Defining parameters
| Level: | \( N \) | \(=\) | \( 110 = 2 \cdot 5 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 110.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(72\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(110, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 58 | 14 | 44 |
| Cusp forms | 50 | 14 | 36 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(110, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 110.4.b.a | $2$ | $6.490$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-20\) | \(0\) | \(q+2 i q^{2}+9 i q^{3}-4 q^{4}+(-5 i-10)q^{5}+\cdots\) |
| 110.4.b.b | $4$ | $6.490$ | \(\Q(i, \sqrt{89})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}-\beta _{2}q^{3}-4q^{4}+(3\beta _{2}+\beta _{3})q^{5}+\cdots\) |
| 110.4.b.c | $8$ | $6.490$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(16\) | \(0\) | \(q+\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{3}-4q^{4}+(2+\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(110, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(110, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)