Properties

Label 1100.1.cd.a
Level $1100$
Weight $1$
Character orbit 1100.cd
Analytic conductor $0.549$
Analytic rank $0$
Dimension $8$
Projective image $D_{30}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,1,Mod(109,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.109"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7, 5])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1100.cd (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.548971513896\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{30}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{30} + \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{30}^{2} - \zeta_{30}) q^{3} - \zeta_{30}^{10} q^{5} + (\zeta_{30}^{4} + \cdots + \zeta_{30}^{2}) q^{9} - \zeta_{30}^{12} q^{11} + (\zeta_{30}^{12} + \zeta_{30}^{11}) q^{15} + (\zeta_{30}^{8} + \zeta_{30}) q^{23} + \cdots + ( - \zeta_{30}^{14} + \zeta_{30} + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + 4 q^{9} + 2 q^{11} - 3 q^{15} - 4 q^{25} - 5 q^{27} - 2 q^{31} + 2 q^{45} - 8 q^{49} + q^{55} - 3 q^{59} + 5 q^{67} - q^{69} + 2 q^{71} - 3 q^{75} + 3 q^{81} - 2 q^{89} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(\zeta_{30}^{9}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
−0.978148 + 0.207912i
0.669131 + 0.743145i
0.913545 + 0.406737i
−0.104528 0.994522i
0.913545 0.406737i
−0.104528 + 0.994522i
−0.978148 0.207912i
0.669131 0.743145i
0 −1.89169 + 0.614648i 0 0.500000 + 0.866025i 0 0 0 2.39169 1.73767i 0
109.2 0 0.773659 0.251377i 0 0.500000 0.866025i 0 0 0 −0.273659 + 0.198825i 0
329.1 0 0.244415 0.336408i 0 0.500000 + 0.866025i 0 0 0 0.255585 + 0.786610i 0
329.2 0 0.873619 1.20243i 0 0.500000 0.866025i 0 0 0 −0.373619 1.14988i 0
769.1 0 0.244415 + 0.336408i 0 0.500000 0.866025i 0 0 0 0.255585 0.786610i 0
769.2 0 0.873619 + 1.20243i 0 0.500000 + 0.866025i 0 0 0 −0.373619 + 1.14988i 0
989.1 0 −1.89169 0.614648i 0 0.500000 0.866025i 0 0 0 2.39169 + 1.73767i 0
989.2 0 0.773659 + 0.251377i 0 0.500000 + 0.866025i 0 0 0 −0.273659 0.198825i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 109.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
25.e even 10 1 inner
275.s odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.1.cd.a 8
11.b odd 2 1 CM 1100.1.cd.a 8
25.e even 10 1 inner 1100.1.cd.a 8
275.s odd 10 1 inner 1100.1.cd.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1100.1.cd.a 8 1.a even 1 1 trivial
1100.1.cd.a 8 11.b odd 2 1 CM
1100.1.cd.a 8 25.e even 10 1 inner
1100.1.cd.a 8 275.s odd 10 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1100, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 3 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} - 3 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} + 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{8} - 3 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} + 5 T + 5)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} - 5 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{8} - 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} + 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{8} - 3 T^{6} + \cdots + 1 \) Copy content Toggle raw display
show more
show less