Properties

Label 1100.1.f
Level $1100$
Weight $1$
Character orbit 1100.f
Rep. character $\chi_{1100}(901,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $180$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1100.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(180\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1100, [\chi])\).

Total New Old
Modular forms 27 3 24
Cusp forms 9 3 6
Eisenstein series 18 0 18

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 3 0 0 0

Trace form

\( 3 q + q^{3} + 4 q^{9} - q^{11} + q^{23} - q^{27} + q^{31} + q^{33} + q^{37} - 2 q^{47} + 3 q^{49} - 2 q^{53} + q^{59} + q^{67} - 5 q^{69} - 3 q^{71} + q^{81} - 3 q^{89} - q^{93} + q^{97} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1100, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1100.1.f.a 1100.f 11.b $1$ $0.549$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-11}) \) None 44.1.d.a \(0\) \(1\) \(0\) \(0\) \(q+q^{3}+q^{11}+q^{23}-q^{27}-q^{31}+\cdots\)
1100.1.f.b 1100.f 11.b $2$ $0.549$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-11}) \) None 220.1.e.a \(0\) \(0\) \(0\) \(0\) \(q-\beta q^{3}+2q^{9}-q^{11}+\beta q^{23}-\beta q^{27}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1100, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1100, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 3}\)