Properties

Label 110.4.g.b
Level $110$
Weight $4$
Character orbit 110.g
Analytic conductor $6.490$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,4,Mod(31,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 110.g (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.49021010063\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 18 x^{10} + 56 x^{9} + 1903 x^{8} + 4434 x^{7} + 95917 x^{6} + 226101 x^{5} + \cdots + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_{4} q^{2} + (2 \beta_{4} - \beta_1 + 2) q^{3} - 4 \beta_{7} q^{4} + ( - 5 \beta_{7} - 5 \beta_{6} + \cdots + 5) q^{5} + ( - 4 \beta_{7} + 4 \beta_{4} + \cdots + 2 \beta_1) q^{6} + ( - \beta_{11} + \beta_{8} + \cdots - 2 \beta_1) q^{7}+ \cdots + ( - 6 \beta_{11} + 19 \beta_{10} + \cdots - 289) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} + 15 q^{3} - 12 q^{4} + 15 q^{5} - 20 q^{6} + 15 q^{7} - 24 q^{8} + 62 q^{9} - 120 q^{10} + 34 q^{11} - 40 q^{12} - 114 q^{13} + 30 q^{14} - 75 q^{15} - 48 q^{16} - 17 q^{17} - 166 q^{18}+ \cdots - 3855 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 3 x^{11} + 18 x^{10} + 56 x^{9} + 1903 x^{8} + 4434 x^{7} + 95917 x^{6} + 226101 x^{5} + \cdots + 14641 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 21\!\cdots\!83 \nu^{11} + \cdots + 13\!\cdots\!28 ) / 60\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 31\!\cdots\!94 \nu^{11} + \cdots - 19\!\cdots\!76 ) / 60\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 42\!\cdots\!08 \nu^{11} + \cdots - 26\!\cdots\!15 ) / 66\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 75\!\cdots\!32 \nu^{11} + \cdots + 21\!\cdots\!52 ) / 60\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 14\!\cdots\!96 \nu^{11} + \cdots + 13\!\cdots\!43 ) / 66\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 15\!\cdots\!92 \nu^{11} + \cdots - 30\!\cdots\!58 ) / 66\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 70\!\cdots\!37 \nu^{11} + \cdots - 27\!\cdots\!47 ) / 66\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 94\!\cdots\!53 \nu^{11} + \cdots - 18\!\cdots\!37 ) / 55\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 23\!\cdots\!52 \nu^{11} + \cdots + 11\!\cdots\!29 ) / 66\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 43\!\cdots\!97 \nu^{11} + \cdots + 18\!\cdots\!71 ) / 66\!\cdots\!10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{11} - 2\beta_{10} - \beta_{9} + \beta_{8} - 7\beta_{7} - \beta_{5} + 29\beta_{4} + \beta_{3} + 3\beta_{2} - \beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2 \beta_{11} - 2 \beta_{10} - \beta_{9} - 46 \beta_{7} - 7 \beta_{6} + 11 \beta_{5} + 46 \beta_{4} + \cdots + 7 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 57 \beta_{11} - 11 \beta_{10} - 22 \beta_{9} - 35 \beta_{8} - 1387 \beta_{7} - 586 \beta_{6} + \cdots - 101 \beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 101 \beta_{11} + 101 \beta_{10} - 122 \beta_{9} - 122 \beta_{8} - 3460 \beta_{7} - 3683 \beta_{6} + \cdots - 1311 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 967 \beta_{11} + 3346 \beta_{10} - 1412 \beta_{9} - 1934 \beta_{8} + 967 \beta_{7} - 40356 \beta_{6} + \cdots - 40236 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 17890 \beta_{11} + 20702 \beta_{10} + 2812 \beta_{9} - 10351 \beta_{8} + 264484 \beta_{7} + \cdots - 272023 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 269378 \beta_{11} + 203050 \beta_{10} + 134689 \beta_{9} - 66328 \beta_{8} + 4512937 \beta_{7} + \cdots - 2087000 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 1291384 \beta_{11} + 520694 \beta_{10} + 1041388 \beta_{9} + 249996 \beta_{8} + 27457728 \beta_{7} + \cdots + 4555715 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 4555715 \beta_{11} - 4555715 \beta_{10} + 8098100 \beta_{9} + 8098100 \beta_{8} + 157291920 \beta_{7} + \cdots + 119092494 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 34990175 \beta_{11} - 88994840 \beta_{10} + 19014490 \beta_{9} + 69980350 \beta_{8} - 34990175 \beta_{7} + \cdots + 1271885780 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(1\) \(-\beta_{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
6.54616 4.75606i
−0.291076 + 0.211479i
−4.94606 + 3.59353i
6.54616 + 4.75606i
−0.291076 0.211479i
−4.94606 3.59353i
1.76267 5.42493i
−0.0760976 + 0.234204i
−1.49559 + 4.60294i
1.76267 + 5.42493i
−0.0760976 0.234204i
−1.49559 4.60294i
0.618034 1.90211i −3.92812 + 2.85395i −3.23607 2.35114i −1.54508 4.75528i 3.00082 + 9.23557i 5.32223 + 3.86683i −6.47214 + 4.70228i −1.05833 + 3.25720i −10.0000
31.2 0.618034 1.90211i 2.90911 2.11359i −3.23607 2.35114i −1.54508 4.75528i −2.22236 6.83973i −21.1898 15.3953i −6.47214 + 4.70228i −4.34781 + 13.3812i −10.0000
31.3 0.618034 1.90211i 7.56410 5.49564i −3.23607 2.35114i −1.54508 4.75528i −5.77846 17.7843i 26.8848 + 19.5330i −6.47214 + 4.70228i 18.6701 57.4606i −10.0000
71.1 0.618034 + 1.90211i −3.92812 2.85395i −3.23607 + 2.35114i −1.54508 + 4.75528i 3.00082 9.23557i 5.32223 3.86683i −6.47214 4.70228i −1.05833 3.25720i −10.0000
71.2 0.618034 + 1.90211i 2.90911 + 2.11359i −3.23607 + 2.35114i −1.54508 + 4.75528i −2.22236 + 6.83973i −21.1898 + 15.3953i −6.47214 4.70228i −4.34781 13.3812i −10.0000
71.3 0.618034 + 1.90211i 7.56410 + 5.49564i −3.23607 + 2.35114i −1.54508 + 4.75528i −5.77846 + 17.7843i 26.8848 19.5330i −6.47214 4.70228i 18.6701 + 57.4606i −10.0000
81.1 −1.61803 1.17557i −1.38070 + 4.24936i 1.23607 + 3.80423i 4.04508 2.93893i 7.22944 5.25249i −0.607198 1.86876i 2.47214 7.60845i 5.69276 + 4.13603i −10.0000
81.2 −1.61803 1.17557i 0.458064 1.40977i 1.23607 + 3.80423i 4.04508 2.93893i −2.39845 + 1.74258i 4.18048 + 12.8662i 2.47214 7.60845i 20.0658 + 14.5787i −10.0000
81.3 −1.61803 1.17557i 1.87755 5.77851i 1.23607 + 3.80423i 4.04508 2.93893i −9.83099 + 7.14263i −7.09050 21.8223i 2.47214 7.60845i −8.02250 5.82869i −10.0000
91.1 −1.61803 + 1.17557i −1.38070 4.24936i 1.23607 3.80423i 4.04508 + 2.93893i 7.22944 + 5.25249i −0.607198 + 1.86876i 2.47214 + 7.60845i 5.69276 4.13603i −10.0000
91.2 −1.61803 + 1.17557i 0.458064 + 1.40977i 1.23607 3.80423i 4.04508 + 2.93893i −2.39845 1.74258i 4.18048 12.8662i 2.47214 + 7.60845i 20.0658 14.5787i −10.0000
91.3 −1.61803 + 1.17557i 1.87755 + 5.77851i 1.23607 3.80423i 4.04508 + 2.93893i −9.83099 7.14263i −7.09050 + 21.8223i 2.47214 + 7.60845i −8.02250 + 5.82869i −10.0000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.4.g.b 12
11.c even 5 1 inner 110.4.g.b 12
11.c even 5 1 1210.4.a.bf 6
11.d odd 10 1 1210.4.a.bc 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.g.b 12 1.a even 1 1 trivial
110.4.g.b 12 11.c even 5 1 inner
1210.4.a.bc 6 11.d odd 10 1
1210.4.a.bf 6 11.c even 5 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 15 T_{3}^{11} + 122 T_{3}^{10} - 476 T_{3}^{9} + 2899 T_{3}^{8} - 5934 T_{3}^{7} + \cdots + 43151761 \) acting on \(S_{4}^{\mathrm{new}}(110, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 2 T^{3} + 4 T^{2} + \cdots + 16)^{3} \) Copy content Toggle raw display
$3$ \( T^{12} - 15 T^{11} + \cdots + 43151761 \) Copy content Toggle raw display
$5$ \( (T^{4} - 5 T^{3} + \cdots + 625)^{3} \) Copy content Toggle raw display
$7$ \( T^{12} + \cdots + 12197863591936 \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots + 55\!\cdots\!81 \) Copy content Toggle raw display
$13$ \( T^{12} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{12} + \cdots + 14\!\cdots\!25 \) Copy content Toggle raw display
$19$ \( T^{12} + \cdots + 18\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( (T^{6} + \cdots - 1170533509004)^{2} \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 48\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 56\!\cdots\!61 \) Copy content Toggle raw display
$43$ \( (T^{6} + \cdots - 10\!\cdots\!05)^{2} \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 43\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 36\!\cdots\!25 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( (T^{6} + \cdots - 55916232721561)^{2} \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 34\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 99\!\cdots\!21 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 54\!\cdots\!25 \) Copy content Toggle raw display
$89$ \( (T^{6} + \cdots + 89\!\cdots\!75)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 35\!\cdots\!41 \) Copy content Toggle raw display
show more
show less