Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [110,4,Mod(9,110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(110, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 6]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("110.9");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 110 = 2 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 110.j (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.49021010063\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | −1.90211 | − | 0.618034i | −4.82478 | − | 6.64074i | 3.23607 | + | 2.35114i | −11.1132 | + | 1.22313i | 5.07307 | + | 15.6133i | −8.39040 | + | 11.5484i | −4.70228 | − | 6.47214i | −12.4774 | + | 38.4016i | 21.8946 | + | 4.54183i |
9.2 | −1.90211 | − | 0.618034i | −4.49475 | − | 6.18649i | 3.23607 | + | 2.35114i | 6.00836 | − | 9.42866i | 4.72606 | + | 14.5453i | 18.5677 | − | 25.5562i | −4.70228 | − | 6.47214i | −9.72643 | + | 29.9349i | −17.2558 | + | 14.2210i |
9.3 | −1.90211 | − | 0.618034i | −3.68663 | − | 5.07421i | 3.23607 | + | 2.35114i | 9.59889 | + | 5.73247i | 3.87635 | + | 11.9302i | −10.5049 | + | 14.4588i | −4.70228 | − | 6.47214i | −3.81291 | + | 11.7349i | −14.7153 | − | 16.8363i |
9.4 | −1.90211 | − | 0.618034i | −1.72273 | − | 2.37114i | 3.23607 | + | 2.35114i | −2.73555 | + | 10.8405i | 1.81139 | + | 5.57488i | 10.7547 | − | 14.8025i | −4.70228 | − | 6.47214i | 5.68897 | − | 17.5089i | 11.9031 | − | 18.9292i |
9.5 | −1.90211 | − | 0.618034i | −0.306528 | − | 0.421899i | 3.23607 | + | 2.35114i | −2.18646 | − | 10.9645i | 0.322302 | + | 0.991945i | −15.6145 | + | 21.4916i | −4.70228 | − | 6.47214i | 8.25942 | − | 25.4199i | −2.61751 | + | 22.2070i |
9.6 | −1.90211 | − | 0.618034i | 1.23002 | + | 1.69297i | 3.23607 | + | 2.35114i | −11.1788 | − | 0.186140i | −1.29332 | − | 3.98041i | 2.97886 | − | 4.10005i | −4.70228 | − | 6.47214i | 6.99025 | − | 21.5138i | 21.1483 | + | 7.26293i |
9.7 | −1.90211 | − | 0.618034i | 2.80775 | + | 3.86454i | 3.23607 | + | 2.35114i | 3.39411 | − | 10.6527i | −2.95225 | − | 9.08608i | 3.93988 | − | 5.42279i | −4.70228 | − | 6.47214i | 1.29226 | − | 3.97716i | −13.0397 | + | 18.1650i |
9.8 | −1.90211 | − | 0.618034i | 3.61498 | + | 4.97560i | 3.23607 | + | 2.35114i | 2.97826 | + | 10.7764i | −3.80102 | − | 11.6983i | −16.5460 | + | 22.7736i | −4.70228 | − | 6.47214i | −3.34501 | + | 10.2949i | 0.995167 | − | 22.3385i |
9.9 | −1.90211 | − | 0.618034i | 3.85595 | + | 5.30726i | 3.23607 | + | 2.35114i | 10.6149 | + | 3.51062i | −4.05438 | − | 12.4781i | 15.7658 | − | 21.6998i | −4.70228 | − | 6.47214i | −4.95519 | + | 15.2505i | −18.0210 | − | 13.2380i |
9.10 | 1.90211 | + | 0.618034i | −3.85595 | − | 5.30726i | 3.23607 | + | 2.35114i | −6.52412 | + | 9.07942i | −4.05438 | − | 12.4781i | −15.7658 | + | 21.6998i | 4.70228 | + | 6.47214i | −4.95519 | + | 15.2505i | −18.0210 | + | 13.2380i |
9.11 | 1.90211 | + | 0.618034i | −3.61498 | − | 4.97560i | 3.23607 | + | 2.35114i | 3.92472 | + | 10.4688i | −3.80102 | − | 11.6983i | 16.5460 | − | 22.7736i | 4.70228 | + | 6.47214i | −3.34501 | + | 10.2949i | 0.995167 | + | 22.3385i |
9.12 | 1.90211 | + | 0.618034i | −2.80775 | − | 3.86454i | 3.23607 | + | 2.35114i | −9.00739 | − | 6.62321i | −2.95225 | − | 9.08608i | −3.93988 | + | 5.42279i | 4.70228 | + | 6.47214i | 1.29226 | − | 3.97716i | −13.0397 | − | 18.1650i |
9.13 | 1.90211 | + | 0.618034i | −1.23002 | − | 1.69297i | 3.23607 | + | 2.35114i | 8.93442 | − | 6.72132i | −1.29332 | − | 3.98041i | −2.97886 | + | 4.10005i | 4.70228 | + | 6.47214i | 6.99025 | − | 21.5138i | 21.1483 | − | 7.26293i |
9.14 | 1.90211 | + | 0.618034i | 0.306528 | + | 0.421899i | 3.23607 | + | 2.35114i | −4.67586 | − | 10.1556i | 0.322302 | + | 0.991945i | 15.6145 | − | 21.4916i | 4.70228 | + | 6.47214i | 8.25942 | − | 25.4199i | −2.61751 | − | 22.2070i |
9.15 | 1.90211 | + | 0.618034i | 1.72273 | + | 2.37114i | 3.23607 | + | 2.35114i | 8.58500 | + | 7.16224i | 1.81139 | + | 5.57488i | −10.7547 | + | 14.8025i | 4.70228 | + | 6.47214i | 5.68897 | − | 17.5089i | 11.9031 | + | 18.9292i |
9.16 | 1.90211 | + | 0.618034i | 3.68663 | + | 5.07421i | 3.23607 | + | 2.35114i | −4.39620 | + | 10.2798i | 3.87635 | + | 11.9302i | 10.5049 | − | 14.4588i | 4.70228 | + | 6.47214i | −3.81291 | + | 11.7349i | −14.7153 | + | 16.8363i |
9.17 | 1.90211 | + | 0.618034i | 4.49475 | + | 6.18649i | 3.23607 | + | 2.35114i | −10.4029 | − | 4.09632i | 4.72606 | + | 14.5453i | −18.5677 | + | 25.5562i | 4.70228 | + | 6.47214i | −9.72643 | + | 29.9349i | −17.2558 | − | 14.2210i |
9.18 | 1.90211 | + | 0.618034i | 4.82478 | + | 6.64074i | 3.23607 | + | 2.35114i | 9.70973 | − | 5.54266i | 5.07307 | + | 15.6133i | 8.39040 | − | 11.5484i | 4.70228 | + | 6.47214i | −12.4774 | + | 38.4016i | 21.8946 | − | 4.54183i |
49.1 | −1.90211 | + | 0.618034i | −4.82478 | + | 6.64074i | 3.23607 | − | 2.35114i | −11.1132 | − | 1.22313i | 5.07307 | − | 15.6133i | −8.39040 | − | 11.5484i | −4.70228 | + | 6.47214i | −12.4774 | − | 38.4016i | 21.8946 | − | 4.54183i |
49.2 | −1.90211 | + | 0.618034i | −4.49475 | + | 6.18649i | 3.23607 | − | 2.35114i | 6.00836 | + | 9.42866i | 4.72606 | − | 14.5453i | 18.5677 | + | 25.5562i | −4.70228 | + | 6.47214i | −9.72643 | − | 29.9349i | −17.2558 | − | 14.2210i |
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
55.j | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 110.4.j.a | ✓ | 72 |
5.b | even | 2 | 1 | inner | 110.4.j.a | ✓ | 72 |
11.c | even | 5 | 1 | inner | 110.4.j.a | ✓ | 72 |
55.j | even | 10 | 1 | inner | 110.4.j.a | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
110.4.j.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
110.4.j.a | ✓ | 72 | 5.b | even | 2 | 1 | inner |
110.4.j.a | ✓ | 72 | 11.c | even | 5 | 1 | inner |
110.4.j.a | ✓ | 72 | 55.j | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(110, [\chi])\).