743i
\(868\) 0 0
\(869\) 4.28115 + 45.7490i 0.145228 + 1.55193i
\(870\) 0 0
\(871\) −7.05573 21.7153i −0.239074 0.735795i
\(872\) 0 0
\(873\) −12.8435 + 9.33132i −0.434685 + 0.315817i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 35.0517 + 25.4665i 1.18361 + 0.859943i 0.992574 0.121640i \(-0.0388152\pi\)
0.191036 + 0.981583i \(0.438815\pi\)
\(878\) 0 0
\(879\) −2.43769 −0.0822214
\(880\) 0 0
\(881\) −19.8885 −0.670062 −0.335031 0.942207i \(-0.608747\pi\)
−0.335031 + 0.942207i \(0.608747\pi\)
\(882\) 0 0
\(883\) 42.0517 + 30.5523i 1.41515 + 1.02817i 0.992548 + 0.121853i \(0.0388835\pi\)
0.422603 + 0.906315i \(0.361117\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −21.8713 + 15.8904i −0.734367 + 0.533549i −0.890942 0.454117i \(-0.849955\pi\)
0.156575 + 0.987666i \(0.449955\pi\)
\(888\) 0 0
\(889\) −4.07295 12.5352i −0.136602 0.420419i
\(890\) 0 0
\(891\) 23.4721 10.1311i 0.786346 0.339405i
\(892\) 0 0
\(893\) 3.19098 + 9.82084i 0.106782 + 0.328642i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3.52786 10.8576i 0.117792 0.362526i
\(898\) 0 0
\(899\) 30.2254 + 21.9601i 1.00807 + 0.732409i
\(900\) 0 0
\(901\) 32.7426 1.09082
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 13.8992 42.7773i 0.461515 1.42040i −0.401798 0.915728i \(-0.631615\pi\)
0.863313 0.504669i \(-0.168385\pi\)
\(908\) 0 0
\(909\) −15.6976 + 11.4049i −0.520655 + 0.378278i
\(910\) 0 0
\(911\) 5.71885 + 17.6008i 0.189474 + 0.583141i 0.999997 0.00256645i \(-0.000816927\pi\)
−0.810523 + 0.585707i \(0.800817\pi\)
\(912\) 0 0
\(913\) −27.1140 + 45.7490i −0.897341 + 1.51407i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 42.6525 30.9888i 1.40851 1.02334i
\(918\) 0 0
\(919\) −12.8435 + 39.5281i −0.423667 + 1.30391i 0.480599 + 0.876941i \(0.340419\pi\)
−0.904265 + 0.426971i \(0.859581\pi\)
\(920\) 0 0
\(921\) 5.70820 + 4.14725i 0.188092 + 0.136657i
\(922\) 0 0
\(923\) 39.7984 1.30998
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.64590 + 1.92236i 0.0869027 + 0.0631385i
\(928\) 0 0
\(929\) 9.60739 29.5685i 0.315208 0.970111i −0.660460 0.750861i \(-0.729639\pi\)
0.975669 0.219250i \(-0.0703612\pi\)
\(930\) 0 0
\(931\) 2.64590 1.92236i 0.0867158 0.0630027i
\(932\) 0 0
\(933\) −0.920473 2.83293i −0.0301349 0.0927458i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.28115 + 13.1760i 0.139859 + 0.430442i 0.996314 0.0857795i \(-0.0273380\pi\)
−0.856455 + 0.516222i \(0.827338\pi\)
\(938\) 0 0
\(939\) 9.42705 6.84915i 0.307640 0.223514i
\(940\) 0 0
\(941\) 7.13525 21.9601i 0.232603 0.715877i −0.764828 0.644235i \(-0.777176\pi\)
0.997430 0.0716425i \(-0.0228241\pi\)
\(942\) 0 0
\(943\) 33.4164 + 24.2784i 1.08819 + 0.790615i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −47.7771 −1.55255 −0.776273 0.630396i \(-0.782892\pi\)
−0.776273 + 0.630396i \(0.782892\pi\)
\(948\) 0 0
\(949\) 45.1697 + 32.8177i 1.46627 + 1.06531i
\(950\) 0 0
\(951\) −0.656541 + 2.02063i −0.0212898 + 0.0655233i
\(952\) 0 0
\(953\) −37.4894 + 27.2376i −1.21440 + 0.882313i −0.995623 0.0934622i \(-0.970207\pi\)
−0.218777 + 0.975775i \(0.570207\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −7.88854 1.77109i −0.255000 0.0572512i
\(958\) 0 0
\(959\) −9.52380 29.3112i −0.307540 0.946509i
\(960\) 0 0
\(961\) −2.64590 + 1.92236i −0.0853515 + 0.0620115i
\(962\) 0 0
\(963\) 7.55166 23.2416i 0.243349 0.748951i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −44.0000 −1.41494 −0.707472 0.706741i \(-0.750165\pi\)
−0.707472 + 0.706741i \(0.750165\pi\)
\(968\) 0 0
\(969\) 5.03444 0.161730
\(970\) 0 0
\(971\) −14.6353 10.6331i −0.469668 0.341234i 0.327644 0.944801i \(-0.393745\pi\)
−0.797312 + 0.603568i \(0.793745\pi\)
\(972\) 0 0
\(973\) 7.55166 23.2416i 0.242095 0.745092i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.9549 33.7158i −0.350479 1.07866i −0.958585 0.284807i \(-0.908070\pi\)
0.608106 0.793856i \(-0.291930\pi\)
\(978\) 0 0
\(979\) 27.4164 + 6.15537i 0.876232 + 0.196726i
\(980\) 0 0
\(981\) 3.11146 + 9.57608i 0.0993412 + 0.305741i
\(982\) 0 0
\(983\) −4.63525 + 3.36771i −0.147842 + 0.107413i −0.659247 0.751926i \(-0.729125\pi\)
0.511406 + 0.859339i \(0.329125\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −3.19098 2.31838i −0.101570 0.0737950i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 0 0
\(993\) 3.70820 + 2.69417i 0.117676 + 0.0854968i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −28.2533 + 20.5272i −0.894791 + 0.650103i −0.937123 0.349000i \(-0.886521\pi\)
0.0423320 + 0.999104i \(0.486521\pi\)
\(998\) 0 0
\(999\) 3.35410 + 10.3229i 0.106119 + 0.326601i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.2.n.a.401.1 4
5.2 odd 4 1100.2.cb.a.49.1 8
5.3 odd 4 1100.2.cb.a.49.2 8
5.4 even 2 44.2.e.a.5.1 4
11.9 even 5 inner 1100.2.n.a.801.1 4
15.14 odd 2 396.2.j.a.181.1 4
20.19 odd 2 176.2.m.b.49.1 4
40.19 odd 2 704.2.m.d.577.1 4
40.29 even 2 704.2.m.e.577.1 4
55.4 even 10 484.2.e.e.245.1 4
55.9 even 10 44.2.e.a.9.1 yes 4
55.14 even 10 484.2.a.b.1.2 2
55.19 odd 10 484.2.a.c.1.2 2
55.24 odd 10 484.2.e.c.9.1 4
55.29 odd 10 484.2.e.d.245.1 4
55.39 odd 10 484.2.e.d.81.1 4
55.42 odd 20 1100.2.cb.a.449.2 8
55.49 even 10 484.2.e.e.81.1 4
55.53 odd 20 1100.2.cb.a.449.1 8
55.54 odd 2 484.2.e.c.269.1 4
165.14 odd 10 4356.2.a.t.1.1 2
165.74 even 10 4356.2.a.u.1.1 2
165.119 odd 10 396.2.j.a.361.1 4
220.19 even 10 1936.2.a.z.1.1 2
220.119 odd 10 176.2.m.b.97.1 4
220.179 odd 10 1936.2.a.ba.1.1 2
440.19 even 10 7744.2.a.bo.1.2 2
440.69 even 10 7744.2.a.da.1.1 2
440.179 odd 10 7744.2.a.bp.1.2 2
440.229 even 10 704.2.m.e.449.1 4
440.339 odd 10 704.2.m.d.449.1 4
440.349 odd 10 7744.2.a.db.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.e.a.5.1 4 5.4 even 2
44.2.e.a.9.1 yes 4 55.9 even 10
176.2.m.b.49.1 4 20.19 odd 2
176.2.m.b.97.1 4 220.119 odd 10
396.2.j.a.181.1 4 15.14 odd 2
396.2.j.a.361.1 4 165.119 odd 10
484.2.a.b.1.2 2 55.14 even 10
484.2.a.c.1.2 2 55.19 odd 10
484.2.e.c.9.1 4 55.24 odd 10
484.2.e.c.269.1 4 55.54 odd 2
484.2.e.d.81.1 4 55.39 odd 10
484.2.e.d.245.1 4 55.29 odd 10
484.2.e.e.81.1 4 55.49 even 10
484.2.e.e.245.1 4 55.4 even 10
704.2.m.d.449.1 4 440.339 odd 10
704.2.m.d.577.1 4 40.19 odd 2
704.2.m.e.449.1 4 440.229 even 10
704.2.m.e.577.1 4 40.29 even 2
1100.2.n.a.401.1 4 1.1 even 1 trivial
1100.2.n.a.801.1 4 11.9 even 5 inner
1100.2.cb.a.49.1 8 5.2 odd 4
1100.2.cb.a.49.2 8 5.3 odd 4
1100.2.cb.a.449.1 8 55.53 odd 20
1100.2.cb.a.449.2 8 55.42 odd 20
1936.2.a.z.1.1 2 220.19 even 10
1936.2.a.ba.1.1 2 220.179 odd 10
4356.2.a.t.1.1 2 165.14 odd 10
4356.2.a.u.1.1 2 165.74 even 10
7744.2.a.bo.1.2 2 440.19 even 10
7744.2.a.bp.1.2 2 440.179 odd 10
7744.2.a.da.1.1 2 440.69 even 10
7744.2.a.db.1.1 2 440.349 odd 10