Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [110,3,Mod(19,110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(110, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("110.19");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 110 = 2 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 110.i (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.99728290796\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −1.14412 | + | 0.831254i | −4.66752 | + | 1.51657i | 0.618034 | − | 1.90211i | 0.639205 | − | 4.95897i | 4.07956 | − | 5.61504i | −0.907012 | + | 2.79150i | 0.874032 | + | 2.68999i | 12.2046 | − | 8.86717i | 3.39084 | + | 6.20502i |
19.2 | −1.14412 | + | 0.831254i | −2.80040 | + | 0.909907i | 0.618034 | − | 1.90211i | −3.44728 | + | 3.62164i | 2.44764 | − | 3.36889i | 2.91555 | − | 8.97315i | 0.874032 | + | 2.68999i | −0.266815 | + | 0.193853i | 0.933611 | − | 7.00916i |
19.3 | −1.14412 | + | 0.831254i | −2.20436 | + | 0.716242i | 0.618034 | − | 1.90211i | 4.07430 | + | 2.89829i | 1.92669 | − | 2.65186i | −0.355087 | + | 1.09285i | 0.874032 | + | 2.68999i | −2.93493 | + | 2.13235i | −7.07071 | + | 0.0707788i |
19.4 | −1.14412 | + | 0.831254i | 0.674730 | − | 0.219233i | 0.618034 | − | 1.90211i | −4.95548 | − | 0.665729i | −0.589736 | + | 0.811701i | −2.91352 | + | 8.96689i | 0.874032 | + | 2.68999i | −6.87396 | + | 4.99422i | 6.22307 | − | 3.35759i |
19.5 | −1.14412 | + | 0.831254i | 3.58330 | − | 1.16429i | 0.618034 | − | 1.90211i | −3.53138 | − | 3.53968i | −3.13192 | + | 4.31072i | 3.60989 | − | 11.1101i | 0.874032 | + | 2.68999i | 4.20335 | − | 3.05391i | 6.98271 | + | 1.11436i |
19.6 | −1.14412 | + | 0.831254i | 5.41426 | − | 1.75920i | 0.618034 | − | 1.90211i | 1.13131 | + | 4.87033i | −4.73223 | + | 6.51336i | −2.89000 | + | 8.89452i | 0.874032 | + | 2.68999i | 18.9382 | − | 13.7594i | −5.34284 | − | 4.63185i |
19.7 | 1.14412 | − | 0.831254i | −5.41426 | + | 1.75920i | 0.618034 | − | 1.90211i | 4.98156 | − | 0.429077i | −4.73223 | + | 6.51336i | 2.89000 | − | 8.89452i | −0.874032 | − | 2.68999i | 18.9382 | − | 13.7594i | 5.34284 | − | 4.63185i |
19.8 | 1.14412 | − | 0.831254i | −3.58330 | + | 1.16429i | 0.618034 | − | 1.90211i | −4.45770 | − | 2.26472i | −3.13192 | + | 4.31072i | −3.60989 | + | 11.1101i | −0.874032 | − | 2.68999i | 4.20335 | − | 3.05391i | −6.98271 | + | 1.11436i |
19.9 | 1.14412 | − | 0.831254i | −0.674730 | + | 0.219233i | 0.618034 | − | 1.90211i | −2.16447 | − | 4.50722i | −0.589736 | + | 0.811701i | 2.91352 | − | 8.96689i | −0.874032 | − | 2.68999i | −6.87396 | + | 4.99422i | −6.22307 | − | 3.35759i |
19.10 | 1.14412 | − | 0.831254i | 2.20436 | − | 0.716242i | 0.618034 | − | 1.90211i | 4.01546 | + | 2.97927i | 1.92669 | − | 2.65186i | 0.355087 | − | 1.09285i | −0.874032 | − | 2.68999i | −2.93493 | + | 2.13235i | 7.07071 | + | 0.0707788i |
19.11 | 1.14412 | − | 0.831254i | 2.80040 | − | 0.909907i | 0.618034 | − | 1.90211i | 2.37911 | − | 4.39771i | 2.44764 | − | 3.36889i | −2.91555 | + | 8.97315i | −0.874032 | − | 2.68999i | −0.266815 | + | 0.193853i | −0.933611 | − | 7.00916i |
19.12 | 1.14412 | − | 0.831254i | 4.66752 | − | 1.51657i | 0.618034 | − | 1.90211i | −4.51874 | + | 2.14033i | 4.07956 | − | 5.61504i | 0.907012 | − | 2.79150i | −0.874032 | − | 2.68999i | 12.2046 | − | 8.86717i | −3.39084 | + | 6.20502i |
29.1 | −1.14412 | − | 0.831254i | −4.66752 | − | 1.51657i | 0.618034 | + | 1.90211i | 0.639205 | + | 4.95897i | 4.07956 | + | 5.61504i | −0.907012 | − | 2.79150i | 0.874032 | − | 2.68999i | 12.2046 | + | 8.86717i | 3.39084 | − | 6.20502i |
29.2 | −1.14412 | − | 0.831254i | −2.80040 | − | 0.909907i | 0.618034 | + | 1.90211i | −3.44728 | − | 3.62164i | 2.44764 | + | 3.36889i | 2.91555 | + | 8.97315i | 0.874032 | − | 2.68999i | −0.266815 | − | 0.193853i | 0.933611 | + | 7.00916i |
29.3 | −1.14412 | − | 0.831254i | −2.20436 | − | 0.716242i | 0.618034 | + | 1.90211i | 4.07430 | − | 2.89829i | 1.92669 | + | 2.65186i | −0.355087 | − | 1.09285i | 0.874032 | − | 2.68999i | −2.93493 | − | 2.13235i | −7.07071 | − | 0.0707788i |
29.4 | −1.14412 | − | 0.831254i | 0.674730 | + | 0.219233i | 0.618034 | + | 1.90211i | −4.95548 | + | 0.665729i | −0.589736 | − | 0.811701i | −2.91352 | − | 8.96689i | 0.874032 | − | 2.68999i | −6.87396 | − | 4.99422i | 6.22307 | + | 3.35759i |
29.5 | −1.14412 | − | 0.831254i | 3.58330 | + | 1.16429i | 0.618034 | + | 1.90211i | −3.53138 | + | 3.53968i | −3.13192 | − | 4.31072i | 3.60989 | + | 11.1101i | 0.874032 | − | 2.68999i | 4.20335 | + | 3.05391i | 6.98271 | − | 1.11436i |
29.6 | −1.14412 | − | 0.831254i | 5.41426 | + | 1.75920i | 0.618034 | + | 1.90211i | 1.13131 | − | 4.87033i | −4.73223 | − | 6.51336i | −2.89000 | − | 8.89452i | 0.874032 | − | 2.68999i | 18.9382 | + | 13.7594i | −5.34284 | + | 4.63185i |
29.7 | 1.14412 | + | 0.831254i | −5.41426 | − | 1.75920i | 0.618034 | + | 1.90211i | 4.98156 | + | 0.429077i | −4.73223 | − | 6.51336i | 2.89000 | + | 8.89452i | −0.874032 | + | 2.68999i | 18.9382 | + | 13.7594i | 5.34284 | + | 4.63185i |
29.8 | 1.14412 | + | 0.831254i | −3.58330 | − | 1.16429i | 0.618034 | + | 1.90211i | −4.45770 | + | 2.26472i | −3.13192 | − | 4.31072i | −3.60989 | − | 11.1101i | −0.874032 | + | 2.68999i | 4.20335 | + | 3.05391i | −6.98271 | − | 1.11436i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
55.h | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 110.3.i.a | ✓ | 48 |
5.b | even | 2 | 1 | inner | 110.3.i.a | ✓ | 48 |
11.d | odd | 10 | 1 | inner | 110.3.i.a | ✓ | 48 |
55.h | odd | 10 | 1 | inner | 110.3.i.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
110.3.i.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
110.3.i.a | ✓ | 48 | 5.b | even | 2 | 1 | inner |
110.3.i.a | ✓ | 48 | 11.d | odd | 10 | 1 | inner |
110.3.i.a | ✓ | 48 | 55.h | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(110, [\chi])\).