Properties

Label 1100.2.k.d
Level $1100$
Weight $2$
Character orbit 1100.k
Analytic conductor $8.784$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,2,Mod(593,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.593");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{3} - 2 \beta_1) q^{7} + \beta_{6} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + (\beta_{3} - 2 \beta_1) q^{7} + \beta_{6} q^{9} + (\beta_{6} - \beta_{2}) q^{11} + (\beta_{7} - 3 \beta_{5}) q^{13} + ( - 4 \beta_{3} + 3 \beta_1) q^{17} - 5 q^{19} + ( - 2 \beta_{6} - 5 \beta_{4}) q^{21} + (\beta_{3} + 4 \beta_1) q^{23} + (\beta_{7} - \beta_{5}) q^{27} + ( - 3 \beta_{2} - 3) q^{29} + (2 \beta_{2} + 1) q^{31} + (\beta_{7} + 2 \beta_{5} + \cdots + 3 \beta_1) q^{33}+ \cdots + (5 \beta_{4} - \beta_{2} - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{11} - 40 q^{19} - 12 q^{29} + 68 q^{39} - 40 q^{71} - 76 q^{79} + 16 q^{81} - 92 q^{91} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 23x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 24\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} + 24\nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} + 24\nu^{3} ) / 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -3\nu^{6} - 67\nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\nu^{7} - 23\nu^{3} \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + 3\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + 5\beta_{5} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{2} - 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 5\beta_{3} - 24\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -24\beta_{6} - 67\beta_{4} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -24\beta_{7} - 115\beta_{5} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(-\beta_{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
593.1
−1.54779 1.54779i
−0.323042 0.323042i
0.323042 + 0.323042i
1.54779 + 1.54779i
−1.54779 + 1.54779i
−0.323042 + 0.323042i
0.323042 0.323042i
1.54779 1.54779i
0 −1.54779 1.54779i 0 0 0 2.77253 + 2.77253i 0 1.79129i 0
593.2 0 −0.323042 0.323042i 0 0 0 −0.901703 0.901703i 0 2.79129i 0
593.3 0 0.323042 + 0.323042i 0 0 0 0.901703 + 0.901703i 0 2.79129i 0
593.4 0 1.54779 + 1.54779i 0 0 0 −2.77253 2.77253i 0 1.79129i 0
857.1 0 −1.54779 + 1.54779i 0 0 0 2.77253 2.77253i 0 1.79129i 0
857.2 0 −0.323042 + 0.323042i 0 0 0 −0.901703 + 0.901703i 0 2.79129i 0
857.3 0 0.323042 0.323042i 0 0 0 0.901703 0.901703i 0 2.79129i 0
857.4 0 1.54779 1.54779i 0 0 0 −2.77253 + 2.77253i 0 1.79129i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 593.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
55.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.2.k.d 8
5.b even 2 1 inner 1100.2.k.d 8
5.c odd 4 2 1100.2.k.e yes 8
11.b odd 2 1 1100.2.k.e yes 8
55.d odd 2 1 1100.2.k.e yes 8
55.e even 4 2 inner 1100.2.k.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1100.2.k.d 8 1.a even 1 1 trivial
1100.2.k.d 8 5.b even 2 1 inner
1100.2.k.d 8 55.e even 4 2 inner
1100.2.k.e yes 8 5.c odd 4 2
1100.2.k.e yes 8 11.b odd 2 1
1100.2.k.e yes 8 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1100, [\chi])\):

\( T_{3}^{8} + 23T_{3}^{4} + 1 \) Copy content Toggle raw display
\( T_{19} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 23T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 239T^{4} + 625 \) Copy content Toggle raw display
$11$ \( (T^{4} - 2 T^{3} + \cdots + 121)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + 2594 T^{4} + 390625 \) Copy content Toggle raw display
$17$ \( T^{8} + 3479 T^{4} + 1500625 \) Copy content Toggle raw display
$19$ \( (T + 5)^{8} \) Copy content Toggle raw display
$23$ \( T^{8} + 7463 T^{4} + 1874161 \) Copy content Toggle raw display
$29$ \( (T^{2} + 3 T - 45)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 21)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} + 2594 T^{4} + 390625 \) Copy content Toggle raw display
$41$ \( (T^{2} + 25)^{4} \) Copy content Toggle raw display
$43$ \( T^{8} + 10224 T^{4} + 12960000 \) Copy content Toggle raw display
$47$ \( T^{8} + 1394T^{4} + 625 \) Copy content Toggle raw display
$53$ \( T^{8} + 10143 T^{4} + 194481 \) Copy content Toggle raw display
$59$ \( (T^{4} + 74 T^{2} + 25)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 71 T^{2} + 625)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 5888 T^{4} + 65536 \) Copy content Toggle raw display
$71$ \( (T^{2} + 10 T + 4)^{4} \) Copy content Toggle raw display
$73$ \( T^{8} + 239T^{4} + 625 \) Copy content Toggle raw display
$79$ \( (T^{2} + 19 T + 85)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} + 3479 T^{4} + 1500625 \) Copy content Toggle raw display
$89$ \( (T^{4} + 23 T^{2} + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 3479 T^{4} + 1500625 \) Copy content Toggle raw display
show more
show less