Properties

Label 110.4.b
Level $110$
Weight $4$
Character orbit 110.b
Rep. character $\chi_{110}(89,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $3$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 110.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(110, [\chi])\).

Total New Old
Modular forms 58 14 44
Cusp forms 50 14 36
Eisenstein series 8 0 8

Trace form

\( 14 q - 56 q^{4} - 4 q^{5} + 8 q^{6} - 126 q^{9} - 56 q^{10} - 22 q^{11} + 200 q^{14} + 146 q^{15} + 224 q^{16} - 288 q^{19} + 16 q^{20} + 184 q^{21} - 32 q^{24} + 200 q^{25} + 56 q^{26} - 404 q^{29} + 440 q^{30}+ \cdots + 1034 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(110, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
110.4.b.a 110.b 5.b $2$ $6.490$ \(\Q(\sqrt{-1}) \) None 110.4.b.a \(0\) \(0\) \(-20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+9 i q^{3}-4 q^{4}+(-5 i-10)q^{5}+\cdots\)
110.4.b.b 110.b 5.b $4$ $6.490$ \(\Q(i, \sqrt{89})\) None 110.4.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}-\beta _{2}q^{3}-4q^{4}+(3\beta _{2}+\beta _{3})q^{5}+\cdots\)
110.4.b.c 110.b 5.b $8$ $6.490$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 110.4.b.c \(0\) \(0\) \(16\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{3}-4q^{4}+(2+\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(110, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(110, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)