Properties

Label 110.4.b.b
Level $110$
Weight $4$
Character orbit 110.b
Analytic conductor $6.490$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,4,Mod(89,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.89");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 110.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.49021010063\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{89})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 45x^{2} + 484 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - \beta_{2} q^{3} - 4 q^{4} + (\beta_{3} + 3 \beta_{2}) q^{5} + 4 q^{6} + ( - 8 \beta_{2} + \beta_1) q^{7} - 4 \beta_{2} q^{8} + 23 q^{9} + (\beta_{2} + 2 \beta_1 - 12) q^{10} + 11 q^{11}+ \cdots + 253 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 16 q^{6} + 92 q^{9} - 48 q^{10} + 44 q^{11} + 136 q^{14} + 48 q^{15} + 64 q^{16} + 96 q^{19} - 136 q^{21} - 64 q^{24} + 212 q^{25} - 56 q^{26} + 224 q^{29} - 560 q^{31} + 360 q^{34} + 408 q^{35}+ \cdots + 1012 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 45x^{2} + 484 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 23\nu ) / 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 45 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 45 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 22\beta_{2} - 23\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
89.1
5.21699i
4.21699i
5.21699i
4.21699i
2.00000i 2.00000i −4.00000 −9.43398 6.00000i 4.00000 26.4340i 8.00000i 23.0000 −12.0000 + 18.8680i
89.2 2.00000i 2.00000i −4.00000 9.43398 6.00000i 4.00000 7.56602i 8.00000i 23.0000 −12.0000 18.8680i
89.3 2.00000i 2.00000i −4.00000 −9.43398 + 6.00000i 4.00000 26.4340i 8.00000i 23.0000 −12.0000 18.8680i
89.4 2.00000i 2.00000i −4.00000 9.43398 + 6.00000i 4.00000 7.56602i 8.00000i 23.0000 −12.0000 + 18.8680i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.4.b.b 4
3.b odd 2 1 990.4.c.e 4
4.b odd 2 1 880.4.b.d 4
5.b even 2 1 inner 110.4.b.b 4
5.c odd 4 1 550.4.a.p 2
5.c odd 4 1 550.4.a.x 2
15.d odd 2 1 990.4.c.e 4
20.d odd 2 1 880.4.b.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.b.b 4 1.a even 1 1 trivial
110.4.b.b 4 5.b even 2 1 inner
550.4.a.p 2 5.c odd 4 1
550.4.a.x 2 5.c odd 4 1
880.4.b.d 4 4.b odd 2 1
880.4.b.d 4 20.d odd 2 1
990.4.c.e 4 3.b odd 2 1
990.4.c.e 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 4 \) acting on \(S_{4}^{\mathrm{new}}(110, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 106 T^{2} + 15625 \) Copy content Toggle raw display
$7$ \( T^{4} + 756 T^{2} + 40000 \) Copy content Toggle raw display
$11$ \( (T - 11)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 8820 T^{2} + 18593344 \) Copy content Toggle raw display
$17$ \( T^{4} + 12772 T^{2} + 5456896 \) Copy content Toggle raw display
$19$ \( (T^{2} - 48 T - 12240)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 12648 T^{2} + 12082576 \) Copy content Toggle raw display
$29$ \( (T^{2} - 112 T - 39940)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 280 T + 18176)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 81872 T^{2} + 280093696 \) Copy content Toggle raw display
$41$ \( (T^{2} + 472 T - 4468)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 98100 T^{2} + 867184704 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 5124841744 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 16433188864 \) Copy content Toggle raw display
$59$ \( (T^{2} + 896 T + 199280)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 84 T - 459612)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 1571646736 \) Copy content Toggle raw display
$71$ \( (T^{2} - 1680 T + 682816)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 230968670464 \) Copy content Toggle raw display
$79$ \( (T^{2} + 1100 T + 222400)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 1099763300416 \) Copy content Toggle raw display
$89$ \( (T^{2} + 856 T - 603220)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 377723326464 \) Copy content Toggle raw display
show more
show less