Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1100,2,Mod(49,1100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1100.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1100.cb (of order \(10\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.78354422234\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | 0 | −1.76353 | + | 2.42729i | 0 | 0 | 0 | 0.992679 | + | 1.36631i | 0 | −1.85465 | − | 5.70802i | 0 | ||||||||||||
49.2 | 0 | −1.19189 | + | 1.64050i | 0 | 0 | 0 | 2.39570 | + | 3.29740i | 0 | −0.343577 | − | 1.05742i | 0 | ||||||||||||
49.3 | 0 | −0.753625 | + | 1.03728i | 0 | 0 | 0 | −1.05965 | − | 1.45849i | 0 | 0.419060 | + | 1.28974i | 0 | ||||||||||||
49.4 | 0 | −0.545259 | + | 0.750484i | 0 | 0 | 0 | 0.343369 | + | 0.472607i | 0 | 0.661131 | + | 2.03475i | 0 | ||||||||||||
49.5 | 0 | 0.545259 | − | 0.750484i | 0 | 0 | 0 | −0.343369 | − | 0.472607i | 0 | 0.661131 | + | 2.03475i | 0 | ||||||||||||
49.6 | 0 | 0.753625 | − | 1.03728i | 0 | 0 | 0 | 1.05965 | + | 1.45849i | 0 | 0.419060 | + | 1.28974i | 0 | ||||||||||||
49.7 | 0 | 1.19189 | − | 1.64050i | 0 | 0 | 0 | −2.39570 | − | 3.29740i | 0 | −0.343577 | − | 1.05742i | 0 | ||||||||||||
49.8 | 0 | 1.76353 | − | 2.42729i | 0 | 0 | 0 | −0.992679 | − | 1.36631i | 0 | −1.85465 | − | 5.70802i | 0 | ||||||||||||
449.1 | 0 | −1.76353 | − | 2.42729i | 0 | 0 | 0 | 0.992679 | − | 1.36631i | 0 | −1.85465 | + | 5.70802i | 0 | ||||||||||||
449.2 | 0 | −1.19189 | − | 1.64050i | 0 | 0 | 0 | 2.39570 | − | 3.29740i | 0 | −0.343577 | + | 1.05742i | 0 | ||||||||||||
449.3 | 0 | −0.753625 | − | 1.03728i | 0 | 0 | 0 | −1.05965 | + | 1.45849i | 0 | 0.419060 | − | 1.28974i | 0 | ||||||||||||
449.4 | 0 | −0.545259 | − | 0.750484i | 0 | 0 | 0 | 0.343369 | − | 0.472607i | 0 | 0.661131 | − | 2.03475i | 0 | ||||||||||||
449.5 | 0 | 0.545259 | + | 0.750484i | 0 | 0 | 0 | −0.343369 | + | 0.472607i | 0 | 0.661131 | − | 2.03475i | 0 | ||||||||||||
449.6 | 0 | 0.753625 | + | 1.03728i | 0 | 0 | 0 | 1.05965 | − | 1.45849i | 0 | 0.419060 | − | 1.28974i | 0 | ||||||||||||
449.7 | 0 | 1.19189 | + | 1.64050i | 0 | 0 | 0 | −2.39570 | + | 3.29740i | 0 | −0.343577 | + | 1.05742i | 0 | ||||||||||||
449.8 | 0 | 1.76353 | + | 2.42729i | 0 | 0 | 0 | −0.992679 | + | 1.36631i | 0 | −1.85465 | + | 5.70802i | 0 | ||||||||||||
949.1 | 0 | −2.98723 | + | 0.970609i | 0 | 0 | 0 | −2.09053 | − | 0.679254i | 0 | 5.55439 | − | 4.03550i | 0 | ||||||||||||
949.2 | 0 | −1.46529 | + | 0.476102i | 0 | 0 | 0 | −3.83001 | − | 1.24445i | 0 | −0.506649 | + | 0.368102i | 0 | ||||||||||||
949.3 | 0 | −0.727256 | + | 0.236300i | 0 | 0 | 0 | 2.00099 | + | 0.650161i | 0 | −1.95399 | + | 1.41965i | 0 | ||||||||||||
949.4 | 0 | −0.710352 | + | 0.230807i | 0 | 0 | 0 | 3.74048 | + | 1.21535i | 0 | −1.97572 | + | 1.43545i | 0 | ||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
55.j | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1100.2.cb.d | 32 | |
5.b | even | 2 | 1 | inner | 1100.2.cb.d | 32 | |
5.c | odd | 4 | 1 | 1100.2.n.d | ✓ | 16 | |
5.c | odd | 4 | 1 | 1100.2.n.e | yes | 16 | |
11.c | even | 5 | 1 | inner | 1100.2.cb.d | 32 | |
55.j | even | 10 | 1 | inner | 1100.2.cb.d | 32 | |
55.k | odd | 20 | 1 | 1100.2.n.d | ✓ | 16 | |
55.k | odd | 20 | 1 | 1100.2.n.e | yes | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1100.2.n.d | ✓ | 16 | 5.c | odd | 4 | 1 | |
1100.2.n.d | ✓ | 16 | 55.k | odd | 20 | 1 | |
1100.2.n.e | yes | 16 | 5.c | odd | 4 | 1 | |
1100.2.n.e | yes | 16 | 55.k | odd | 20 | 1 | |
1100.2.cb.d | 32 | 1.a | even | 1 | 1 | trivial | |
1100.2.cb.d | 32 | 5.b | even | 2 | 1 | inner | |
1100.2.cb.d | 32 | 11.c | even | 5 | 1 | inner | |
1100.2.cb.d | 32 | 55.j | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{32} - 12 T_{3}^{30} + 122 T_{3}^{28} - 1121 T_{3}^{26} + 11295 T_{3}^{24} - 31788 T_{3}^{22} + \cdots + 160000 \) acting on \(S_{2}^{\mathrm{new}}(1100, [\chi])\).