Newspace parameters
Level: | \( N \) | \(=\) | \( 110 = 2 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 110.k (of order \(20\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.49021010063\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −1.97538 | + | 0.312869i | −3.48140 | − | 6.83262i | 3.80423 | − | 1.23607i | 6.72660 | + | 8.93045i | 9.01478 | + | 12.4078i | 14.5104 | + | 7.39343i | −7.12805 | + | 3.63192i | −18.6944 | + | 25.7307i | −16.0816 | − | 15.5365i |
7.2 | −1.97538 | + | 0.312869i | −2.81267 | − | 5.52017i | 3.80423 | − | 1.23607i | −9.79201 | − | 5.39597i | 7.28317 | + | 10.0244i | −13.7656 | − | 7.01394i | −7.12805 | + | 3.63192i | −6.69100 | + | 9.20938i | 21.0311 | + | 7.59546i |
7.3 | −1.97538 | + | 0.312869i | −2.35230 | − | 4.61664i | 3.80423 | − | 1.23607i | 3.06446 | − | 10.7522i | 6.09107 | + | 8.38364i | 26.5017 | + | 13.5033i | −7.12805 | + | 3.63192i | 0.0901319 | − | 0.124056i | −2.68945 | + | 22.1984i |
7.4 | −1.97538 | + | 0.312869i | −0.941282 | − | 1.84737i | 3.80423 | − | 1.23607i | 2.15025 | + | 10.9716i | 2.43737 | + | 3.35475i | −9.71350 | − | 4.94928i | −7.12805 | + | 3.63192i | 13.3434 | − | 18.3657i | −7.68023 | − | 21.0003i |
7.5 | −1.97538 | + | 0.312869i | 0.305523 | + | 0.599623i | 3.80423 | − | 1.23607i | −11.0972 | + | 1.36087i | −0.791127 | − | 1.08889i | 6.44885 | + | 3.28585i | −7.12805 | + | 3.63192i | 15.6040 | − | 21.4771i | 21.4954 | − | 6.16021i |
7.6 | −1.97538 | + | 0.312869i | 0.636330 | + | 1.24887i | 3.80423 | − | 1.23607i | 9.71128 | − | 5.53994i | −1.64772 | − | 2.26790i | −23.2491 | − | 11.8460i | −7.12805 | + | 3.63192i | 14.7154 | − | 20.2541i | −17.4502 | + | 13.9818i |
7.7 | −1.97538 | + | 0.312869i | 2.35028 | + | 4.61268i | 3.80423 | − | 1.23607i | 11.1644 | + | 0.595895i | −6.08585 | − | 8.37645i | 11.8045 | + | 6.01470i | −7.12805 | + | 3.63192i | 0.117179 | − | 0.161283i | −22.2404 | + | 2.31589i |
7.8 | −1.97538 | + | 0.312869i | 3.43959 | + | 6.75057i | 3.80423 | − | 1.23607i | −6.05483 | + | 9.39889i | −8.90653 | − | 12.2588i | 16.3583 | + | 8.33497i | −7.12805 | + | 3.63192i | −17.8693 | + | 24.5949i | 9.01995 | − | 20.4607i |
7.9 | −1.97538 | + | 0.312869i | 4.14000 | + | 8.12521i | 3.80423 | − | 1.23607i | −7.11680 | − | 8.62271i | −10.7202 | − | 14.7551i | −29.7959 | − | 15.1817i | −7.12805 | + | 3.63192i | −33.0092 | + | 45.4333i | 16.7561 | + | 14.8065i |
7.10 | 1.97538 | − | 0.312869i | −4.48373 | − | 8.79981i | 3.80423 | − | 1.23607i | −0.827166 | − | 11.1497i | −11.6102 | − | 15.9801i | 0.659738 | + | 0.336154i | 7.12805 | − | 3.63192i | −41.4626 | + | 57.0684i | −5.12236 | − | 21.7661i |
7.11 | 1.97538 | − | 0.312869i | −2.36332 | − | 4.63829i | 3.80423 | − | 1.23607i | 11.0203 | + | 1.88505i | −6.11963 | − | 8.42295i | 7.23245 | + | 3.68512i | 7.12805 | − | 3.63192i | −0.0581894 | + | 0.0800909i | 22.3590 | + | 0.275778i |
7.12 | 1.97538 | − | 0.312869i | −1.67333 | − | 3.28409i | 3.80423 | − | 1.23607i | −10.5883 | + | 3.59002i | −4.33294 | − | 5.96378i | −23.0882 | − | 11.7640i | 7.12805 | − | 3.63192i | 7.88499 | − | 10.8528i | −19.7926 | + | 10.4044i |
7.13 | 1.97538 | − | 0.312869i | −0.134038 | − | 0.263065i | 3.80423 | − | 1.23607i | 0.491989 | + | 11.1695i | −0.347081 | − | 0.477716i | 9.77114 | + | 4.97864i | 7.12805 | − | 3.63192i | 15.8190 | − | 21.7729i | 4.46646 | + | 21.9101i |
7.14 | 1.97538 | − | 0.312869i | 0.0345940 | + | 0.0678945i | 3.80423 | − | 1.23607i | −9.05578 | − | 6.55690i | 0.0895782 | + | 0.123294i | 26.9536 | + | 13.7335i | 7.12805 | − | 3.63192i | 15.8668 | − | 21.8388i | −19.9400 | − | 10.1191i |
7.15 | 1.97538 | − | 0.312869i | 0.114151 | + | 0.224033i | 3.80423 | − | 1.23607i | 1.74009 | − | 11.0441i | 0.295583 | + | 0.406836i | −27.7439 | − | 14.1362i | 7.12805 | − | 3.63192i | 15.8330 | − | 21.7923i | −0.0180186 | − | 22.3607i |
7.16 | 1.97538 | − | 0.312869i | 2.68986 | + | 5.27915i | 3.80423 | − | 1.23607i | 6.17250 | − | 9.32203i | 6.96517 | + | 9.58673i | 12.2499 | + | 6.24166i | 7.12805 | − | 3.63192i | −4.76385 | + | 6.55687i | 9.27645 | − | 20.3457i |
7.17 | 1.97538 | − | 0.312869i | 3.05899 | + | 6.00362i | 3.80423 | − | 1.23607i | 10.3687 | + | 4.18211i | 7.92101 | + | 10.9023i | −6.69380 | − | 3.41066i | 7.12805 | − | 3.63192i | −10.8157 | + | 14.8866i | 21.7905 | + | 5.01720i |
7.18 | 1.97538 | − | 0.312869i | 4.04090 | + | 7.93071i | 3.80423 | − | 1.23607i | −8.78081 | + | 6.92079i | 10.4636 | + | 14.4019i | 0.860054 | + | 0.438219i | 7.12805 | − | 3.63192i | −30.6971 | + | 42.2509i | −15.1801 | + | 16.4184i |
13.1 | −1.78201 | + | 0.907981i | −9.15200 | − | 1.44953i | 2.35114 | − | 3.23607i | 10.9659 | + | 2.17925i | 17.6251 | − | 5.72675i | −4.53048 | − | 28.6043i | −1.25148 | + | 7.90151i | 55.9793 | + | 18.1888i | −21.5201 | + | 6.07338i |
13.2 | −1.78201 | + | 0.907981i | −6.39172 | − | 1.01235i | 2.35114 | − | 3.23607i | −3.68265 | + | 10.5564i | 12.3093 | − | 3.99954i | 3.66890 | + | 23.1645i | −1.25148 | + | 7.90151i | 14.1507 | + | 4.59786i | −3.02250 | − | 22.1555i |
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
11.d | odd | 10 | 1 | inner |
55.l | even | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 110.4.k.a | ✓ | 144 |
5.c | odd | 4 | 1 | inner | 110.4.k.a | ✓ | 144 |
11.d | odd | 10 | 1 | inner | 110.4.k.a | ✓ | 144 |
55.l | even | 20 | 1 | inner | 110.4.k.a | ✓ | 144 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
110.4.k.a | ✓ | 144 | 1.a | even | 1 | 1 | trivial |
110.4.k.a | ✓ | 144 | 5.c | odd | 4 | 1 | inner |
110.4.k.a | ✓ | 144 | 11.d | odd | 10 | 1 | inner |
110.4.k.a | ✓ | 144 | 55.l | even | 20 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(110, [\chi])\).