Properties

Label 1100.2.b.a
Level $1100$
Weight $2$
Character orbit 1100.b
Analytic conductor $8.784$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - 2 \beta q^{7} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} - 2 \beta q^{7} - q^{9} - q^{11} + 2 \beta q^{13} + 4 q^{19} + 8 q^{21} + 3 \beta q^{23} + 2 \beta q^{27} + 6 q^{29} + 8 q^{31} - \beta q^{33} + \beta q^{37} - 8 q^{39} + 6 q^{41} - 4 \beta q^{43} + 3 \beta q^{47} - 9 q^{49} + 3 \beta q^{53} + 4 \beta q^{57} + 12 q^{59} + 2 q^{61} + 2 \beta q^{63} - 5 \beta q^{67} - 12 q^{69} - 12 q^{71} + 8 \beta q^{73} + 2 \beta q^{77} - 8 q^{79} - 11 q^{81} + 6 \beta q^{87} - 6 q^{89} + 16 q^{91} + 8 \beta q^{93} + 7 \beta q^{97} + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} - 2 q^{11} + 8 q^{19} + 16 q^{21} + 12 q^{29} + 16 q^{31} - 16 q^{39} + 12 q^{41} - 18 q^{49} + 24 q^{59} + 4 q^{61} - 24 q^{69} - 24 q^{71} - 16 q^{79} - 22 q^{81} - 12 q^{89} + 32 q^{91} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
749.1
1.00000i
1.00000i
0 2.00000i 0 0 0 4.00000i 0 −1.00000 0
749.2 0 2.00000i 0 0 0 4.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.2.b.a 2
3.b odd 2 1 9900.2.c.m 2
4.b odd 2 1 4400.2.b.f 2
5.b even 2 1 inner 1100.2.b.a 2
5.c odd 4 1 220.2.a.a 1
5.c odd 4 1 1100.2.a.e 1
15.d odd 2 1 9900.2.c.m 2
15.e even 4 1 1980.2.a.a 1
15.e even 4 1 9900.2.a.bd 1
20.d odd 2 1 4400.2.b.f 2
20.e even 4 1 880.2.a.j 1
20.e even 4 1 4400.2.a.e 1
40.i odd 4 1 3520.2.a.bd 1
40.k even 4 1 3520.2.a.d 1
55.e even 4 1 2420.2.a.b 1
60.l odd 4 1 7920.2.a.o 1
220.i odd 4 1 9680.2.a.bb 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.a.a 1 5.c odd 4 1
880.2.a.j 1 20.e even 4 1
1100.2.a.e 1 5.c odd 4 1
1100.2.b.a 2 1.a even 1 1 trivial
1100.2.b.a 2 5.b even 2 1 inner
1980.2.a.a 1 15.e even 4 1
2420.2.a.b 1 55.e even 4 1
3520.2.a.d 1 40.k even 4 1
3520.2.a.bd 1 40.i odd 4 1
4400.2.a.e 1 20.e even 4 1
4400.2.b.f 2 4.b odd 2 1
4400.2.b.f 2 20.d odd 2 1
7920.2.a.o 1 60.l odd 4 1
9680.2.a.bb 1 220.i odd 4 1
9900.2.a.bd 1 15.e even 4 1
9900.2.c.m 2 3.b odd 2 1
9900.2.c.m 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1100, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T - 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( (T - 12)^{2} \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 100 \) Copy content Toggle raw display
$71$ \( (T + 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 256 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 196 \) Copy content Toggle raw display
show more
show less